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Abstract

Multi-task training is an effective method
to mitigate the data sparsity problem.
It has recently been applied for cross-
lingual transfer learning for paradigm
completion—the task of producing in-
flected forms of lemmata—with sequence-
to-sequence networks. However, it is still
vague how the model transfers knowledge
across languages, as well as if and which
information is shared. To investigate this,
we propose a set of data-dependent exper-
iments using an existing encoder-decoder
recurrent neural network for the task. Our
results show that indeed the performance
gains surpass a pure regularization effect
and that knowledge about language and
morphology can be transferred.

1 Introduction

Neural sequence-to-sequence models define the
state of the art for paradigm completion (Cotterell
et al., 2016, 2017; Kann and Schütze, 2016), the
task of generating inflected forms of a lemma’s
paradigm, e.g., filling the empty fields in Table 1
using one of the non-empty fields.

However, those models are in general very data-
hungry, and do not reach good performances in
low-resource settings. Therefore, Kann et al.
(2017) propose to leverage morphological knowl-
edge from a high-resource language (source lan-
guage) to improve paradigm completion in a
closely related language with insufficient re-
sources (target language). This is achieved by
a form of multi-task learning – they train an
encoder-decoder model simultaneously on train-
ing examples for both languages. While closer
related languages seem to help more than distant
ones, the mechanisms how this transfer works still

Present Past
Singular Plural Singular Plural

1 sueño soñamos soñé soñamos
2 sueñas ??? soñaste soñasteis
3 sueña sueñan soñó ???

Table 1: Partial inflection table for indicative
forms of the Spanish verb soñar.

remain largely obscure. Several possibilities exist:
(i) learning of target tag specific word transforma-
tions from the high-resource language (trans); (ii)
training of the character language model of the de-
coder (LM); (iii) learning a bias to copy a large
part of the input (copy), since members of the
same paradigm mostly share the same stem; (iv)
a general regularization effect obtained by multi-
task training (reg).

In this work, we intend to shed light on the way
cross-lingual transfer learning for paradigm com-
pletion with an encoder-decoder model works, and
will especially focus on the role of the character
and tag embeddings. In particular we aim at an-
swering the following questions: (i) What does
the neural model learn from the tags of a high-
resource language for the tags of a low-resource
language? (ii) Is sharing an alphabet important
for the transfer? (iii) How much of the transfer
learning can be reduced to a regularization effect
achieved by multi-task learning?

For our analysis, we present a set of detailed
experiments for the target language Spanish [ES].
Source languages are either members of the Ro-
mance language family (Catalan [CA], French
[FR], Italian [IT], Portuguese [PT]) of different lev-
els of similarity to Spanish, cf. Table 2, or an un-
related language (Arabic [AR]). We show which
parts of the information are learned from the char-
acters or tags and discuss where sequences of let-
ters or tags from a second language contribute to
or restrain performance on the paradigm comple-
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PT CA IT FR

similarity to ES 89% 85% 82% 75%

Table 2: Lexical similarities of Spanish and the
Romance languages used for our experiments
(Lewis, 2009).

tion task in the low-resource language.

2 Transfer Learning for Paradigm
Completion

In this section, we describe cross-lingual transfer
learning for morphology and the model used for it.

Cross-lingual transfer. Transfer learning for
paradigm completion is much more language-
specific than most semantic natural language pro-
cessing tasks, like entity typing or machine trans-
lation. An extreme example is the infeasible task
of transferring morphological knowledge from
Chinese to Portuguese as Chinese does not make
use of inflection at all. Even between two morpho-
logically rich languages transfer is difficult if they
are unrelated, since inflections often mark dissimi-
lar subcategories and word forms do not share sim-
ilarities.

However, Kann et al. (2017) show that trans-
ferring morphological knowledge from Spanish to
Portuguese, two languages with similar morphol-
ogy and 89% lexical similarity, works well and,
more surprisingly, even supposedly very differ-
ent languages like Arabic and Spanish can bene-
fit from each other. They make this possible by
training an encoder-decoder model and appending
a special tag (i.e., embedding) for each language to
the input of the system, similar to (Johnson et al.,
2016). It is currently unclear, though, what the na-
ture of this transfer is, motivating our work which
explores this in more detail.

Model description. The model Kann et al.
(2017) use and we explore in more detail here is an
encoder-decoder recurrent neural network (RNN)
with attention (Bahdanau et al., 2015). It is trained
on maximizing the following log-likelihood:

L(θ) =
∑

(k,w`t
)∈Dt

log pθ (fk [w`t ]|`t ,w`t , tk )

+
∑

(k,w`s )∈Ds

log pθ (fk [w`s ]|`s ,w`s , tk )
(1)

We denote the source training examples as Ds and
the target training examples as Ds. w`s represents
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y1 = s y2 = u y3 = e
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←−
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−→
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⊕
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Figure 1: Overview of an encoder-decoder RNN,
mapping the Spanish lemma soñar to the target
form sueña. The thickness of the arrows towards
the circled plus symbol corresponds to each atten-
tion weight. All tags in the input are omitted.

a lemma in a high-resource source language `s
and w`t represents a lemma in a low-resource tar-
get language `t. k represents a given slot in the
paradigm and fk[w`] is the inflected form of w`

corresponding to the morphological tag tk. The
parameters θ of the model are tied for both the
high-resource language and the low-resource lan-
guage to enable transfer learning.

In detail, a bidirectional gated RNN is used to
encode the input sequence, which consists of a
language tag, morphological tags and characters
of the input language. The decoder generates the
output sequence from the characters of the same
language, and consists of a unidirectional RNN
with an attention mechanism over the encoder hid-
den states. Notably, the elements of the input and
the output are represented by embeddings living in
separate spaces.

Hyperparameters. Encoder and decoder RNNs
have 100 hidden units and we use 300-
dimensional embeddings. We train using
ADADELTA (Zeiler, 2012) with minibatch size 20.
All models for all experiments are trained for a
maximum of 150 epochs. The best model is ap-
plied at test time.

3 Exploration of Transfer Learning

In order to answer the questions raised in the in-
troduction, we conduct the following experiments.

3.1 Data
We use the Romance and Arabic language data
from Kann et al. (2017). In particular, each train-
ing file contains 12, 000 high-resource examples
mixed with 50 or 200 fixed Spanish instances. We
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trans LM copy reg
l-ciph X X
t-ciph X
l-emb X X X
t-emb X

Table 3: Expected effect of different modifications
of the high-resource training data. Learning of the
marked fields is likely to be influenced, descrip-
tions in the text, cf. §1.

use the same development and test files for all ex-
periments. Arabic is transcribed into Latin charac-
ters.

3.2 Experiments

Letter cipher (l-ciph). Let C = Clow ∪ Chigh

be the union of the sets of all characters in the
alphabets of the low-resource language and the
high-resource language, respectively.1 We define
a bijective cipher function fciph : C 7→ C, map-
ping each character to a different character, cho-
sen at random. Then, we apply this function to
the elements of the input and output words in the
high-resource language and train the model on this
modified data. The low-resource samples in train,
dev and test remain unchanged.

We expect this to have the following effects: (i)
languages do not share affixes anymore; (ii) as we
use the same embeddings for the changed and un-
changed characters, the model might learn wrong
affixes for tags; (iii) an incorrect character lan-
guage model could be learned; and (iv) a general
bias to copy should remain unchanged.
Tag cipher (t-ciph). We further consider the
union of the sets of all morphological tags ex-
isting in the low- and high-resource languages:
T = Tlow ∪ Thigh. We define a bijective cipher
function fciph : T 7→ T . We then apply this func-
tion to all tags in the high-resource language input
and train a new model. The low-resource exam-
ples in train, dev and test are not changed.

We expect this to: (i) disturb the learning of cor-
respondences between target tags and output char-
acters; (ii) not influence anything else.
Language-dependent letter embeddings (l-
emb). We now use different embeddings for the
characters of the two languages. This corresponds
to a setting where the source and target languages
do not share the same vocabulary.

1Note that for the languages considered in our experi-
ments we have Clow ≈ Chigh.

This should result in: (i) making it impossible
for the model to learn which affixes have to be
produced for which tag, maybe resulting in bene-
fits for more distant and worse performance for ex-
tremely close languages; and (ii) transfer of the de-
coder’s character language model getting impossi-
ble.
Language-dependent tag embedding (t-emb).
Additionally, we also experiment with different
embeddings for the morphological tags in differ-
ent languages.

We expect the following to happen: (i) the
model can learn a character language model in
the output, which might be good for related and
bad for more distant languages; (ii) it should not
be possible for the model to learn a correspon-
dence between tags and characters in the output
sequence; and (iii) the model cannot get informa-
tion about tags in the low-resource language from
the high-resource language’s examples.

We additionally perform two last experiments:
Language-dependent letter embeddings with
separation symbol (l-emb-sep). This is the same
as l-emb, but we introduce a new separation sym-
bol SEP between the tags and the characters, solv-
ing the problem that it is not clear where the tag
ends and the word starts. We expect equal or bet-
ter performance than for l-emb.
Language-dependent tag embedding with sepa-
ration symbol (t-emb-sep). This is equivalent to
t-emb, but we again insert a new separation sym-
bol SEP between the tags and the input word’s
characters. We expect equal or better performance
than for t-emb.

3.3 Intuition

In Table 3 we display an overview of which of
the working mechanisms of cross-lingual trans-
fer learning we expect to be effected by which
changes to the high-resource training data. De-
pending on the relationship between the source
and the target language, e.g., whether they use the
same affixes to express the same morphosyntac-
tic properties, we anticipate stronger or weaker ef-
fects. The regularization effect should not be in-
fluenced by our changes to the data.

3.4 Results and Analysis

For the low-resource training set of size 50, the
models with the original setup and without trans-
fer perform best and worst, respectively. However,
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50 200
ES (+0) AR FR IT CA PT ES (+0) AR FR IT CA PT

original .0075(.00) .1496(.01) .4277(.02) .5161(.01) .6216(.02) .4755(.01) .5012(.03) .6596(.01) .7080(.01) .7713(.01) .8142(.01) .6885(.01)
l-ciph - .1209(.01) .1837(.03) .3207(.02) .2937(.02) .1005(.06) - .6626(.01) .6491(.02) .7032(.02) .7151(.00) .6155(.03)
t-ciph - .1208(.02) .3491(.01) .4823(.01) .4963(.02) .3623(.02) - .6405(.01) .7058(.01) .7768(.01) .8040(.01) .6317(.01)
l-emb - .1353(.06) .2905(.01) .2842(.09) .4327(.03) .2723(.06) - .7109(.02) .7048(.01) .7412(.01) .7655(.02) .7323(.01)
t-emb - .1363(.03) .3941(.02) .5012(.02) .5610(.02) .4300(.02) - .6464(.00) .7364(.01) .7760(.01) .8142(.01) .6690(.01)
l-emb-sep - .1312(.03) .3240(.03) .3554(.04) .4282(.03) .2883(.06) - .6464(.00) .7180(.02) .7522(.01) .7757(.01) .7250(.02)
t-emb-sep - .1672(.02) .4516(.01) .5138(.01) .5944(.02) .4608(.02) - .6668(.01) .7434(.00) .7946(.01) .8305(.01) .6824(.01)

Table 4: Results for all experiments and all high-resource source languages. ES denotes experiments
without transfer. 50 and 200 are the numbers of low-resource training examples. All results are averaged
over 5 training runs, standard deviation in parenthesis.
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Figure 2: Results for all experiments, averaged
over all languages. only-ES denotes a model
trained exclusively on 50 or 200 Spanish exam-
ples.

for low-resource training size 200, t-emb-sep per-
forms best in most case, and without transfer still
performs worst. The order of the accuracies av-
eraged over all languages can be seen in Figure
2: original > t-emb-sep > t-emb > t-ciph > l-
emb-sep > l-emb > l-ciph for 50 and t-emb-sep
> l-emb-sep> l-emb> t-emb> original> t-ciph
> l-ciph for 200 low-resource examples. The de-
tailed results of each language can be found in Ta-
ble 4.

First, this shows clearly that the character em-
beddings are more important for the task than the
tag embeddings. Second, l-emb (resp. t-emb) and
l-ciph (resp. t-ciph) correspond to a setting with
no additional information vs. a setting with po-
tentially wrong information. Generally higher ac-
curacies for separate embedding spaces indicate
that the model can learn incorrect information via
transfer. Thus, the choice of the source language
seems to be very important. The differences in
performance between original and l-emb represent
the influence of shared vs. separate embedding

spaces, i.e., vocabularies in the case of the letters.
Sharing a vocabulary seems to influence the final
accuracy a lot, and more positively for 50 low-
resource examples. We can explain this with the
model learning to copy – it has no intrinsic way of
knowing which input character equals which out-
put character in the vocabulary unless it has seen
it at least once. However, for 200 Spanish exam-
ples, we can expect all characters to appear in the
Spanish training data, such that the character lan-
guage model and tag-output correspondence get
more important. This explains the unexpected re-
sult that l-emb performs best for Arabic (200) and
Portuguese (200): both source languages poten-
tially confuse the language model; in Portuguese
we contribute this to a big overlap of lemmata in
the two languages with Portuguese often inflecting
in a different way (Kann et al., 2017). Further, the
differences in performance between original and
t-emb show that the model indeed learns informa-
tion from the tags, supposedly which output se-
quence is more likely to appear with which tag.

The l-emb-sep and t-emb-sep results show that
a separation symbol clearly improves the model’s
performance.

4 Related Work

Transfer learning with encoder-decoder net-
works. Encoder-decoder RNNs were introduced
by Cho et al. (2014) and Sutskever et al. (2014)
and extended by an attention mechanism by Bah-
danau et al. (2015). Lately, much work was done
on multi-task learning and transfer learning with
encoder-decoder RNNs. Luong et al. (2015) inves-
tigated multi-task setups for sequence-to-sequence
learning, combining multiple encoders and de-
coders. In contrast, in our experiments, we use
only one encoder and one decoder. There exists
much work on multi-task learning with encoder-
decoder RNNs for machine translation (Johnson
et al., 2016; Dong et al., 2015; Firat et al., 2016;
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Ha et al., 2016). Alonso and Plank (2016) ex-
plored multi-task learning empirically, analyzing
when it improves performance. Here, we focus on
how transfer via multi-task learning works.

Paradigm completion. SIGMORPHON
hosted two shared tasks on paradigm completion
(Cotterell et al., 2016, 2017), in order to encour-
age the development of systems for the task. One
approach is to treat it as a string transduction
problem by applying an alignment model with a
semi-Markov model (Durrett and DeNero, 2013;
Nicolai et al., 2015). Recently, neural sequence-
to-sequence models are also widely used (Faruqui
et al., 2016; Kann and Schütze, 2016; Aharoni
and Goldberg, 2017; Zhou and Neubig, 2017). All
the above mentioned work were designed for one
single language.

5 Conclusion

We conducted a set of experiments to explore the
mechanisms behind cross-lingual transfer learning
for morphological reinflection. Our findings in-
dicate that knowledge about a language’s typical
character sequences and outputs for certain mor-
phological tags can be transferred. In particular,
this means that the effect cannot be reduced to sole
regularization.
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