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Abstract

We present an algorithm for structured
prediction under online bandit feedback.
The learner repeatedly predicts a sequence
of actions, generating a structured output.
It then observes feedback for that output
and no others. We consider two cases: a
pure bandit setting in which it only ob-
serves a loss, and more fine-grained feed-
back in which it observes a loss for every
action. We find that the fine-grained feed-
back is necessary for strong empirical per-
formance, because it allows for a robust
variance-reduction strategy. We empiri-
cally compare a number of different algo-
rithms and exploration methods and show
the efficacy of BLS on sequence labeling
and dependency parsing tasks.

1 Introduction

In structured prediction the goal is to jointly pre-
dict the values of a collection of variables that in-
teract. In the usual “supervised” setting, at train-
ing time, you have access to ground truth outputs
(e.g., dependency trees) on which to build a pre-
dictor. We consider the substantially harder case
of online bandit structured prediction, in which
the system never sees supervised training data, but
instead must make predictions and then only re-
ceives feedback about the quality of that single
prediction. The model we simulate (Figure 1) is:

1. the world reveals an input (e.g., a sentence)
2. the algorithm produces a single structured

prediction (e.g., full parse tree);
3. the world provides a loss (e.g., overall quality

rating) and possibly a small amount of addi-
tional feedback;

4. the algorithm updates itself
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Figure 1: BLS for learning POS tagging. We learn
a policy π, whose output a user sees. The user
views predicted tags and provides a loss (and pos-
sibly additional feedback, such as which words are
labeled incorrectly). This is used to update π.

The goal of the system is to minimize it’s cumula-
tive loss over time, using the feedback to improve
itself. This introduces a fundamental exploration-
versus-exploitation trade-off, in which the system
must try new things in hopes that it will learn
something useful, but also in which it is penalized
(by high cumulative loss) for exploring too much.1

One natural question we explore in this paper
is: in addition to the loss, what forms of feed-
back are both easy for a user to provide and use-
ful for a system to utilize? At one extreme, one
can solicit no additional feedback, which makes
the learning problem very difficult. We describe
Bandit Learning to Search, BLS2, an approach
for improving joint predictors from different types
of bandit feedback. The algorithm predicts out-
puts and observes the loss of the predicted struc-

1Unlike active learning—in which the system chooses
which examples it wants feedback on—in our setting the sys-
tem is beholden to the human’s choice in inputs.

2Our implementation will be made freely available.
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ture; but then it uses a regression strategy to es-
timate counterfactual costs of (some) other struc-
tures that it did not predict. This variance reduc-
tion technique (§2.2) is akin to doubly-robust esti-
mation in contextual bandits. The trade-off is that
in order to accurately train these regressors, BLS
requires per-action feedback from the user (e.g.,
which words were labeled incorrectly). It appears
that this feedback is necessary; with out it, accu-
racy degrades over time. Additionally, we con-
sider several forms of exploration beyond a sim-
ple ε-greedy strategy, including Boltzmann explo-
ration and Thompson sampling (§2.4). We demon-
strate the efficacy of these developments on POS
tagging, syntactic chunking and dependency pars-
ing (§ 3), in which we show improvements over
both LOLS (Chang et al., 2015) and Policy Gradi-
ent (Sutton et al., 1999).

2 Learning with Bandit Feedback

We operate in the learning to search framework,
a family of algorithms for solving structured pre-
diction problems, which essentially train a policy
to make sequence of decisions that are stitched to-
gether into a final structured output. Such algo-
rithms decompose a joint prediction task into a se-
quence of action predictions, such as predicting
the label of the next word in sequence labeling
or predicting a shift/reduce action in dependency
parsing3; these predictions are tied by features
and/or internal state. Algorithms in this family
have recently met with success in neural networks
(Bengio et al., 2015; Wiseman and Rush, 2016),
though date back to models typically based on lin-
ear policies (Collins and Roark, 2004; Daumé III
and Marcu, 2005; Xu et al., 2007; Daumé III et al.,
2009; Ross et al., 2010; Ross and Bagnell, 2014;
Doppa et al., 2014; Chang et al., 2015).

Most learning to search algorithms operate by
considering a search space like that shown in Fig-
ure 2. The learning algorithm first rolls-in for a
few steps using a roll-in policy πin to some state
R, then considers all possible actions available at
state R, and then rolls out using a roll-out policy
πout until the end of the sequence. In the fully
supervised case, the learning algorithm can then
compute a loss for all possible outputs, and use
this loss to drive learning at state R, by encourag-

3Although the decomposition is into a sequence of predic-
tions, such approaches are not limited to “left-to-right” style
prediction tasks (Ross et al., 2010; Stoyanov et al., 2011).

in/ 
IN

Natural/ 
NNP

Empirical/
JJ

Methods/
NN

Processing/ 
NNP

Language/ 
NNP

VB NNP NNP

NN VB NNP
S R E

loss = 1

{

Roll-in

on
e-

st
ep

 
de

vi
at

io
n {

Roll-out

loss = 0

loss = 2

Figure 2: A search space for part of speech tag-
ging, explored by a policy that chooses to “ex-
plore” at state R.

ing the learner to take the action with lowest cost,
updating the learned policy from π̂i to π̂i+1.

In the bandit setting, this is not possible: we can
only evaluate one loss; nevertheless, we can follow
a similar algorithmic structure. Our specific algo-
rithm, BLS, is summarized in algorithm 1. We
start with a pre-trained reference policy πref and
seek to improve it with bandit feedback. On each
example, an exploration algorithm (§2.4) chooses
whether to explore or exploit. If it chooses to ex-
ploit, a random learned policy is used to make a
prediction and no updates are made. If, instead, it
chooses to explore, it executes a roll-in as usual,
a single deviation at time t according to the ex-
ploration policy, and then a roll-out. Upon com-
pletion it suffers a bandit loss for the entire com-
plete trajectory. It then uses a cost estimator ρ to
guess the costs of the un-taken actions. From this
it forms a complete cost vector, and updates the
underlying policy based on this cost vector. Fi-
nally, it updates the cost estimator ρ.

2.1 Cost Estimation by Importance Sampling

The simplest possible method of cost estimation
is importance sampling (Horvitz and Thompson,
1952; Chang et al., 2015). If the third action is
the one explored with probability p3 and a cost ĉ3
is observed, then the cost vector for all actions is
set to 〈0, 0, ĉ3/p3, 0, . . . , 0〉. This yields an unbi-
ased estimate of the true cost vector because in ex-
pectation over all possible actions, the cost vector
equals 〈ĉ1, ĉ2, . . . , ĉK〉.

Unfortunately, this type of cost estimate suffers
from huge variance (see experiments in §3). If ac-
tions are explored uniformly at random, then all
cost vectors look like 〈0, 0,Kĉ3, 0, . . . 0〉, which
varies quite far from its expectation when K is
large. To better understand the variance reduction
issue, consider the part of speech tagging exam-
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Input: examples {xi}Ni=1, reference policy
πref, exploration algorithm explorer,
and rollout-parameter β ≥ 0

π0 ← initial policy
I ← ∅
ρ← initial cost estimator
for each xi in training examples do

if explorer chooses not to explore then
π ← Unif(I) // pick policy
yi ← predict using π
c← bandit loss of yi

else
t← Unif(0, T − 1) // deviation time
τ ← roll-in with π̂i for t rounds
st ← final state in τ
at = explorer(st) // deviation action
πout ← πref with prob β, else π̂i
yi ← roll-out with πout from τ + at
c← bandit loss of yi
ĉ← est cost(st, τ, ρ, A(st), at, c)
π̂i+1 ← update(π̂i, (Φ(xi, st), ĉ))
I ← I ∪ {π̂i+1}
update cost estimator ρ

end
end

Algorithm 1: Bandit Learning to Search (BLS)

ple from Figure 2. As in the figure, suppose that
the deviation occurs at time step 3 and that during
roll-in, the first two words are tagged correctly by
the roll-in policy. At t = 3, there are 45 possible
actions (each possible part of speech) to take from
the deviation state, of which three are shown; each
action (under uniform exploration) will be taken
with probability 1/45. If the first is taken, a loss of
one will be observed, if the second, a loss of zero,
and if the third, a loss of two. When a fair coin is
flipped, perhaps the third choice is selected, which
will induce a cost vector of ~c = 〈0, 0, 90, 0, . . . 〉.
In expectation over this random choice, we have
Ea[c] is correct, implying unbiasedness, but the
variance is very large: O((Kcmax)2).

This problem is exacerbated by the fact that
many learning to search algorithms define the cost
of an action a to be the difference between the
cost of a and the minimum cost. This is desirable
because when the policy is predicting greedily, it
should choose the action that adds the least cost;
it should not need to account for already-incurred
cost. For example, suppose the first two words in

Input: current state: st; roll-in trajectory: τ ;
K regression functions (one for every
action): ρ; set of allowed actions:
A(st); roll-out policy: πout; explored
action: at; bandit loss: c

t← |τ |
Initialize ĉ: a vector of size |A(st)|
ĉ0 ← 0
for (a, s) ∈ τ do

ĉ0 ← ĉ0 + ρa(Φ(s))
end
for a ∈ A(st) do

if a = at then
ĉ(a)← c

else
ĉ(a)← ĉ0
y ← roll-out with πout from τ + a
for (a′, s′) in y do

ĉ(a)← ĉ(a) + ρa′(Φ(s′))
end

end
return ĉ: a vector of size |A(st)|, where ĉ(a)
is the estimated cost for action a at state st.

Algorithm 2: est cost

Figure 2 were tagged incorrectly. This would add
a loss of 2 to any of the estimated costs, but could
be very difficult to fit because this loss was based
on past actions, not the current action.

2.2 Doubly Robust Cost Estimation

To address the challenge of high variance cost es-
timates, we adopt a strategy similar to the doubly-
robust estimation used in the (non-structured) con-
textual bandit setting (Dudik et al., 2011). In par-
ticular, we train a separate set of regressors to esti-
mate the total costs of any action, which we use to
impute a counterfactual cost for untaken actions.

Algorithm 2 spells this out, taking advantage of
an action-to-cost regressor, ρ. To estimate the cost
of an un-taken action a′ at a deviation, we simulate
the execution of a′, followed by the execution of
the current policy through the end. The cost of
that entire trajectory is estimated by summing ρ
over all states along the path. For example, in the
part of speech tagging example above, we learn
45 regressors: one for each part of speech. The
cost of a roll-out is estimated as the sum of these
regressors over the entire predicted sequence.

Using this doubly-robust estimate strategy ad-
dresses both of the problems mentioned in § 2.1.
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First, this is able to provide a cost estimate for all
actions. Second, because ρ is deterministic, it will
give the same cost to the common prefix of all tra-
jectories, thus resolving credit assignment.

The remaining challenge is: how to estimate
these regressors. Unfortunately, this currently
comes at an additional cost to the user: we must
observe per-action feedback. In particular, when
the user views a predicted output (e.g., part of
speech sequence), we ask for a binary signal for
each action whether the predicted action was right
or wrong. Thus, for a sentence of length T , we
generate T training examples for every time step
1 ≤ t ≤ T . Each training example has the form:
(at, ct), where at is the predicted action at time t,
and ct is a binary cost, either 1 if the predicted ac-
tion was correct, or zero otherwise. This amounts
to a user “crossing out” errors, which hopefully
incurs low overhead. Using these T training ex-
amples, we can effectively train the K regressors
for estimating the cost of unobserved actions.

2.3 Theoretical Analysis

In order to analyze the variance of the BLS es-
timator (in particular to demonstrate that it has
lower variance than importance sampling), we
provide a reduction to contextual bandits in an i.i.d
setting. Dudı́k et al. (2014) studied the contextual
bandit setting, which is similar to out setting but
without the complexity of sequences of actions.
(In particular, if T = 1 then our setting is ex-
actly the contextual bandit setting.) They studied
the task of off-policy evaluation and optimization
for a target policy ν using doubly robust estima-
tion given historic data from an exploration pol-
icy µ consisting of contexts, actions, and received
rewards. They prove that this approach yields ac-
curate value estimates when there is either a good
(but not necessarily consistent) model of rewards
or a good (but not necessarily consistent) model of
past policy. In particular, they show:

Theorem. Let ∆(x, a) and ρk(x, a) denote, re-
spectively, the additive error of the reward esti-
mator r̂ and the multiplicative error of the action
probability estimator µ̂k. If exploration policy µ
and the estimator µ̂k are stationary, and the target
policy ν is deterministic, then the variance of the
doubly robust estimator Vµ[V̂DR] is:

1

n
(V(x,a)∼ν [r∗(x, a) + (1− ρ1(x, a))∆(x, a)])

+E(x,a)∼ν
[ 1

µ̂1(a|x)
ρ1(x, a)Vr∼D(·|x,a)[r]

]
+E(x,a)∼ν

[1− µ1(a|x)

µ̂1(a|x)
ρ1(x, a)∆(x, a)2

]
]

The theorem show that the variance can be de-
composed into three terms. The first term ac-
counts for the randomness in the context features.
The second term accounts for randomness in re-
wards and disappears when rewards are determin-
istic functions of the context and actions. The last
term accounts for the disagreement between ac-
tions taken by the exploration policy µ and the
target policy ν. This decomposition shows that
doubly robust estimation yields accurate value es-
timates when there is either a good model of re-
wards or a good model of the exploration policy.

We can build on this result for BLS to show an
identical result under the following reduction. The
exploration policy µ in our setting is defined as fol-
lows: for every exploration round, a randomly se-
lected time-step is assigned a randomly chosen ac-
tion, and a deterministic reference policy is used to
generate the roll-in and roll-out trajectories. Our
goal is to evaluate and optimize a better target pol-
icy ν. Under this setting, and assuming that the
structures are generated i.i.d from a fixed but un-
known distribution, the structured prediction prob-
lem will be equivalent to a contextual bandit prob-
lem were we consider the roll-in trajectory as part
of the context.

2.4 Options for Exploration Strategies
In addition to the ε-greedy exploration algorithm,
we consider the following exploration strategies:

Boltzmann (Softmax) Exploration. Boltz-
mann exploration varies the action probabilities
as a graded function of estimated value. The
greedy action is still given the highest selection
probability, but all the others are ranked and
weighted according to their cost estimates; ac-
tion a is chosen with probability proportional
to exp

[
1

tempc(a)
]
, where “temp” is a positive

parameter called the temperature, and c(a) is the
current predicted cost of taking action a. High
temperatures cause the actions to be all (nearly)
equiprobable. Low temperatures cause a greater
difference in selection probability for actions that
differ in their value estimates.
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Thompson Sampling estimates the following
elements: a set Θ of parameters µ; a prior distribu-
tion P (µ) on these parameters; past observations
D consisting of observed contexts and rewards;
a likelihood function P (r|b, µ), which gives the
probability of reward given a context b and a pa-
rameter µ; In each round, Thompson Sampling
selects an action according to its posterior prob-
ability of having the best parameter µ. This is
achieved by taking a sample of parameter for each
action, using the posterior distributions, and se-
lecting that action that produces the best sam-
ple (Agrawal and Goyal, 2013; Komiyama et al.,
2015). We use Gaussian likelihood function and
Gaussian prior for the Thompson Sampling algo-
rithm. In addition, we make a linear payoff as-
sumption similar to (Agrawal and Goyal, 2013),
where we assume that there is an unknown under-
lying parameter µa ∈ Rd such that the expected
cost for each action a, given the state st and con-
text xi is Φ(xi, st)Tµa.

3 Experimental Results

The evaluation framework we consider is the fully
online setup described in the introduction, mea-
suring the degree to which various algorithms can
effectively improve upon a reference policy by ob-
serving only a partial feedback signal, and effec-
tively balancing exploration and exploitation. We
learn from one structured example at every time
step, and we do a single pass over the available
examples. We measure loss as the average cumu-
lative loss over time, thus algorithms are appropri-
ately “penalized” for unnecessary exploration.

3.1 Tasks, Policy Classes and Data Sets

We experiment with the following three tasks. For
each, we briefly define the problem, describe the
policy class that we use for solving that problem
in a learning to search framework (we adopt a sim-
ilar setting to that of (Chang et al., 2016), who de-
scribes the policies in more detail), and describe
the data sets that we use. The regression problems
are solved using squared error regression, and the
classification problems (policy learning) is solved
via cost-sensitive one-against-all.

Part-Of-Speech Tagging over the 45 Penn
Treebank (Marcus et al., 1993) tags. To simu-
late a domain adaptation setting, we train a ref-
erence policy on the TweetNLP dataset (Owoputi
et al., 2013), which achieves good accuracy in do-

main, but does poorly out of domain. We sim-
ulate bandit feedback over the entire Penn Tree-
bank Wall Street Journal (sections 02–21 and 23),
comprising 42k sentences and about one million
words. (Adapting from tweets to WSJ is nonstan-
dard; we do it here because we need a large dataset
on which to simulate bandit feedback.) The mea-
sure of performance is average per-word accuracy
(one minus Hamming loss).

Noun Phrase Chunking is a sequence segmen-
tation task, in which sentences are divided into
base noun phrases.We solve this problem using
a sequence span identification predictor based on
Begin-In-Out encoding, following (Ratinov and
Roth, 2009), though applied to chunking rather
than named-entity recognition. We used the
CoNLL-2000 datasetfor training and testing. We
used the smaller test split (2, 012 sentences) for
training a reference policy, and used the training
split (8, 500 sentences) for online evaluation. Per-
formance was measured by F-score over predicted
noun phrases (for which one has to predict the en-
tire noun phrase correctly to get any points).

Dependency Parsing is a syntactic analysis
task, in which each word in a sentence gets as-
signed a grammatical head (or “parent”). The ex-
perimental setup is similar to part-of-speech tag-
ging. We train an arc-eager dependency parser
(Nivre, 2003), which chooses among (at most)
four actions at each state: Shift, Reduce, Left or
Right. As in part of speech tagging, the reference
policy is trained on the TweetNLP dataset (us-
ing an oracle due to (Goldberg and Nivre, 2013)),
and evaluated on the Penn Treebank corpus (again,
sections 02 − 21 and section 23). The loss is un-
labeled attachment score (UAS), which measures
the fraction of words that pick the correct parent.

3.2 Main Results

Here, we describe experimental results (Table 1)
comparing several algorithms: (line B) The ban-
dit variant of the LOLS algorithm, which uses
importance sampling and ε-greedy exploration;
(lines C-F) BLS, with bandit feedback and per-
word error correction, with variance reduction and
four exploration strategies: ε-greedy, Boltzmann,
Thompson, and “oracle” exploration in which case
the oracle action is always chosen during explo-
ration; (line G) The Policy Gradient reinforcement
learning algorithm, with ε-greedy exploration on
one-step deviations; and (line H) A fully super-
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POS DepPar Chunk
Algorithm Variant Acc UAS F-Scr

A. Reference - 47.24 44.15 74.73
B. LOLS ε-greedy 2.29 18.55 31.76

C. BLS ε-greedy 86.55 56.04 90.03
D. Boltz. 89.62 57.20 90.91
E. Thomp. 89.37 56.60 90.06
F. Oracle 89.23 56.60 90.58

G. Policy∇ ε-greedy 75.10 - 90.07

H. DAgger Full Sup 96.51 90.64 95.29

Table 1: Total progressive accuracies for the dif-
ferent algorithms on the three natural language
processing tasks. LOLS uniformly decreases per-
formance over the Reference baseline. BLS,
which integrates cost regressors, uniformly im-
proves, often quite dramatically. The overall ef-
fect of the exploration mechanism is small, but
in all cases Boltzmann exploration is statistically
significantly better than the other options at the
p < 0.05 level (because the sample size is so
large). Policy Gradient for dependency parsing is
missing because after processing 1

4 of the data, it
was substantially subpar.

vised “upper bound” trained with DAgger.
From these results, we draw the following con-

clusions (the rest of this section elaborates on
these conclusions in more detail):

1. The original LOLS algorithm is ineffective at
improving the accuracy of a poor reference
policy (A vs B);

2. Collecting additional per-word feedback in
BLS allows the algorithm to drastically im-
prove on the reference (A vs C) and on LOLS
(B vs C); we show in §3.3 that this happens
because of variance reduction;

3. Additional leverage can be gained by varying
the exploration strategy, and in general Boltz-
mann exploration is effective (C,D,E), but the
Oracle exploration strategy is not optimal (F
vs D); see §3.4;

4. For large action spaces like POS tagging,
the BLS-type updates outperform Policy
Gradient-type updates, when the exploration
strategy is held constant (G vs D), see §3.5.

5. Bandit feedback is less effective than full
feedback (H vs D) (§3.6).

3.3 Effect of Variance Reduction

Table 1 shows the progressive validation accura-
cies for all three tasks for a variety of algorith-
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Figure 3: Analyzing the variance of the the cost
estimates from LOLS and BLS over a run of the
algorithm for POS; the x-axis is number of sen-
tences processed, y-axis is empirical variance.

mic settings. To understand the effect of vari-
ance, it is enough to compare the performance
of the Reference policy (the policy learned from
the out of domain data) with that of LOLS. In
all of these cases, running LOLS substantially de-
creases performance. Accuracy drops by 45% for
POS tagging, 26% for dependency parsing and
43% for noun phrase chunking. For POS tagging,
the LOLS accuracy falls below the accuracy one
would get for random guessing (which is approxi-
mately 14% on this dataset for NN)!

When the underlying algorithm changes from
LOLS to BLS, the overall accuracies go up signif-
icantly. Part of speech tagging accuracy increases
from 47% to 86%; dependency parsing accuracy
from 44% to 57%; and chunking F-score from
74% to 90%. These numbers naturally fall be-
low state of the art for fully supervised learning
on these data sets, precisely because these results
are based only on bandit feedback (see §3.6).

3.4 Effect of Exploration Strategy

Figure 4 shows the effect of the choice of ε for
ε-greedy exploration in BLS. Overall, best results
are achieved with remarkably high epsilon, which
is possibly counter-intuitive. The reason this hap-
pens is because BLS only explores on one out of T
time steps, of which there are approximately 30 in
each of these experiments (the sentence lengths).
This means that even with ε = 1, we only take
a random action roughly 3.3% of the time. It is
therefore not surprising that large ε is the most ef-
fective strategy. Overall, although the differences
are small, the best choice of ε across these differ-
ent tasks is ≈ 0.6.
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Figure 4: Analyzing the effect of ε in exploration/exploitation trade-off. Overall, large values of ε are
strongly preferred.

Returning to Table 1, we can consider the effect
of different exploration mechanisms: ε-greedy,
Boltzmann (or softmax) exploration, and Thomp-
son sampling. Overall, Boltzmann exploration
was the most effective strategy, gaining about 3%
accuracy in POS tagging, just over 1% in depen-
dency parsing, and just shy of 1% in noun phrase
chunking. Although the latter two effects are
small, they are statistically significant, which is
measurable due to the fact that the evaluation sets
are very large. In general, Thompson sampling is
also effective, though worse than Boltzmann.

Finally, we consider a variant in which when-
ever BLS requests exploration, the algorithm
“cheats” and chooses the gold standard decision
at that point. This is the “oracle exploration” line
in Table 1. We see that this does not improve
overall quality, which suggests that a good explo-
ration strategy is not one that always does the right
thing, but one that also explored bad—but useful-
to-learn-from—options.

3.5 Policy Gradient Updates

A natural question is: how does bandit structured
prediction compare to more standard approaches
to reinforcement learning (we revisit the question
of how these problems differ in § 4). We chose
Policy Gradient (Sutton et al., 1999) as a point of
comparison. The main question we seek to ad-
dress is how the BLS update rule compares to the
Policy Gradient update rule. In order to perform
this comparison, we hold the exploration strategy
fixed, and implement the Policy Gradient update
rule inside our system.

More formally, the policy gradient optimiza-
tion is similar to that used in BLS. PG maintains
a policy πθ, which is parameterized by a set of
parameters θ. Features are extracted from each
state st to construct the feature vectors φ(st), and

linear function approximation models the proba-
bility of selecting action at at state st under πθ:
πθ(at|st) ∝ exp(θTatφ(st)), where K is the total
number of actions. PG maximizes the total ex-
pected return under the distribution of trajectories
sampled from the policy πθ.

To balance the exploration / exploitation trade-
off, we use exactly the same epsilon greedy tech-
nique used in BLS (Algorithm 1). For each tra-
jectory τ sampled from πθ, a state is selected uni-
formly at random, and an action is selected greed-
ily with probability ε. The policy πθ is used to con-
struct the roll-in and roll-out trajectories. For ev-
ery trajectory τ , we collect the same binary grades
from the user as in BLS, and use them to train a re-
gression function to estimate the per-step reward.
These estimates are then be summed up to com-
pute the total return Gt from time step t onwards
(Algorithm 2).

We use standard policy gradient update for opti-
mizing the policy θ based on the observed rewards:

θ ← θ + α∇θ log(πθ(st, at))Gt (1)

The results of this experiment are shown in line
G of Table 1. Here, we see that on POS tagging,
where the number of actions is very large, PG sig-
nificantly underperforms BLS. Our initial experi-
ments in dependency parsing showed the PG sig-
nificantly underperformed BLS after processing 1

4
of the data. The difference is substantially smaller
in chunking, where PG is on part with BLS with
ε-greedy exploration. Figure 4 shows the effect
of ε on PG, where we see that it also prefers large
values of ε, but its performance saturates as ε→ 1.

3.6 Bandit Feedback vs Full Feedback

Finally, we consider the trade-off between ban-
dit feedback in BLS and full feedback. To make
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this comparison, we run the fully supervised al-
gorithm DAgger (Ross et al., 2010) which is ef-
fectively the same algorithm as LOLS and BLS
under full supervision. In Table 1, we can see
that full supervision dramatically improves perfor-
mance from around 90% to 97% in POS tagging,
57% to 91% in dependency parsing, and 91% to
95% in chunking. Of course, achieving this im-
proved performance comes at a high labeling cost:
a human has to provide exact labels for each deci-
sion, not just binary “yes/no” labels.

4 Discussion & Conclusion

The most similar algorithm to ours is the bandit
version of LOLS (Chang et al., 2015) (which is an-
alyzed theoretically but not empirically); the key
differences between BLS and LOLS are: (a) BLS
employs a doubly-robust estimator for “guessing”
the costs of counterfactual actions; (b) BLS em-
ploys alternative exploration strategies; (c) BLS is
effective in practice at improving the performance
of an initial policy.

In the NLP community, Sokolov et al. (2016a)
and Sokolov et al. (2016b) have proposed a pol-
icy gradient-like method for optimizing log-linear
models like conditional random fields (Lafferty
et al., 2001) under bandit feedback. Their eval-
uation is most impressive on the problem of do-
main adaptation of a machine translation system,
in which they show that their approach is able to
learn solely from bandit-style feedback, though re-
quiring a large number of samples.

In the learning-to-search setting, the difference
between structured prediction under bandit feed-
back and reinforcement learning gets blurry. A
distinction in the problem definition is that the
world is typically assumed to be fixed and stochas-
tic in RL, while the world is both deterministic
and known (conditioned on the input, which is ran-
dom) in bandit structured prediction: given a state
and action, the algorithm always knows what the
next state will be. A difference in solution is that
there has been relatively little work in reinforce-
ment learning that explicitly begins with a refer-
ence policy to improve and often assumes an ab
initio training regime. In practice, in large state
spaces, this makes the problem almost impossi-
ble, and practical settings like AlphaGo (Silver
et al., 2016) require imitation learning to initialize
a good policy, after which reinforcement learning
is used to improve that policy.

Learning from partial feedback has generated a
vast amount of work in the literature, dating back
to the seminal introduction of multi-armed bandits
by (Robbins, 1985). However, the vast number of
papers on this topic does not consider joint pre-
diction tasks; see (Auer et al., 2002; Auer, 2003;
Langford and Zhang, 2008; Srinivas et al., 2009;
Li et al., 2010; Beygelzimer et al., 2010; Dudik
et al., 2011; Chapelle and Li, 2011; Valko et al.,
2013) and references inter alia. There, the system
observes (bandit) feedback for every decision.

Other forms of contextual bandits on structured
problems have been considered recently. Kalai
and Vempala (2005) studied the structured prob-
lem of online shortest paths, where one has a di-
rected graph and a fixed pair of nodes (s, t). Each
period, one has to pick a path from s to t, and then
the times on all the edges are revealed. The goal
of the learner is to improve it’s path predictions
over time. Relatedly, Krishnamurthy et al. (2015)
studied a variant of the contextual bandit problem,
where on each round, the learner plays a sequence
of actions, receives a score for each individual ac-
tion, and obtains a final reward that is a linear com-
bination to those scores.

In this paper, we presented a computationally
efficient algorithm for structured contextual ban-
dits, BLS, by combining: locally optimal learning
to search (to control the structure of exploration)
and doubly robust cost estimation (to control the
variance of the cost estimation). This provides the
first practically applicable learning to search algo-
rithm for learning from bandit feedback. Unfortu-
nately, this comes at a cost to the user: they must
make more fine-grained judgments of correctness
than in a full bandit setting. In particular, they
must mark each decision as correct or incorrect:it
is an open question whether this feedback can be
removed without incurring a substantially larger
sample complexity. A second large open question
is whether the time step at which to deviate can
be chosen more intelligently, similar to selective
sampling (Shi et al., 2015), using active learning.
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