
Proceedings of the 2nd Workshop on Structured Prediction for Natural Language Processing, pages 12–16
Copenhagen, Denmark, September 7–11, 2017. c©2017 Association for Computational Linguistics

Towards Neural Machine Translation with Latent Tree Attention

James Bradbury and Richard Socher
james.bradbury@salesforce.com

rsocher@salesforce.com

Abstract

Building models that take advantage of the
hierarchical structure of language without
a priori annotation is a longstanding goal
in natural language processing. We intro-
duce such a model for the task of machine
translation, pairing a recurrent neural net-
work grammar encoder with a novel atten-
tional RNNG decoder and applying pol-
icy gradient reinforcement learning to in-
duce unsupervised tree structures on both
the source and target. When trained
on character-level datasets with no ex-
plicit segmentation or parse annotation,
the model learns a plausible segmentation
and shallow parse, obtaining performance
close to an attentional baseline.

1 Introduction

Many efforts to exploit linguistic hierarchy in NLP
tasks make use of the output of a self-contained
parser system trained from a human-annotated
treebank (Huang et al., 2006). An alternative ap-
proach aims to jointly learn the task at hand and
relevant aspects of linguistic hierarchy, inducing
from an unannotated training dataset parse trees
that may or may not correspond to treebank anno-
tation practices (Wu, 1997; Chiang, 2005).

Most deep learning models for NLP that aim to
make use of linguistic hierarchy integrate an exter-
nal parser, either to prescribe the recursive struc-
ture of the neural network (Pollack, 1990; Goller
and Küchler, 1996; Socher et al., 2013) or to pro-
vide a supervision signal or training data for a net-
work that predicts its own structure (Socher et al.,
2010; Bowman et al., 2016; Dyer et al., 2016b).
But some recently described neural network mod-
els take the second approach and treat hierarchi-
cal structure as a latent variable, applying infer-

ence over graph-based conditional random fields
(Kim et al., 2017), the straight-through estimator
(Chung et al., 2017), or policy gradient reinforce-
ment learning (Yogatama et al., 2017) to work
around the inapplicability of gradient-based learn-
ing to problems with discrete latent states.

For the task of machine translation,
syntactically-informed models have shown
promise both inside and outside the deep learn-
ing context, with hierarchical phrase-based
models frequently outperforming traditional
ones (Chiang, 2005) and neural MT models
augmented with morphosyntactic input features
(Sennrich and Haddow, 2016; Nadejde et al.,
2017), a tree-structured encoder (Eriguchi et al.,
2016; Hashimoto and Tsuruoka, 2017), and a
jointly trained parser (Eriguchi et al., 2017) each
outperforming purely-sequential baselines.

Drawing on many of these precedents, we in-
troduce an attentional neural machine translation
model whose encoder and decoder components
are both tree-structured neural networks that pre-
dict their own constituency structure as they con-
sume or emit text. The encoder and decoder net-
works are variants of the RNNG model introduced
by Dyer et al. (2016b), allowing tree structures of
unconstrained arity, while text is ingested at the
character level, allowing the model to discover and
make use of structure within words.

The parsing decisions of the encoder and de-
coder RNNGs are parameterized by a stochastic
policy trained using a weighted sum of two ob-
jectives: a language model loss term that rewards
predicting the next character with high likelihood,
and a tree attention term that rewards one-to-one
attentional correspondence between constituents
in the encoder and decoder.

We evaluate this model on the German-English
language pair of the flickr30k dataset, where it
obtains similar performance to a strong character-

12



level baseline. Analysis of the latent trees pro-
duced by the encoder and decoder shows that
the model learns a reasonable segmentation and
shallow parse, and most phrase-level constituents
constructed while ingesting the German input
sentence correspond meaningfully to constituents
built while generating the English output.

2 Model

2.1 Encoder/Decoder Architecture

The model consists of a coupled encoder and de-
coder, where the encoder is a modified stack-
only recurrent neural network grammar (Kuncoro
et al., 2017) and the decoder is a stack-only RNNG
augmented with constituent-level attention. An
RNNG is a top-down transition-based model that
jointly builds a sentence representation and parse
tree, representing the parser state with a StackL-
STM and using a bidirectional LSTM as a con-
stituent composition function. Our implemen-
tation is detailed in Figure 1, and differs from
Dyer et al. (2016b) in that it lacks separate new-
nonterminal tokens for different phrase types, and
thus does not include the phrase type as an input to
the composition function. Instead, the values of xi
for the encoder are fixed to a constant xenc while
the values of xj for the decoder are determined
through an attention procedure (Section 2.2).

As originally described, the RNNG predicts
parser transitions using a one-layer tanh percep-
tron with three concatenated inputs: the last state
of a unidirectional LSTM over the stack contents
(s), the last state of a unidirectional LSTM over
the reversed buffer of unparsed tokens (b), and the
result of an LSTM over the past transitions (a). All
three of these states can be computed with at most
one LSTM step per parser transition using the
StackLSTM algorithm (Dyer et al., 2016a). But
such a baseline RNNG is actually outperformed
by one which conditions the parser transitions only
on the stack representation (Kuncoro et al., 2017).
Restricting our model to this stack-only case al-
lows both the encoder and decoder to be super-
vised using a language model loss, while allowing
the model access to b would give it a trivial way
to predict the next character and obtain zero loss.

2.2 Attention

With the exception of the attention mechanism, the
encoder and decoder are identical. While the en-
coder uses a single token to represent a new non-

x5x5

x4x4

x2x2

x0x0

h1h1

E i n e m _

h3h3

T -
S h i r t

SS

. . .. . .
NTNT

x2x2

x4x4

x0x0

h1h1

E i n e m _

h3h3

T -
S h i r t

SS

_ . . .. . .

GENGEN

x2x2

x0x0

h1h1

E i n e m _

h3h3 h4h4

T -
S h i r t

SS

. . .. . .

REDUCEREDUCE

Figure 1: At a given timestep during either encoding or

decoding there are three possible transitions (although one

or more may be forbidden): begin a new nonterminal con-

stituent (NT), predict and ingest a terminal (GEN), or end the

current nonterminal (REDUCE). If the chosen transition is NT,

the RNNG adds a new-nonterminal token xi+1 to the active

constituent and begins a new nonterminal constituent (1a).

If the transition is GEN, the RNNG predicts the next token

(Section 2.3) and adds the ground-truth next token e from the

context buffer at the cursor location (1b). If the transition is

REDUCE, the contents of the active nonterminal are passed to

the composition function, the new-nonterminal token xi is re-

placed with the result of the composition hi, and the StackL-

STM rolls back to the previously active constituent (1c). In

all three cases, the StackLSTM then advances one step with

the newly added token as input (xi+1, e, or hi).

terminal, the decoder represents a new nontermi-
nal on the stack as a sum weighted by structural
attention of the phrase representations of all non-
terminal tree nodes produced by the encoder. In
particular, we use the normalized dot products be-
tween the decoder stack representation sdec

j and
the stack representation at each encoder node sienc

(that is, the hidden state of the StackLSTM up to
and including xenc

j but not henc
j ) as coefficients

in a weighted sum of the phrase embeddings hienc

corresponding to the encoder nodes:

αij = softmax
all i

(senc
i · sdec

j )

xdec
j =

∑
i

αijhenc
i .

(1)

13



Since the dot products between encoder and de-
coder stack representations are a measure of struc-
tural similarity between the (left context of) the
current decoder state and the encoder state. Within
a particular decoder nonterminal, the model re-
duces to ordinary sequence-to-sequence transduc-
tion. Starting from the encoder’s representation of
the corresponding nonterminal or a weighted com-
bination of such representations, the decoder will
emit a translated sequence of child constituents
(both nonterminal and terminal) one by one—
applying attention only when emitting nontermi-
nal children.

2.3 Training
We formulate our model as a stochastic compu-
tation graph (Schulman et al., 2015), leading to a
training paradigm that combines backpropagation
(which provides the exact gradient through deter-
ministic nodes) and vanilla policy gradient (which
provides a Monte Carlo estimator for the gradient
through stochastic nodes).

There are several kinds of training signals in our
model. First, when the encoder or decoder chooses
the GEN action it passes the current stack state s
through a one-layer softmax perceptron, giving the
probability that the next token is each of the char-
acters in the vocabulary. The language model loss
Lk for each generated token is the negative log
probability assigned to the ground-truth next to-
ken. The other differentiable training signal is the
coverage loss Lc, which is a measure of how much
the attention weights diverge from the ideal of a
one-to-one mapping. This penalty is computed as
a sum of three MSE terms:

Lc = mean
all i

(1−
∑
all j

αij)2

+ mean
all i

(1−max
all j

αij)2

+ mean
all j

(1−max
all i

αij)2

(2)

Backpropagation using the differentiable losses
affects only the weights of the output softmax
perceptron. The overall loss function for these
weights is a weighted sum of all Lk terms and Lc:

L = 100Lc + 10
∑
all k

Lk (3)

There are additionally nondifferentiable rewards
r that bias the model towards or away from cer-
tain kinds of tree structures. Here, negative num-

bers correspond to penalties. We assign a tree re-
ward of −1 when the model predicts a REDUCE

with only one child constituent (REDUCE with
zero child constituents is forbidden) or predicts
two REDUCE or NT transitions in a row. This bi-
ases the model against unary branching and re-
duces its likelihood of producing an exclusively
left- or right-branching tree structure. In addition,
for all constituents except the root, we assign a tree
reward based on the size and type of its children.
If n and t are the number of nonterminal and ter-
minal children, this reward is 4t if all children are
terminal and 9

√
n otherwise. A reward structure

like this biases the model against freely mixing
terminals and nonterminals within the same con-
stituent and provides incentive to build substantial
tree structures early on in training so the model
doesn’t get stuck in trivial local minima.

Within both the encoder and decoder, each
stochastic action node has a corresponding tree
reward rk if the action was REDUCE (otherwise
zero) and a corresponding language model loss Lk
if the action was GEN (otherwise zero). We sub-
tract an exponential moving average baseline from
each tree reward and additional exponential mov-
ing average baselines—computed independently
for each character z in the vocabulary, because we
want to reduce the effect of character frequency—
from the language model losses. If GEN(k) is
the number of GEN transitions among actions one
through k, and γ is a decay constant, the final re-
wardRmk for action k with m ∈ {enc, dec} is:

r̂k = rk − rbaseline

L̂k = Lk − Lbaseline(zk)

R̂k =
Km∑
κ=k

γGEN(κ)−GEN(k)(r̂κ − L̂mκ )

Renc
k = R̂k − Lc − (m = enc)

Kdec∑
κ=1

Ldec
k .

(4)

These rewards define the gradient that each
stochastic node (with normalized action probabil-
ities pak and chosen action ak) produces during
backpropagation according to the standard multi-
nomial score function estimator (REINFORCE):

∇θpak = mean
ak=a

Rk∇θ log pak
k = mean

ak=a

−Rk
pak
k

(5)

3 Results

We evaluated our model on the German-English
language pair of the flickr30k data, the tex-

14



Zwei Inderinnen sehen Stoff durch.

Tw
o

In
di

an
wo

me
n

lo
ok

ov
er

fa
br

ic
.

Ein Junge in einer Gruppe von sitzenden Kindern lächelt für die Kamera.

A
bo
y
in

a
g r
ou
p
of

se
at
ed

ch
il
dr
en

sm
il
e
fo
r
th
e
ca
me
ra
.

Figure 2: Attention visualizations for two sentences from

the development set. Attention between two constituents is

represented by a shaded rectangle whose projections on the

x and y axes cover the encoder and decoder constituents re-

spectively.

tual component of the WMT Multimodal Trans-
lation shared task (Specia et al., 2016). An at-
tentional sequence-to-sequence model with two
layers and 384 hidden units from the OpenNMT
project (Klein et al., 2017) was run at the character
level as a baseline, obtaining 32.0 test BLEU with
greedy inference. Our model with the same hid-
den size and greedy inference achieves test BLEU
of 28.5 after removing repeated bigrams.

We implemented the model in PyTorch, ben-
efiting from its strong support for dynamic and
stochastic computation graphs, and trained with
batch size 10 and the Adam optimizer (Kingma
and Ba, 2015) with early stopping after 12
epochs. Character embeddings and the encoder’s
xenc embedding were initialized to random 384-
dimensional vectors. The value of γ and the de-
cay constant for the baselines’ exponential moving
average were both set to 0.95. A random selec-

tion of translations is included in the supplemen-
tal material, while two attention plots are shown
in Figure 2. Figure 2b demonstrates a common
pathology of the model, where a phrasal encoder
constituent would be attended to during decod-
ing of the head word of the corresponding de-
coder constituent, while the head word of the en-
coder constituent would be attended to during de-
coding of the decoder constituent corresponding
to the whole phrase. Another common pathology
is repeated sentence fragments in the translation,
which are likely generated because the model can-
not condition future attention directly on past at-
tention weights (the “input feeding” approach in-
troduced by Luong et al. (2015)).

Translation quality also suffers because of our
use of a stack-only RNNG, which we chose be-
cause an RNNG with both stack and buffer inputs
is incompatible with a language model loss. Dur-
ing encoding, the model must decide at the very
beginning of the sentence how deeply to embed
the first character. But with a stack-only RNNG,
it must make this decision randomly, since it isn’t
able to use the buffer representation—which con-
tains the entire sentence.

4 Conclusion

We introduce a new approach to leveraging unsu-
pervised tree structures in NLP tasks like machine
translation. Our experiments demonstrate that a
small-scale MT dataset contains sufficient train-
ing signal to infer latent linguistic structure, and
we are excited to learn what models like the one
presented here can discover in full-size translation
corpora. One particularly promising avenue of re-
search is to leverage the inherently compositional
phrase representations henc

i produced by the en-
coder for other NLP tasks.

There are also many possible directions for im-
proving the model itself and the training process.
Value function baselines can replace exponential
moving averages, pure reinforcement learning can
replace teacher forcing, and beam search can be
used in place of greedy inference. Solutions to the
translation pathologies presented in Section 3 are
likely more complex, although one possible ap-
proach would leverage variational inference using
a teacher model that can see the buffer and helps
train a stack-only student model.

15



References
Samuel Bowman, Jon Gauthier, Abhinav Rastogi,

Raghav Gupta, Christopher Manning, and Christo-
pher Potts. 2016. A fast unified model for parsing
and sentence understanding. In ACL.

David Chiang. 2005. A hierarchical phrase-based
model for statistical machine translation. In ACL.

Junyoung Chung, Sungjin Ahn, and Yoshua Bengio.
2017. Hierarchical multiscale recurrent neural net-
works. In ICLR.

Chris Dyer, Miguel Ballesteros, Wang Ling, Austin
Matthews, and Noah A Smith. 2016a. Transition-
based dependency parsing with stack long short-
term memory. In EMNLP.

Chris Dyer, Adhiguna Kuncoro, Miguel Ballesteros,
and Noah Smith. 2016b. Recurrent neural network
grammars. In NAACL.

Akiko Eriguchi, Kazuma Hashimoto, and Yoshimasa
Tsuruoka. 2016. Tree-to-sequence attentional neu-
ral machine translation. In ACL.

Akiko Eriguchi, Yoshimasa Tsuruoka, and Kyunghyun
Cho. 2017. Learning to parse and translate im-
proves neural machine translation. arXiv preprint
arXiv:1702.03525 .

Christoph Goller and Andreas Küchler. 1996. Learning
task-dependent distributed representations by back-
propagation through structure. In IEEE Interna-
tional Conference on Neural Networks. IEEE, vol-
ume 1, pages 347–352.

Kazuma Hashimoto and Yoshimasa Tsuruoka. 2017.
Neural machine translation with source-side latent
graph parsing. arXiv preprint arXiv:1702.02265 .

Liang Huang, Kevin Knight, and Aravind Joshi. 2006.
A syntax-directed translator with extended domain
of locality. In CHPJI-NLP. Association for Compu-
tational Linguistics.

Yoon Kim, Carl Denton, Luong Hoang, and Alexan-
der Rush. 2017. Structured attention networks. In
ICLR.

Diederik Kingma and Jimmy Ba. 2015. Adam: A
method for stochastic optimization. In ICLR.

G. Klein, Y. Kim, Y. Deng, J. Senellart, and A. M.
Rush. 2017. OpenNMT: Open-source toolkit
for neural machine translation. ArXiv preprint
arXiv:1701.02810 .

Adhiguna Kuncoro, Miguel Ballesteros, Lingpeng
Kong, Chris Dyer, Graham Neubig, and Noah
Smith. 2017. What do recurrent neural network
grammars learn about syntax? In EACL.

Minh-Thang Luong, Hieu Pham, and Christopher D
Manning. 2015. Effective approaches to attention-
based neural machine translation. In EMNLP.

Maria Nadejde, Siva Reddy, Rico Sennrich, Tomasz
Dwojak, Marcin Junczys-Dowmunt, Philipp Koehn,
and Alexandra Birch. 2017. Syntax-aware neu-
ral machine translation using ccg. arXiv preprint
arXiv:1702.01147 .

Jordan B Pollack. 1990. Recursive distributed repre-
sentations. Artificial Intelligence 46(1):77–105.

John Schulman, Nicolas Heess, Theophane Weber, and
Pieter Abbeel. 2015. Gradient estimation using
stochastic computation graphs. In NIPS.

Rico Sennrich and Barry Haddow. 2016. Linguistic in-
put features improve neural machine translation. In
WMT .

Richard Socher, Christopher Manning, and Andrew
Ng. 2010. Learning continuous phrase representa-
tions and syntactic parsing with recursive neural net-
works. In NIPS Workshop on Deep Learning and
Unsupervised Feature Learning.

Richard Socher, Alex Perelygin, Jean Wu, Jason
Chuang, Christopher Manning, Andrew Ng, and
Christopher Potts. 2013. Recursive deep models
for semantic compositionality over a sentiment tree-
bank. In EMNLP.

Lucia Specia, Stella Frank, Khalil Simaan, and
Desmond Elliott. 2016. A shared task on multi-
modal machine translation and crosslingual image
description. In WMT .

Dekai Wu. 1997. Stochastic inversion transduction
grammars and bilingual parsing of parallel corpora.
Computational linguistics 23(3):377–403.

Dani Yogatama, Phil Blunsom, Chris Dyer, Edward
Grefenstette, and Wang Ling. 2017. Learning to
compose words into sentences with reinforcement
learning. In ICLR.

16


