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Abstract

We present a general-purpose tagger based
on convolutional neural networks (CNN),
used for both composing word vectors
and encoding context information. The
CNN tagger is robust across different tag-
ging tasks: without task-specific tuning of
hyper-parameters, it achieves state-of-the-
art results in part-of-speech tagging, mor-
phological tagging and supertagging. The
CNN tagger is also robust against the out-
of-vocabulary problem; it performs well
on artificially unnormalized texts.

1 Introduction

Recently, character composition models have
shown great success in many NLP tasks, mainly
because of their robustness in dealing with out-
of-vocabulary (OOV) words by capturing sub-
word informations. Among the character compo-
sition models, bidirectional long short-term mem-
ory (LSTM) models and convolutional neural net-
works (CNN) are widely applied in many tasks,
e.g. part-of-speech (POS) tagging (dos Santos
and Zadrozny, 2014; Plank et al., 2016), named
entity recognition (dos Santos and Guimarães,
2015), language modeling (Ling et al., 2015; Kim
et al., 2016), machine translation (Costa-jussà and
Fonollosa, 2016) and dependency parsing (Balles-
teros et al., 2015; Yu and Vu, 2017).

In this paper, we present a state-of-the-art
general-purpose tagger that uses CNNs both to
compose word representations from characters
and to encode context information for tagging.1

We show that the CNN model is more capable than

1The tagger is available at http://www.ims.
uni-stuttgart.de/institut/mitarbeiter/
xiangyu/index.en.html

the LSTM model for both functions, and more sta-
ble for unseen or unnormalized words, which is
the main benefit of character composition models.

Yu and Vu (2017) compared the performance of
CNN and LSTM as character composition model
for dependency parsing, and concluded that CNN
performs better than LSTM. In this paper, we
show that this is also the case for POS tagging.
Furthermore, we extend the scope to morphologi-
cal tagging and supertagging, in which the tag set
is much larger or long-distance dependencies be-
tween words are more important.

In these three tagging tasks, we compare our
tagger with the bilstm-aux tagger (Plank et al.,
2016) and the CRF-based morphological tagger
MarMot (Müller et al., 2013) as baselines. The
CNN tagger shows robust performance across the
three tasks, and achieves the highest average accu-
racies in all tasks. It considerably outperforms the
LSTM tagger in morphological tagging and both
baselines in supertagging.

To test the robustness of the taggers against the
OOV problem, we also conduct experiments on
unnormalized text by artificially corrupting words
in the normal dev sets. With the increasing degree
of unnormalization, the performance of the CNN
tagger degrades much slower than the other two,
which suggests that the CNN tagger is more ro-
bust against unnormalized text.

Therefore we conclude that our CNN tagger is a
robust state-of-the-art general-purpose tagger that
can effectively compose word representation from
characters and encode context information.

2 Model

Our proposed CNN tagger has two main compo-
nents: the character composition model and the
context encoding model. Both components are es-
sentially very similar CNN models, capturing dif-
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ferent levels of information: the first CNN cap-
tures morphological information from character n-
grams, the second one captures contextual infor-
mation from word n-grams. Figure 1 shows a dia-
gram of both models of the tagger.
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Figure 1: Diagram of the CNN tagger.

2.1 Character Composition Model

The character composition model is similar to Yu
and Vu (2017), where several convolution filters
are used to capture character n-grams of different
sizes. The outputs of each convolution filter are
fed through a max pooling layer, and the pooling
outputs are concatenated to represent the word.

2.2 Context Encoding Model

The context encoding model captures the con-
text information of the target word by scanning
through the word representations of its context
window. The word representation could be only
word embeddings (~w), only composed vectors (~c),
or the concatenation of both (~w + ~c).

A context window consists of N words to both
sides of the target word and the target word itself.
To indicate the target word, we concatenate a bi-
nary feature to each of the word representations
with 1 indicating the target and 0 otherwise, simi-
lar to Vu et al. (2016). Additional to the binary fea-
ture, we also concatenate a position embedding to
encode the relative position of each context word,
similar to Gehring et al. (2017).

2.3 Hyper-parameters

For the character composition model, we take a
fixed input size of 32 characters for each word,
with padding on both sides or cutting from the
middle if needed. We apply four convolution fil-
ters with sizes of 3, 5, 7, and 9. Each filter has
an output channel of 25 dimensions, thus the com-
posed vector is 100-dimensional. We apply Gaus-
sian noise with standard deviation of 0.1 on the
composed vector during training.

For the context encoding model, we take a con-
text window of 15 (7 words to both sides of the tar-
get word) as input and predict the tag of the target
word. We also apply four convolution filters with
sizes of 2, 3, 4 and 5, each filter is stacked by an-
other filter with the same size, and the output has
128 dimensions, thus the context representation is
512-dimensional. We apply one 512-dimensional
hidden layer with ReLU non-linearity before the
prediction layer. We apply dropout with probabil-
ity of 0.1 after the hidden layer during training.

The model is trained with averaged stochastic
gradient descent with a learning rate of 0.1, mo-
mentum of 0.9 and mini-batch size of 100. We ap-
ply L2 regularization with a rate of 10−5 on all the
parameters of the network except the embeddings.

3 Experiments

3.1 Data

We use treebanks from version 1.2 of Univer-
sal Dependencies2 (UD), and in the case of sev-
eral treebanks for one language, we only use the
canonical one. There are in total 22 treebanks, as
in Plank et al. (2016).3 Each treebank splits into
train, dev, and test sets, we use the dev sets for
early stop training.

In order to compare to more previous works
on POS tagging, we additionally experiment POS
tagging on the more established Penn Treebank
Wall Street Journal (WSJ) data set (Marcus et al.,
1993). We use the standard splitting, where sec-
tions 0-18 are used for training, 19-21 for tuning,
and 22-24 for testing (Collins, 2002).

3.2 Tasks

We evaluate the taggers on three tagging tasks:
POS tagging (POS), morphological tagging
(MORPH) and supertagging (SUPER).

For POS tagging we use Universal POS tags,
which are an extension of Petrov et al. (2012). The
universal tag set tries to capture the “universal”
properties of words and facilitate cross-lingual
learning. Therefore the tag set is very coarse and
leaves out most of the language-specific properties
to morphological features.

Morphological tags encode the language-
specific morphological features of the words, e.g.,
number, gender, case. They are represented in the

2http://universaldependencies.org
3We use all training data for Czech, while Plank et al.

(2016) only use a subset.
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UD treebanks as one string which contains several
key-value pairs of morphological features.4

Supertags (Joshi and Bangalore, 1994) are tags
that encode more syntactic information than stan-
dard POS tags, e.g. the head direction or the sub-
categorization frame. We use dependency-based
supertags (Foth et al., 2006) which are extracted
from the dependency treebanks. Adding such
tags into feature models of statistical dependency
parsers significantly improves their performance
(Ouchi et al., 2014; Faleńska et al., 2015). Su-
pertags can be designed with different levels of
granularity. We use the standard Model 1 from
Ouchi et al. (2014), where each tag consists of
head direction, dependency label and dependent
directions. The SUPER task is more difficult than
POS and MORPH because it generally requires
taking long-distance dependencies between words
into consideration.

These three tagging tasks differ strongly in tag
set sizes. Generally, the POS set sizes for all the
languages are no more than 17 and SUPER set
sizes are around 200. When treating morphologi-
cal features as a string (i.e. not splitting into key-
value pairs), the sizes of the MORPH tag sets range
from about 100 up to 2000.

3.3 Setups

As baselines to our models, we take the two state-
of-the-art taggers MarMot5 (denoted as CRF) and
bilstm-aux6 (denoted as LSTM). We train the
taggers with the recommended hyper-parameters
from the documentations.

To ensure a fair comparison (especially between
LSTM and CNN), we generally treat the three
tasks equally, and do not apply task-specific tun-
ing on them, i.e., using the same features and same
model hyper-parameters in each single task. Also,
we do not use any pre-trained word embeddings.

For the LSTM tagger, we use the recommended
hyper-parameters from the documentation7 in-
cluding 64-dimensional word embeddings (~w) and
100-dimensional composed vectors (~c). We train
the ~w, ~c and ~w+~c models as in Plank et al. (2016).

4German, French and Indonesian do not have MORPH
tags in UD-1.2, thus not evaluated in this task.

5http://cistern.cis.lmu.de/marmot/
6https://github.com/bplank/bilstm-aux
7We use the most recent version of the tagger and stacking

3 layers of LSTM as recommended. The average accuracy
for POS in our evaluation is slightly lower than reported in
the paper, presumably due to different versions of the tagger,
but it does not influence the conclusion.

We train the CNN taggers with the same dimen-
sionalities for word representations.

For the CRF tagger, we predict POS and
MORPH jointly as in the standard setting, which
performs much better than with separate predic-
tions, as shown in Müller et al. (2013). Also, the
CRF tagger splits the morphological tags into key-
value pairs, whereas the two neural-based taggers
treat the whole string as a tag.8 We predict SUPER

as a separate task.

3.4 Results
The test results for the three tasks are shown in
Table 1 in three groups. The first group of seven
columns are the results for POS, where both LSTM
and CNN have three variations of input features:
word only (~w), character only (~c) and both (~w+~c).
For MORPH and SUPER, we only use the ~w + ~c
setting for both LSTM and CNN.

On macro-average, three taggers perform close
in the POS task, with the CNN tagger being
slightly better. In the MORPH task, CNN is again
slightly ahead of CRF, while LSTM is about 2
points behind. In the SUPER task, CNN outper-
forms both taggers by a large margin: 2 points
higher than LSTM and 8 points higher than CRF.

While considering the input features of the
LSTM and CNN taggers, both taggers perform
close with ~w as input, which suggests that the two
taggers are comparable in encoding context for
POS. However, with only ~c, CNN performs much
better than LSTM (95.54 vs. 92.61), and close to
~w + ~c (96.18). Also, ~c consistently outperforms
~w for all languages with CNN. This suggests that
the CNN model alone is capable of learning most
of the information that the word-level model can
learn, while the LSTM model is not.

The more interesting cases are MORPH and
SUPER, where CNN performs much higher than
LSTM. One potential explanation for the consid-
erably large difference is that the LSTM tagger
may be more sensitive to hyper-parameters and re-
quires task specific tuning. We use the same set-
ting which is tuned for the POS task, thus it under-
performs in the other tasks. Another factor could
be the large tag sets in MORPH tagging task, which
are larger than POS in orders of magnitudes, es-
pecially for cs, eu, fi, hr, pl, and sl, all of which
have more than 500 distinct tags, and the LSTM

8Since we use the CRF tagger as a non-neural baseline,
we prefer to use the settings which maximize its perfor-
mances rather than rigorously equal but suboptimal settings.
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POS MORPH SUPER
CRF LSTM CNN CRF LSTM CNN CRF LSTM CNN

~w ~c ~w + ~c ~w ~c ~w + ~c ~w + ~c ~w + ~c ~w + ~c ~w + ~c

ar 98.83 95.05 98.35 98.88 95.30 98.89 99.00 98.11 97.91 98.45 79.67 83.70 85.51
bg 98.11 94.96 96.94 98.07 95.25 97.79 98.20 95.12 92.28 94.85 78.91 85.91 87.64
cs 98.74 96.12 92.98 98.40 96.36 98.35 98.79 93.81 90.21 94.45 76.33 81.43 87.46
da 95.96 91.74 94.29 96.06 92.08 95.24 95.92 95.50 94.15 95.14 73.83 81.00 81.82
de 92.77 89.91 88.97 92.57 90.21 92.44 92.73 - - - 70.56 77.58 79.69
en 94.49 91.58 88.99 94.17 92.64 93.76 94.76 95.69 95.45 95.88 75.57 83.27 85.87
es 95.28 93.27 91.41 94.62 93.95 95.36 95.65 96.14 95.26 96.34 78.07 83.80 86.27
eu 94.79 88.70 89.80 93.99 89.69 94.31 94.94 89.60 84.32 89.06 70.44 77.88 80.43
fa 96.82 95.67 94.73 96.95 95.97 96.12 97.12 96.56 96.37 96.50 76.76 83.21 83.25
fi 95.79 87.78 84.41 94.16 88.24 94.33 95.31 94.33 87.33 93.82 70.69 76.65 82.63
fr 95.98 94.34 91.82 95.85 94.56 95.68 96.27 - - - 78.36 84.01 85.44
he 95.48 93.81 92.96 95.62 93.81 94.68 96.04 92.92 91.27 93.29 76.73 82.56 85.44
hi 96.36 95.66 91.12 96.23 96.04 95.77 96.69 90.93 90.78 92.11 85.54 89.62 90.08
hr 95.56 88.10 94.47 94.69 88.92 94.76 95.05 87.25 84.56 87.73 71.42 77.77 79.27
id 93.51 90.40 90.76 92.97 91.15 92.32 93.44 - - - 75.37 80.55 81.63
it 97.74 96.04 94.64 97.55 96.54 97.08 97.62 97.63 97.13 97.47 84.02 89.10 90.89
nl 91.03 85.09 86.52 92.23 83.74 92.05 93.11 92.32 91.26 93.12 67.04 77.71 79.68
no 97.61 94.39 93.32 97.49 94.60 97.05 97.65 96.03 94.85 95.74 79.99 86.45 89.41
pl 96.92 89.53 95.05 96.30 90.48 96.41 96.83 87.74 82.34 87.13 76.09 80.00 83.45
pt 97.78 94.20 94.95 97.53 94.41 97.22 97.46 94.99 94.75 95.76 78.68 86.02 87.42
sl 96.60 90.43 96.35 97.42 91.02 96.89 97.16 90.41 86.47 91.94 76.35 85.67 86.45
sv 96.23 93.04 94.48 96.20 93.27 95.38 96.28 95.65 94.08 95.30 73.81 81.04 83.34

avg 96.02 92.26 92.61 95.82 92.65 95.54 96.18 93.72 91.62 93.90 76.10 82.50 84.69

Table 1: Tagging accuracies of the three taggers in the three tasks on the test sets of UD 1.2, the highest
accuracy for each task on each language is marked in boldface.

tagger performs poorly on these languages. In
the SUPER task, where the information from long-
distance context is more important, CNN performs
much better than both CRF and LSTM. CRF simply
has a much smaller context window, thus the poor
performance. The LSTM model theoretically can
model long-distance contexts, but the information
may gradually fade away during the recurrence,
whereas the CNN model treat all words equally
as long as they are in the context window.

On the more established WSJ data set, Table 2
shows the tagging performances of the CNN model
along with some previous works as reference.
Generally, the differences among the taggers are
very small, we could not conclude any one being
considerably better on this data set. This result is
expected since English is not a morphologically
rich language and WSJ is large data set and has
a relatively low OOV rate. Note that the Convnet
tagger by dos Santos and Zadrozny (2014) used
pre-trained word embeddings while our CNN tag-
ger does not.

3.5 Unnormalized Text

It is a common scenario to use a model trained
with news data to process text from social media,
which could include intentional or unintentional

WSJ Accuracy

CRF (Müller et al., 2013) 97.30
Convnet (dos Santos and Zadrozny, 2014) 97.32
bi-LSTM (Ling et al., 2015) 97.36
bi-LSTM (Plank et al., 2016) 97.22
CNN (this work) 97.30

Table 2: Tagging accuracy on the WSJ test set.

misspellings. Unfortunately, we do not have social
media data for all the languages. However, we de-
sign an experiment to simulate unnormalized text,
by systematically editing the words in the dev sets
with one of the four operations: insertion, dele-
tion, substitution, and swap. For example, if we
modify a word abcdef at position 2 (0-based), the
modified words would be abxcdef, abdef, abxdef,
and abdcef, where x is a random character from
the alphabet of the language.

For each operation, we create a group of mod-
ified dev sets, where all words longer than two
characters are edited by the operation with a prob-
ability of 0.25, 0.5, 0.75, or 1. For each language,
we use the models trained on the normal training
sets and predict POS for the modified dev sets. The
average accuracies are shown in Figure 2.

Generally, all models suffer from the increasing
degrees of unnormalization, but CNN always de-
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grades the least and slowest. In the extreme case
where almost all words are unnormalized, CNN
performs 4 to 8 points higher than LSTM and 4 to
12 points higher than CRF. This suggests that the
CNN is more robust to misspelt words.

While looking into the specific cases of mis-
spelling, CNN is less sensitive to substitution,
while insertion and deletion have stronger effect,
and swap degrades its performance the most. In
the case of substitution, the distortion to the char-
acter n-gram patterns are smaller than varying
the lengths, i.e. insertion and deletion, thus has
smaller negative impact. However, in the case
of swap, the effect is similar to substituting two
characters instead of one, thus larger degradation.
LSTM and CRF on the other hand, are affected the
most by substitution.
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Figure 2: POS tagging accuracies on the dev sets
with the four modifications of different degrees.

4 Conclusion

In this paper, we propose a general-purpose tag-
ger that uses two CNNs for both character com-
position and context encoding. On the universal
dependency treebanks (v1.2), the tagger achieves
state-of-the-art or comparable results for POS tag-
ging and morphological tagging, and to the best of
our knowledge, it performs by far the best for su-
pertagging. The tagger works well across different
tagging tasks without tuning the hyper-parameters,
and it is also robust against unnormalized text.

Our tagger uses a greedy window-based ap-
proach, which mainly aims at showing the effec-
tiveness of CNN in composing word representa-
tions and encoding contexts. However, a globally
normalized decoding method, e.g. beam-search

or sentence-level inference as in Collobert et al.
(2011), could potentially further improve the tag-
ger’s performance, which is left for future work.
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