
Proceedings of the First Workshop on Subword and Character Level Models in NLP, pages 82–91,
Copenhagen, Denmark, September 7, 2017. c©2017 Association for Computational Linguistics.

Vowel and Consonant Classification through Spectral Decomposition

Patricia Thaine and Gerald Penn
Department of Computer Science

University of Toronto
{pthaine,gpenn}@cs.toronto.edu

Abstract

We consider two related problems in this
paper. Given an undeciphered alphabetic
writing system or mono-alphabetic cipher,
determine: (1) which of its letters are vow-
els and which are consonants; and (2)
whether the writing system is a vocalic
alphabet or an abjad. We are able to
show that a very simple spectral decompo-
sition based on character co-occurrences
provides nearly perfect performance with
respect to answering both question types.

1 Introduction

Most of the world’s writing systems are based
upon alphabets, in which each of the basic units
of speech, called phones, receives its own rep-
resentational unit or letter. The vast majority of
phones are consonants or vowels, the former be-
ing produced through a partial or full obstruction
of the vocal tract, the latter, through a stable inter-
val of resonance at several characteristic frequen-
cies called formants. In the course of deciphering
an alphabet, one of the first important questions to
answer is which of the letters correspond to vow-
els, and which to consonants, a problem that has
been studied as far back as Ohaver (1933). Indeed,
if there is disagreement as to whether a phonetic
script is an alphabet or not, a near-perfect separa-
tion of its graphemes into consonants and vowels
would be very important evidence for confirming
the proposition that it was.

A well-publicized, recent attempt at classify-
ing the letters of an undeciphered alphabet as ei-
ther vowels or consonants was by Kim and Sny-
der (2013), who used a Bayesian approach to esti-
mating an unobserved set of parameters that cause
phonetic regularities among the distributions of
letters in the alphabets of known/deciphered writ-
ing systems. By contrast, the method proposed

in this paper is based on a very simple spectral
analysis of letter distributions within only the writ-
ing system under investigation, and it requires no
training or parameter tuning. It is furthermore
based on a newly confirmed empirical universal
over alphabetic writing systems that is interesting
in its own right, is crucial to our method’s numer-
ical stability.

Spectral analysis of vowels and consonants
dates back to at least Moler and Morrison (1983),
which performs very poorly. Our method can be
regarded as both a simplification and improvement
to Moler and Morrison (1983). On average, our
method correctly classifies 97.45% of characters
in any alphabetic writing system.

Another notable antecedent is Goldsmith and
Xanthos (2009), who discovered essentially the
same method for vowel-consonant separation in
the context of spectrally analyzing phonemic tran-
scriptions. While the premise that someone
would have phonemically transcribed a text with-
out knowing by the end which phones were vowels
or consonants may seem far-fetched, Goldsmith
and Xanthos (2009) draw some important conclu-
sions for a subsequent analysis of vowel-harmonic
processes that we shall not investigate further here.
Goldsmith and Xanthos (2009) also cite Sukhotin
(1962), whose method we evaluate below, as a
precedent for their own study, possibly influenced
by Guy’s (1991) English gloss of Sukhotin’s work,
which misrepresents Sukhotin’s (1962) intention
as seeking to classify letters in a substitution ci-
pher as vowels or consonants. Sukhotin’s (1962)
study, which was originally written in Russian, is
in fact about the written form (bukv) of plaintext
letters, not of ciphers nor of the sounds of speech.
Sukhotin begins his study by posing the research
question of whether, given the well-known sep-
aration of the sounds of speech into vowels and
consonants, there are similar classes for letters
(podobnyh klassah k’bukvam). The distinction be-

82

*h t*e h* *a f*t a* c*t
t 1 0 0 0 0 1 0
h 0 1 0 0 0 0 0
e 0 0 1 0 0 0 0
f 0 0 0 1 0 0 0
c 0 0 0 1 0 0 0
a 0 0 0 0 1 0 1

Table 1: The binary matrix, A, for the string ‘the
fat cat’. Viewed as an adjacency matrix, it repre-
sents a bipartite graph.

tween written letters and phones is particularly
salient in Russian, which, unlike English, has writ-
ten letters that simply cannot be classified as vow-
els or consonants in any context or in isolation.1

Sukhotin (1962) made an earlier attempt at our
study of writing systems, not at Goldsmith and
Xanthos’s (2009) study of phoneme clustering. In
the present paper, we consider two applications of
our method to the problem of classifying an alpha-
betic writing system as either an abjad (one with
letters only for consonants) or a vocalic alphabet
(one with letters for vowels as well).

2 A Spectral Universal over Alphabets

A p-frame (Stubbs and Barth, 2003) is a bit like
a trigram context, except it considers one preced-
ing and one succeeding element of context, rather
than two preceding elements. The string ‘the fat
cat’, for example, contains these, among other p-
frames at the character level: ‘ *h’, ‘t*e’, ‘h* ’,
‘ *a’, where ‘ ’ represents a space.

Given a sufficiently long corpus, C, in the al-
phabet, Ω, let A be the binary matrix of dimen-
sion m × n, where n is the number of different
letter types in Ω and m is the number of different
p-frames that occur in C (see Table 1), in which
Aij = 1 iff letter i occurs in p-frame j in C.

Every m by n matrix A has a singular-value de-
composition into A = UΣV T . Usually, we are in-
terested in Σ, a diagonal matrix containing the sin-
gular values of A, but we will be more concerned
here with the n by n matrix V , the columns of
which, the right singular vectors of A, are eigen-
vectors of AT A. V is also orthonormal, which

1These are the front and back “yer” that respectively mark
the presence or absence of palatalization. Sukhotin (1962)
knew about the special status of these letters, too; when his
method classifies the “front yer” as a vowel, he expresses
some satisfaction because the “front yer” did represent a
vowel at an earlier stage in Russian writing.

means that the inner product of any two right sin-
gular vectors, vi · vj , is 0 unless i = j, in which
case the inner product is 1 (Strang, 2005).

If the rows and columns of U, Σ and V are per-
muted so that the singular values of Σ appear in
decreasing order, then the first two right singular
vectors are the most important, in the sense that
they provide the most information about A. Let x
and y be these two vectors; they are columns of
V , and so they are rows of V T , as shown in Fig-
ure 1. Empirically, each xi is proportional to both
the frequency of the ith letter in C and the frequen-
cies of the p-frame contexts in which the ith letter
occurs. Again empirically, each yi ends up being
proportional to the number of contexts that the ith

letter shares with other letters.

Because V is orthonormal,
∑

i xiyi = 0. Since
their sum centres around zero, for some of the let-
ters i ∈ Ω+, xiyi is positive, and for other i ∈ Ω−,
xiyi is negative. The spectral universal we have
empirically determined is that these two subsets of
Ω almost perfectly separate the vowels and con-
sonants of the writing system utilized by C. A
moment’s reflection will confirm that the p-frame
distributions of vowels are probably very differ-
ent from the p-frame distributions of consonants
(Sukhotin, 1962), but the best thing about this uni-
versal is its inherent numerical stability. Table 2
shows the sums over these two sets for 15 al-
phabetic writing systems, expanded to 12 decimal
places.

This calculation presumes a foreknowledge of
what the vowels and consonants are, but if we
were to order all of the letters in Ω by their
value yi, define a separator y = b, and then
vary the parameter b so as to maximize the sum
|∑i:yi>b xiyi| + |

∑
i:yi≤b xiyi|, b = 0 attains the

maximum value. This is again trivial to prove in
theory, but because the differences between vowel
and consonant p-frames are the most important
differences among all of the possible separators,
empirically we may observe that y = 0 separates
the vowels from the consonants. In other words,
the actual values that the yi attain are irrelevant;
all that matters is their signs.

None of this provides any guidance as to which
subset/sign contains the vowels and which, the
consonants. Borrowing from the general idea be-
hind Sukhotin’s algorithm (Guy, 1991), we will
assume that the most frequent letter of any alpha-

83

A = UΣV > =



.

.

.

.

.

.





.

.

.

.

.

.





x1 x2 x3 x4 x5 x6

y1 y2 y3 y4 y5 y6

.

.

.

.



Figure 1: Singular Value Decomposition of A.

Language |∑xvowels · yvowels| |
∑

xconsonants · yconsonants|
Danish 0.461778253515 0.461778253515
Dutch 0.478014338904 0.478014338904

English 0.484420669972 0.484420669972
Finnish 0.471723103373 0.471723103373
French 0.482759327181 0.482759327181
German 0.440663056154 0.440663056154
Greek 0.447065776857 0.447065776857

Hawaiian 0.432782088536 0.432782088536
Italian 0.467317672843 0.467317672843
Latin 0.4656326487 0.4656326487

Maltese 0.496082609138 0.496082609138
Portuguese 0.463359992637 0.463359992637

Russian 0.491165538014 0.491165538014
Spanish 0.478974310472 0.478974310472
Swedish 0.430570626024 0.430570626024

Table 2: Inner products of x and y (Figure 1) for 15 different writing systems, accurate to 12 places.

bet is a vowel,2 (Vietnamese is the singular excep-
tion that we have found to this rule) and thus label
the subset that contains it as the vowel container3.
This yields Algorithm 1, which we evaluate in
Table 3.4 5

3 Evaluating the Vowel Identification
Algorithm

Kim and Snyder (2013) report token-level accu-

2Note that we treat ò,ó,ô, and o, for example, as four dis-
tinct vowels.

3Out of the 26 alphabets we examine, this assumption
only fails for Vietnamese, whose most frequent letter is n.
This is mainly due to the large number of diacriticized vow-
els in Vietnamese that we treat discretely.

4In this and the subsequent experiments, the following
writing systems were withheld as an evaluation set to pre-
vent overfitting: Aramaic, Farsi, Hungarian, Serbian, Urdu,
and Vietnamese.

5Each corpus was sampled from a combination of
Wikipedia, Project Gutenberg and BBC World Service web
pages, and consists of between 14316 and 706422 characters
(median=164757). All punctuation was removed, and all let-
ters were downcased.

racies with a macro-average of 98.85% across
503 alphabets, with a standard deviation of about
2%. Token-level accuracies are somewhat mis-
leading, as the hyperbolic distribution of letters
in all naturally occurring alphabets makes it very
easy to inflate accuracies even when the class of
many (rare) letters cannot be determined. Fur-
thermore, if the classified or readable portions of
corpora were at issue, then these token accura-
cies should have been micro-averaged, not macro-
averaged, and, more importantly, they should have
been smoothed by an n-gram character model to
produce a more meaningful estimate.

Vowel/consonant classification is better viewed
as a letter-type, not letter-instance, classification
problem, in which progress is evaluated accord-
ing to the percentage of letter types that are cor-
rectly classified. Semivowels or whatever ambigu-
ous classes one wishes to define should ideally be
distinguished as extra classes, or at the very least
disregarded. For a level comparison with our base-

84

Algorithm 1 Vowel and consonant classification algorithm
1: numwords ← 0
2: numletters ← length(letters)
3: contexts← list of numletters empty lists
4: frameskeys ← []
5: framesvalues ← []
6: letterscount ← list of zeros of size numletters

7: A← []
8: Aweighted ← []
9: function VOWELCONSONANTCLASSIFICATION(V , most freq letter)

10: coordinates← zip(V [0], V [1], letters)
11: cluster1 ← triples where V [1] value > 0
12: cluster2 ← triples where V [1] value < 0
13: vowels← cluster that has most freq letter
14: consonants← cluster that does not have most freq letter
15: return vowels, consonants
16: end function
17: function ALGORITHM1(corpus, max)
18: for all word ∈ corpus do
19: word← [′ ′] + list(word) + [′ ′]
20: numwords + = 1
21: if numwords > max then
22: break
23: end if
24: MakePFrames(word) # Calculates A and Aweighted

25: end for
26: indexmost freq letter ← index of max(letterscount)
27: most freq letter ← letters[indexmost freq letter]
28: U, s, V ← SV D(A)
29: vowels, consonants← V owelConsonantClassification(V,most freq letter)
30: return vowels, consonants
31: end function

85

Language (Moler and Morrison, 1983) Sukhotin’s Algorithm Algorithm 1
NC P R A P R A P R A

Abkhaz 4 1.00 0.67 0.94 1.00 1.00 1.00 1.00 1.00 1.00
Afrikaans 18 0.71 0.36 0.31 0.93 0.81 0.88 1 0.81 0.91
Czech 23 1.00 0.63 0.68 1.00 0.94 0.98 1.00 0.94 0.98
Dutch 11 1.00 1.00 1.00 0.83 1.00 0.96 1.00 1.00 1.00
Danish 26 0.67 0.67 0.56 0.88 0.93 0.91 1.00 0.93 0.97
English (Middle) 4 1.00 1.00 1.00 1 0.90 0.96 1 0.90 0.96
English (Modern) 5 1.00 1.00 1.00 0.71 1.00 0.92 1.00 1.00 1.00
English (Old) 19 0.86 0.67 0.64 1.00 1.00 1.00 1.00 1.00 1.00
Finnish 3 1.00 0.89 0.96 0.89 1.00 0.96 0.89 1.00 0.96
French (Modern) 29 0.43 1.00 0.60 1.00 0.79 0.89 1.00 0.79 0.89
Inuktitut 6 1.00 1.00 1.00 0.95 0.95 0.95 1.00 0.95 0.97
Italian 17 0.90 0.90 0.86 0.91 0.67 0.82 1.00 0.93 0.97
German 13 1.00 0.88 0.93 0.73 1.00 0.89 0.88 1.00 0.96
Greek (Ancient) 3 0.83 1.00 0.95 1.00 1.00 1.00 1.00 1.00 1.00
Greek (Modern) 3 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Hawaiian 5 0.90 0.90 0.92 0.83 0.91 0.90 1.00 1.00 1.00
Hungarian 14 0.44 0.80 0.71 0.94 0.94 0.94 1.00 1.00 1.00
Latin 3 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Maltese 2 1.00 1.00 1.00 0.83 1.00 0.96 1.00 1.00 1.00
Portuguese 24 0.88 1.00 0.92 1.00 0.88 0.94 1.00 0.88 0.94
Russian 5 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Serbian 25 0.89 0.89 0.85 0.90 0.69 0.88 1.00 0.82 0.95
Spanish 16 0.86 0.86 0.86 0.91 1.00 0.97 1.00 1.00 1.00
Swedish 6 1.00 1.00 1.00 0.89 1.00 0.96 0.80 1.00 0.93
Tagalog 4 1.00 0.94 0.97 0.95 1.00 0.97 1.00 0.89 0.95
Vietnamese 40 0.04 0.07 0.02 0.71 0.67 0.87 0.94 1.00 0.99

Table 3: Algorithm 1 evaluated with type-level accuracies. Corpora were sampled from the same sources
as in Table 2, but with between 25738 and 968298 characters (median = 177529). The best accuracies
are highlighted. Algorithm 1 incorrectly classifies several infrequent vowels (ë,ı̈,œ and ù) as consonants
in Modern French. P, R, and A stand for Precision, Recall, and Accuracy, respectively. NC is the number
of letters not classified by Moler and Morrison’s (1983) algorithm; they are not necessarily semivowels.
Unclassified letters are not included in the calculation of their method’s precision, recall, and accuracy,
however; their results are even worse when NC letters are treated as false negatives.

lines (most are interested in vowel vs. non-vowel;
Kim and Snyder (2013) experimented with distin-
guishing nasals as well), ambiguous letters such
as English ‘y’ have been manually identified and
discarded altogether in Table 3.

It is impossible to determine the type accuracy
of Kim and Snyder’s (2013) method, because they
only made the raw counts of words in their corpus
available6 (not the code, nor the resulting classifi-
cations). It is also impossible to reproduce their
evaluation, since they did not provide their pa-

6http://pages.cs.wisc.edu/˜ybkim/data/
consonant_vowel_acl2013.tgz.

rameter settings. In addition, their ground truth
classification of graphemes into vowels and con-
sonants was remarkably ambitious. They treated
all semivowels as consonants, for example — even
tokens where they act as vowels. The “front
yer” palatalization marker in Russian Cyrillic was
called a consonant, for example, and yet the “back
yer” that blocks palatalization is called a vowel.
With such arbitrary labellings of graphemes that
simply should have been left out of the classi-
fication, a controlled comparison of even token
accuracy is perhaps beside the point. For what
it is worth, however, we could use the correct

86

grapheme classifications in the 20 writing systems
that constitute the overlap between the 503 that
they sampled and the 26 that we did, and Algo-
rithm 1’s macro-averaged token-accuracy on these
is 99.93%, whereas Sukhotin’s is 96.05%.

An even greater cause for concern with this cor-
pus is the sampling method that created it. Kim
and Snyder’s (2013) use of a leave-one-out proto-
col to evaluate their method on each of their 503
writing systems at first seems reasonable — ev-
ery known writing system should be pressed into
the service of analyzing an unknown one. But all
of these samples are Biblical, and many of them
(the English, Portuguese, Italian and Spanish sam-
ples, for example, or the French and German sam-
ples) are the same verses translated into different
languages. It is not reasonable in general to ex-
pect that a sample of unknown writing would nec-
essarily be a translation of a text from a known
writing system. The overlap in character contexts
between transliterated proper names and cognates
makes for a very charitable transfer of knowledge
between writing systems.

Across the 26 writing systems that we have
evaluated, our samples are all different texts from
several genres. Our method requires no train-
ing, so all of the samples can be used for eval-
uation, but it also cannot avail itself of transfer
across writing systems. On these samples, Algo-
rithm 1 achieves a macro-averaged type accuracy
of 97.45% and a macro-averaged token accuracy
of 99.39% with a standard deviation of 1.67%.
Performance is very robust in the realistic context
of low transfer. On the same samples, Sukhotin’s
algorithm has a macro-averaged type accuracy of
94.34%.

Moler and Morrison (1983)’s algorithm is less
accurate than Algorithm 1. Moler and Morri-
son (1983) claim that their method is intended
for “vowel-follows-consonant” (vfc) texts, where
the proportion of vowels following consonants is
greater than the proportion of vowels following
vowels. Yet every writing system in our corpus
is vfc, and still it performs poorly. Instead of us-
ing a binary adjacency matrix representing which
letters occur within which p-frames, they calculate
the number of times every possible letter pair oc-
curs. They run SVD on the resulting matrix and
use the second right and left singular vectors to
plot the letters. The plot is divided into four quad-
rants, where letters in the fourth quadrant are clas-

sified as vowels, those in the second quadrant as
consonants, and those in the first or third quad-
rants as “neuter,” [sic] meaning unclassified (see
NC on Table 3). Our plots, on the other hand,
are split into half planes with a crisp, numerically
stable separation at the x-axis between the puta-
tive vowels and putative consonants, leaving no
letter unclassified unless it falls on y = 0, which
would only occur with completely unattested let-
ters. Given the computational power and the num-
ber of electronic multilingual sources available at
the time, Moler and Morrison (1983) had no work-
able means of thoroughly evaluating their method.

Another important concern is stability as a func-
tion of length — many undeciphered writing sys-
tems are not well attested in terms of the number
or length of their surviving samples. Our spectral
method performs robustly at the 97.45% level for
sparse samples down to a minimum of about 500
word types or 4000 word tokens. It is possible that
below this threshold Sukhotin’s algorithm would
still be preferable.

Goldsmith and Xanthos (2009) only evaluate
their method on one collection of written words,
sampled from Finnish,7 and they obtain the same
result as we do below, with our algorithm only
misclassifying the grapheme ‘q’.8 This should
come as no surprise, because their method is an
algebraically very close variant of ours — they
compute eigenvectors on the Gram closure of our
grapheme/context matrix (which they call F) in-
stead of a singular value decomposition directly.

It may nevertheless come as a surprise that their
method is so similar to ours. Their motivation con-
sists of a lengthy discussion of graph cuts, along
with a reference to Fiedler vectors, the name of
the second eigenvector (the correlate to our ~y) of a
graph’s Laplacian matrix, which is known to re-
late to the graph’s algebraic connectivity. Nei-
ther Goldsmith and Xanthos (2009) nor we ex-
plicitly calculate the Laplacian matrix of a graph,
and if this would-be graph happened to have more
than one connected component, the Fiedler vector
would not be uniquely well-defined on its Lapla-

7This is offered with the apology that Finnish is ortho-
graphically transparent, thus almost qualifying as a phonemic
transcription.

8Goldsmith and Xanthos’s (2009) explanation for this is
a “problem of threshold,” but our study has found that the
numerical stability of the threshold is extremely accurate. In-
stead, the problem is the relative disconnectedness of ’q’ from
other graphemes owing to its sparsity, as the discussion in this
paragraph will elaborate upon.

87

cian matrix in general.9 Vowels and consonants
rarely if ever separate into perfectly disjoint con-
texts; among our corpora the most disjoint is Viet-
namese, in which vowels and consonants share ex-
actly 100/645 p-frames. Out of curiosity, we eval-
uated our algorithm on the matrices from all 26
writing systems with their inter-CV/VC links re-
moved. Performance degrades (macro-averaged
accuracy: 89.08%) — which implies that this
method is not merely computing an overall min-
imum graph cut — but not so badly that partitions
could merely be ignoring either all of the vowels
or all of the consonants. The explanation found in
Goldsmith and Xanthos (2009) therefore does not
account for the robustness or generality of our col-
lective approach. Our own determination of this
method, along with this universal, was entirely ex-
perimental.

A final difference to our approach is that Gold-
smith and Xanthos (2009) use bigram contexts in-
stead of p-frames, although they are aware that this
choice is arbitrary. Empirically, p-frames work
better than bigrams (macro-averaged type accu-
racy: 89.06%) as well as trigrams with two pre-
ceding elements (96.24%).

Figure 2 shows example classifications by Al-
gorithm 1 of six different writing systems. Each
letter is plotted at its (xi, yi) coordinate, but the
classification is made using only yi. It is worth
noting that semivowels and other trouble-makers
consistently fall very close to the y = 0 thresh-
old. Maltese is particularly important, as it uses a
vocalic alphabet with a Semitic language. Our cor-
rect handling of this case, and converse cases such
as Farsi, demonstrates that we are responding to
properties of alphabetic writing systems, and not
of linguistic phylogeny.

4 Distinguishing Abjads from Vocalic
Alphabets

Some writing systems assign syllabic or larger
phonetic values to individual graphemes. Those
that do not are sometimes called alphabetic writ-
ing systems, which is confusing because not all
of them are true alphabets. There is another
kind of alphabetic writing system called an abjad,
which expresses only consonants. Arabic writ-
ing and writing systems based upon Arabic writ-

9Unless all of the connected components fortuitously had
first and second eigenvalues of exactly the same magnitudes,
the overall second non-zero eigenvector would not cross all
of the components.

ing (whether or not the underlying language is re-
lated to the Arabic language) are the prototypical
abjads; the rest (e.g., Hebrew, Aramaic) express
Hatto-Semitic languages. Abjads express words in
languages that have vowels, but the vowels must
be inferred from context, unless, in anomalous
genres, they are expressed through optional dia-
critics (Daniels and Bright, 1996).

We can use the spectral method presented in
Section 2 to classify an alphabetic writing sys-
tem as either an abjad or a true, vocalic alphabet.
This is a different kind of classification problem
than that of Section 3, as we are attempting here
to classify the structure of entire writing systems
rather than the phonetic values assigned to individ-
ual graphemes. We will consider two algorithms
for distinguishing abjads from vocalic alphabets:

4.1 Algorithm 2: Divergence

This variant begins by provisionally assuming that
the writing system under investigation is a vocalic
alphabet, and applying Algorithm 1 to it, which in-
volves the calculation of the aforementioned ma-
trix, A, and the classification of every letter as a
consonant or vowel. There is a related matrix W ,
for which Wij is the number of times letter i oc-
curs in the context of p-frame j. W is not binary.
We will label the rows of W as v̂i or ĉj according
to whether i and j are labelled as vowels or conso-
nants by Algorithm 1. Algorithm 1 still uses A in
assigning the labels, not W .

We can view each row of W as a discrete dis-
tribution over p-frame contexts. In recognition of
this, Algorithm 2 calculates:

N =
∑
v̂i,v̂j

|D|(v̂i||v̂j)−
∑
v̂i,ĉj

|D|(v̂i||ĉj),

where D(p||q) is the Kullback-Leibler divergence
of p and q. We use |D| to represent the
absolute-value of each element-wise calculation of
v̂i log v̂i

v̂jorĉj
. The distributions of putative vowels

tend to be more dissimilar to one another in ab-
jads than in true alphabets. The distributions of
putative vowels are more similar to that of puta-
tive consonants in abjads than in true alphabets.
Values of N are shown for 30 writing systems in
Table 4.

N separates the abjads from the vocalic alpha-
bets at about N = −100.

88

Latin Maltese

Swedish Hawaiian

Modern Greek Russian

Figure 2: x and y for several writing systems.

89

Language N
Hungarian 773.7

Tagalog 531.43
Inuktitut 424.12

Vietnamese 359.53
Finnish 240.26

Old English 234.52
Czech 223.96

Spanish 147.44
Russian 135.88
Swedish 121.77
Maltese 104.63
Latin 83.88

Ancient Greek 65.88
Hawaiian 57.29

Middle English 48.21
Serbian 28.07

Modern Greek 20.6
German 20.33
French 16.01

Modern English -31.05
Portuguese -53.19

Dutch -57.18
Afrikaans -73.52

Italian -89.94
NVME -167.63
Farsi -185.7

Aramaic -191.23
Hebrew -207.32

Urdu -220.01
Arabic -225.36

Table 4: Values of N for Algorithm 2, calculated
over corpora of roughly 5000 words each (min
character tokens = 13681, max = 39936, median
= 20361). NVME is the Modern English corpus
with vowels removed. Abkhaz (N = −70.94) is
not included because of its small size.

4.2 Algorithm 3: Vowelless words

For writing systems that conventionally use in-
terword whitespace, we can alternatively apply
vowel identification to the task of discriminat-
ing abjads from vocalic alphabets by examining
the percentage of word tokens with no vowel
graphemes.10 This method, Algorithm 3, is im-
plicit to Reddy and Knight’s (2011) 2-state HMM

10In vocalic writing systems, vowelless words include ty-
pographical errors, abbreviations and, in some writing sys-
tems, words with semivowels that can occupy a syllabic
mora, such as ’y’ in English.

Language V C
Arabic 3.75 0.92
Hebrew 3.63 0.2

Urdu 2.58 0.22
Farsi 2.35 0.13

Aramaic 1.97 0.18
NVME 0.19 0.69
Abkhaz 0.63 0.44
Russian 0.37 0.29
Maltese 0.36 0.06

Vietnamese 0.25 0.27
Modern Greek 0.14 0.06

Dutch 0.13 0.04
Old English 0.12 0.11
Hawaiian 0.12 0.4

Middle English 0 0.12
Spanish 0.11 0.08
German 0.09 0.04
Tagalog 0.07 0.06

Inuktitut 0.07 0.05
Italian 0.07 0.04

Serbian 0.07 0.02
Portuguese 0.05 0.05
Afrikaans 0.05 0.04

Czech 0.05 0.01
Modern English 0.05 0.01

Latin 0.04 0.03
Finnish 0.03 0.03
Swedish 0.03 0.03
French 0.03 0.02

Hungarian 0.02 0.01

Table 5: Percentages of word tokens with no puta-
tive vowels (V) or consonants (C), as determined
by Algorithm 3.

analysis of part of the Voynich manuscript, in
which they observed that every word was rec-
ognized as an instance of the regular language
a∗b. They believed the most likely explanation is
that every word was written with several conso-
nants followed by a vowel, and that the Voynich
manuscript therefore uses an abjad.

From this percentage, a decision boundary also
emerges at about 1%, as shown in Table 5. NVME
is not correctly classified unless one uses the
greater of the percentage of words without a vowel
or consonant, but this (Modern English with the
Once again, putative vowels and consonants have
been determined by Algorithm 1.

90

5 Conclusion and Future Work

We have shown that a very simple spectral decom-
position based on character co-occurrences pro-
vides nearly perfect performance with respect to
classifying both a letter as vowel or consonant and
a writing system as an abjad or alphabet. Algo-
rithm 1 does not resolve other pertinent questions,
e.g., distinguishing numbers from letters, or deter-
mining which capital letters correspond to which
lowercase letters. Our method of vowel/consonant
classification is meant to inform existing meth-
ods of finding graphemes’ corresponding sounds.
An additional source for associating sound values
to graphemes is comparing letter frequencies be-
tween two related languages.

Future research on associating sound values to
graphemes could include extending a method sim-
ilar to Algorithm 1 to other types of writing sys-
tems, such as syllabaries.

References
Peter T Daniels and William Bright. 1996. The world’s

writing systems. Oxford University Press.

J. Goldsmith and A. Xanthos. 2009. Learning phono-
logical categories. Language 85(1):4–38.

Jacques BM Guy. 1991. Vowel identification: an old
(but good) algorithm. Cryptologia 15(3):258–262.

Young-Bum Kim and Benjamin Snyder. 2013. Un-
supervised Consonant-Vowel Prediction over Hun-
dreds of Languages. In ACL (1). pages 1527–1536.

Cleve Moler and Donald Morrison. 1983. Singular
value analysis of cryptograms. American Mathe-
matical Monthly pages 78–87.

Merle E Ohaver. 1933. Cryptogram solving. Etcetera
Press, PO Drawer 27100, Columbus, Ohio 43227.

Sravana Reddy and Kevin Knight. 2011. What we
know about the Voynich manuscript. In Proceedings
of the 5th ACL-HLT Workshop on Language Tech-
nology for Cultural Heritage, Social Sciences, and
Humanities. Association for Computational Lin-
guistics, pages 78–86.

Gilbert Strang. 2005. Linear Algebra and Its Appli-
cations, 4th Edition. Brooks/Cole Publishing Com-
pany.

Michael Stubbs and Isabel Barth. 2003. Using recur-
rent phrases as text-type. Functions of language
10(1):61–104.

B.V. Sukhotin. 1962. Eksperimental’noe vydelenie
klassov bukv s po- moshch’ju elektronnoj vychis-
litel’noj mashiny. Problemy strukturnoj lingvistiki
234:198–106.

91

