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Abstract

Most NLP resources that offer annotations
at the word segment level provide morpho-
logical annotation that includes features
indicating tense, aspect, modality, gender,
case, and other inflectional information.
Such information is rarely aligned to the
relevant parts of the words—i.e. the al-
lomorphs, as such annotation would be
very costly. These unaligned weak label-
ings are commonly provided by annotated
NLP corpora such as treebanks in various
languages. Although they lack alignment
information, the presence/absence of la-
bels at the word level is also consistent
with the amount of supervision assumed
to be provided to L1 and L2 learners. In
this paper, we explore several methods to
learn this latent alignment between parts
of word forms and the grammatical in-
formation provided. All the methods un-
der investigation favor hypotheses regard-
ing allomorphs of morphemes that re-use
a small inventory, i.e. implicitly mini-
mize the number of allomorphs that a mor-
pheme can be realized as. We show that
the provided information offers a signif-
icant advantage for both word segmenta-
tion and the learning of allomorphy.

1 Introduction

Many NLP resources provide weakly labeled mor-
phological resources in data sets that are primar-
ily annotated for higher-level constructs besides
morphology. Most treebanks, for example, in-
clude some morphological annotation on the word
level of varying granularity. The Penn treebank
(Marcus et al., 1993) uses a limited label set
of 45, while the Universal Dependencies (UD)

(Nivre et al., 2017) project annotates word forms
with a much larger set of morphological feature-
value pairs. Noteworthy is that such annotation
is not in any way aligned with the substrings
in the word forms themselves: if the Finnish
word kaatuisi ’would fall down’ is annotated as
kaatua,V,Cond,Pres,3,Sg, there is no in-
dication that kaatu corresponds to the stem, isi to
Cond, and that V, 3 and Sg are realized as zero
allomorphs.

In essence, such labeled resources provide an
inference problem in the realm of inflectional mor-
phology in that one can exploit statistical regulari-
ties in the data to perform a morpheme segmenta-
tion and labeling of the data. A linguistically in-
formed observation based on a simple assumption
of systematic regularity between form and mean-
ing is that it is very unlikely that a single mor-
pheme such as the Finnish conditional be realized
in more than a handful of different allomorphs.
Conversely, it is unlikely that a part of a word,
such as the affix isi carry many disparate mean-
ings, i.e. be associated with a large array of dif-
ferent labels. Still, morphemes are often realized
by more than one allomorph although the number
of allomorphs is typically small. Consider for ex-
ample English plural number which is realized by
different allomorphs in the forms dogs, churches,
oxen and children. From a data-driven perspec-
tive, the inference problem thus becomes to find a
globally good allomorph segmentation and label-
ing of all word forms given in a large resource of
inflected word forms.

Besides NLP applications, this type of input and
the related inference problem is consistent with
the assumptions of relevant inputs witnessed in L1
acquisition—a combination of stems and other af-
fixes where the learner knows from the environ-
ment some semantic signal from the immediate
discourse, e.g. plurality, tense, etc. Children tend
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to show the ability to analyze affixes before they
can use them productively. For example, three-
year-olds have been shown to be able to associate
agentive meaning to an -er morpheme in English,
but can only produce the suffix later (Clark and
Hecht, 1982; Clark and Berman, 1984).

In this paper we explore and evaluate several
methods for automatically segmenting and label-
ing each allomorph present in resources that are
labeled with morphosyntactic features at the word
level. This means that our training data consists of
plain unsegmented word forms (for example kaa-
tuisi) and morphological feature sets (for example
{V, Cond, Pres, 3, Sg}). The result is a mor-
phologically segmented corpus where each mor-
phological segment is associated with at least one
morphological feature as shown in Figure 1. In or-
der to account for fusional morphology, we allow
one segment to be associated with multiple mor-
phological features.

We treat the problem of joint segmentation and
feature assignment as a search problem in the
space of all possible segmentations and labelings
of each word form in a (weakly) annotated cor-
pus. The crucial constraint provided by the weak
labeling is that not all labels can be present in a
word form—the set of labels present for each in-
flected word must be restricted to those given by
the resource. To our knowledge, this weakly su-
pervised task has not previously been explored al-
though joint segmentation and labeling has been
explored in a fully supervised setting by Cotterell
et al. (2015).

To solve the problem, we explore global met-
rics that indirectly favor re-use of allomorphs ac-
cording to the intuition given above. We formalize
a generic objective function that scores the good-
ness of segmentations and labeling globally in a
corpus. The scoring portion of this objective func-
tion is tested with several metrics: symmetric con-
ditional probability, which favors that allomorphs
be good predictors of labels and vice versa, a per-
ceptron learner that weights allomorph-label asso-
ciation, a Rescorla-Wagner model based on clas-
sical conditioning that also learns such association
weights, and a model of Kullback-Leibler diver-
gence that favors that labels and allomorphs have
similar distributions throughout a data set.1 We
also compare the performance of the various meth-

1Our code is freely available at https://github.
com/mpsilfve/learn-allomorphs

ods to a baseline unsupervised model, Morfessor2,
augmented with the capacity to also provide labels
of allomorphs in addition to segmenting.

2 Related Work

In the realm of natural language processing, mor-
phological segmentation is a well-researched and
established problem (Goldsmith (2001), Creutz
and Lagus (2005), Poon et al. (2009), Dreyer and
Eisner (2011), Ruokolainen et al. (2016)). While
most approaches to pure segmentation are unsu-
pervised, semi-supervised work usually assumes
the availability of a limited number of gold seg-
mentations (Dasgupta and Ng, 2007; Kohonen
et al., 2010; Grönroos et al., 2014; Sirts and Gold-
water, 2013). Using vector space representations
of words to produce a weak labeling that identifies
related forms has also been investigated (Schone
and Jurafsky, 2000; Soricut and Och, 2015). Kann
et al. (2016) perform unsupervised canonicaliza-
tion of allomorphs, transforming words such as
having to have ing, a task which is somewhat re-
lated to the problem addressed in this paper. Many
methods that tackle specific morphology-related
NLP tasks implicitly learn some model of allomor-
phy. This includes semi-supervised vocabulary ex-
pansion (Faruqui et al., 2016), and morphological
inflection from examples (Cotterell et al., 2016a).

To our knowledge, the weakly supervised learn-
ing problem addressed in this paper has not been
considered in the literature. Cotterell et al. (2015)
present a closely related task. They investigate la-
beled morphological segmentation, that is, simul-
taneous segmentation and labeling of segments
with morphological features. The crucial differ-
ence between our work and the work by Cotterell
et al. (2015) is that our models are learned in a
weakly supervised manner from plain word forms
and sets of morphological features. In contrast,
Cotterell et al. (2015) learn segmentation models
in a fully supervised manner from data where each
word is morphologically segmented and the seg-
ments are annotated with morphological features.

In the cognitive literature on L1 and L2 learn-
ing, statistical learning -based approaches that at-
tempt to explain language learning through obser-
vations about statistical regularities have explored
the extent to which relatively simple generaliza-
tions based on co-occurrence observations and

2http://www.cis.hut.fi/projects/
morpho/morfessor2.shtml
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maljo i ksi

malja PL TRANS Finnish 
(agglutinative)

destroz o

destrozar IND PRS 1 SG Spanish 
(fusional)

English 

church

church SG

∅

Figure 1: Morphological feature alignments in ag-
glutinative and fusional languages; in the Finnish
word (malja ‘cup’) each allomorph has a single
feature while in the Spanish word (destrozar ‘de-
stroy’) several features are associated with a sin-
gle allomorph. In the English example, a zero
allomorph is declared to which the feature SG is
aligned.

statistical generalizations can be used to model
learning of various levels of structure in natu-
ral language, including discovery of words (Saf-
fran et al., 1996), grammatical categories (Reeder
et al., 2013), and syntactic structure (Newport,
2016).

3 Methods

Given a corpus of word forms and associated mor-
phological features, we want to find the correct
segmentation for a word such as barked into seg-
ments which correspond to morphemes bark, ed,
∅, and the correct assignment of morphological
features in a feature set {bark,V,Past} onto
the segments. In this case: bark/bark, ed/Past
and ∅/V. Note that we treat the lemma as a mor-
phological feature.

Zero morphs (∅) are required because several
languages have morphological features which are
not visible in the word form, for example singular
number of English nouns. In our gold standard
segmented test data, we align word class mark-
ers such as N and V with a zero morph because
they do not correspond to any substring of the
word form. This decision is somewhat arbitrary.
Other options include aligning them with the word
stem and simply removing them from the corpus.
In some cases, as in the case of English adverbs
with suffix -ly, one could also consider aligning

the word class marker with an affix.
We propose to accomplish segmentation and

feature assignment by learning a real-valued scor-
ing function Θ : Σ∗×Y → R, where Σ∗ is the set
possible segments and Y is the finite set of mor-
phological features.3 The scoring function Θ ex-
presses the strength of association between a seg-
ment such as ed and a morphological feature such
as Past. It is learned from a set of unsegmented
word forms and their morphological label sets. We
present several alternative formulations for Θ.

Using the scoring function Θ, we find the op-
timal segmentation xmax = x1...xn of the in-
put word form and optimal feature assignment
ymax = y1 ∪ ...∪ yn which together maximize the
value of Θ as given by Equation 1. We perform
the maximization using an exact search algorithm
over the set of segmentations and feature assign-
ments. Therefore, we are guaranteed to find the
optimal segmentation and feature assignment.

(xmax, ymax) = arg max
x1...xn=x

y1∪...∪yn=y

∑
xi

∑
y∈yi

Θ(xi, y)

(1)
We perform the maximization in Equation 1 in

the following way. Let x be an input string and
let y = {f1, ..., fk} be a set of morphological fea-
tures. We first form an exhaustive set of segmenta-
tions of x (in order to allow for tractable inference,
we only consider segmentations into maximally 5
segments). We then consider each segmentation
x1...xn = x in turn and find the feature assign-
ment y1 ∪ ...∪ yn = y which maximizes the score
Θ using a recursive algorithm presented below.

Given a partition y1, ..., yn of a possibly empty
prefix of y = {f1, ..., fk} (that is a collection of
pointwise disjoint sets y1, ..., yn where y1 ∪ ... ∪
yn = {f1, ..., fj} and j ≤ k), we can find the
optimal score M for assigning the remaining mor-
phological features yrest = y − {f1, ..., fj} into
sets in y1, ..., yn using the following recursive al-
gorithm.4 Set M := −∞ and iterate over i in
{1, ..., n}.

• If yrest is empty, then y1 ∪ ... ∪ yn =
y. If each yl 6= ∅, assign M :=
max(M,Θ((x1, ..., xn), (y1, ..., yn))).

3Y is finite because the inventory of morphological fea-
tures is derived from a finite corpus.

4A natural extension of this algorithm will recover the op-
timal feature assignment.
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• If yrest is not empty, assign yi := yi ∪
{fj+1} and find the optimal score M ′ for
y′rest = {fj+1, ..., fk} − {fj+1}. Set M :=
max(M,M ′).

Finally, return M .
By initially setting y1 = ... = yn = ∅, we can

find the optimal feature assignment for the entire
segmentation x1, ..., xn.

We limit the set of segmentations of a word to
those which have maximally one empty substring
and explore assignments where each segment is
aligned with at least one morphological feature.
One segment may, however, be aligned with sev-
eral features. This is required when a morpheme
encodes for several morphological features.

These assumptions are in line with typological
considerations—agglutinative languages such as
Finnish and Turkish largely associate allomorphs
with a single morphological feature, while fu-
sional languages, such as Swedish and Spanish,
may associate many features with a substring (see
figure 1). Allomorph overlap, where a substring
xyz in a word has xy associated with one fea-
ture and yz with another, is generally not attested
cross-linguistically which narrows down the set of
hypotheses we need to consider. However, a typo-
logically interesting case not modeled in our ap-
proach is templatic, or root-and-pattern morphol-
ogy, where a discontinuous subsequence may be
associated with a feature, such as in the classic
Arabic example kataba ‘to write’, where root rad-
icals associate with a stem (ktb = related to writ-
ing) and intervening vowels with inflectional and
derivational patterns. The objective functions we
develop may be adapted to this case, however, at
the cost of enlarging the search space since all sub-
sequences would need to be considered when as-
sociating parts of word forms and morphological
features. Moreover, even languages with templatic
morphology can be handled using the current sys-
tem, provided that templatic phenomena are not
annotated in the corpus. For example, a model of
Arabic may represent vowel changes in the stem
by declaring different stem allomorphs instead of
treating the discontinuous root radical consonants
as the stem, e.g. kataba (‘to write’ perfect indica-
tive 2p masculine) vs. taktubu (‘to write’ imper-
fective indicative 2p masculine).

Below, we present several alternative formula-
tions for the scoring function Θ. Two of the func-
tions symmetric conditional probability and KL-

divergence are statistics which can be computed in
a straightforward manner given a training data set.
The two remaining functions, the perceptron and
Rescorla-Wagner, are derived by learning multi-
class classifiers which predict the morphological
labels of a word based on its sub-strings. The pa-
rameters of these classifiers express associations
between morphological labels and substrings. We
use these associations as the scoring function Θ.

3.1 Symmetric conditional probability

Intuitively, a substring x is a good candidate al-
lomorph for a morphological feature y if x and y
frequently co-occur. Symmetric conditional prob-
ability (SCP), introduced by da Silva et al. (1999)
for mining of lexical multi-word units, is a mathe-
matical realization of this principle.

The SCP of a segment x and a feature y is given
by equation 2. The probability p(x) is the fre-
quency of words having substring x, p(y) the fre-
quency of words having morphological label y and
p(x, y) the frequency of words having both sub-
string x and label y.

SCP(x, y) = p(x|y)p(y|x) =
p(x, y)2

p(x)p(y)
(2)

By setting Θ(x, y) = SCP(x, y), we can use
the symmetric conditional probability as a scoring
function.

3.2 Perceptron

We explore a simple extension of the classical per-
ceptron learning algorithm (Rosenblatt, 1958) for
multi-label classification (Tsoumakas and Katakis,
2007). Instead of predicting a single label for each
input instance, we predict a set of outputs corre-
sponding to the morphological features related to
a word.

We start with a standard perceptron classifier
defined by a feature extraction function f : Σ∗ →
{0, 1}k, which maps word forms x into a vector,
and one parameter vector φy ∈ Rk for each mor-
phological feature y ∈ Y . Here, k is the total num-
ber of distinct substrings that occur in the data set
D.5 Intuitively, f extracts substrings of x. More
formally, it maps a word form x into a vector in
a space where each dimension corresponds to a
string in Σ∗ and f(x)[i] = 1, iff x has a substring
corresponding to the ith dimension. Inference in

5k is between 144,000 and 423,000 for all of the data sets
considered in this paper.

49



the model is defined by Equation 3 and parameter
updates are defined by Equation 4, where ygold is
the gold standard label.

ymax = arg max
y∈Y

φ>y f(x) (3)

φymax := φymax−f(x) and φygold
:= φygold

+f(x)
(4)

We modify standard perceptron updates in the fol-
lowing way: For a word x with a set of morpho-
logical labels Y , where |Y | = n, we examine the
set N consisting of the top-n labels returned by
the perceptron classifier using the current parame-
ter estimates. We then perform a negative update
for parameters corresponding to labels which were
not associated with the word form x in the gold
standard, that is labels in the set N − Y . Con-
versely, we perform a positive update for parame-
ters which were associated with word form x, that
is morphological features in the set Y −N .

Clearly, we perform no updates for a particular
word form x, iff the top-n candidates returned by
the classifier exactly correspond to the set of mor-
phological features of x.

We first train a system using the aforementioned
variant of the perceptron algorithm. As feature
templates, we us the substrings of words in D. We
then use the parameter values corresponding to as-
sociations of substrings x and features y, learned
by the perceptron algorithm, as scores Θ(x, y).

3.3 Rescorla-Wagner learning

The Rescorla-Wagner (R-W) rule (Rescorla and
Wagner, 1972) is a model of classical condition-
ing that provides an account of the association
strength between a conditioned stimulus (CS) and
an unconditioned stimulus (US); or, alternatively,
the strength between a stimulus and the expecta-
tion of reward. This type of a learning model has
been applied to acquisition of plurals (Ramscar
and Yarlett, 2007; Ramscar, 2013), number names
(Ramscar et al., 2011) word recognition (Baayen
et al., 2011), and typology of number encoding in
inflectional morphology (Ackerman et al., 2016).

In the single stimulus case, we have an expected
reward v which is calculated as a linear combina-
tion of a binary stimulus u and a learned weight
w:

v = wu (5)

As stimuli arrive possibly paired with a reward,
the weight w is updated depending on whether the
reward was present as w = w + εδu, where δ
is set in proportion to r, the ‘actual’ reward, usu-
ally set to 1 or 100 if the association is valid, else
0. The quantity δ = r − v is hence the pre-
diction error which drives association updates to-
ward 0 or toward the maximum association score
and ε is a learning rate (set to 0.01 here). In our
model, the reward is a morphological label, and
the stimuli are the substrings present in the word
forms witnessed. We extend the common single-
stimulus/single-reward R-W model to one which
learns association strengths of multiple stimuli and
multiple rewards in a standard way (Dayan and
Abbott, 2001). Each possible morphological label
is associated with a weight vector w where each
dimension corresponds to a string in Σ∗, as in the
perceptron case. As stimuli arrive, weight updates
are performed per label as:

w = w + εδu where δ = r − v (6)

Here, as before, r is 0 if the label is absent and
100 if it is present.

Learning is very similar to perceptron
learning—the conditions under which R-W
learning and perceptron training is identical is
explored in detail in Dawson (2008). The main
difference between our R-W and perceptron
implementations is that perceptron updates are
only performed if the n labels present in a word
form do not appear in the n-best scoring list, while
R-W updates are always done if the expectation
produced by summing the individual expectations
caused by the substrings in a word fails to match
the maximum label ‘reward’.

3.4 Kullback-Leibler divergence

Given a set of labeled words U ⊂ D in our data
set, we can examine the distribution of morpholog-
ical features in U defined by p(f |U) ∝ |{(x, y) ∈
U |f ∈ y}| for all f ∈ Y . We can examine dif-
ferent subsets of D defined by criteria concern-
ing (1) morphological features, or (2) existence
of a given substring in word forms. Intuitively,
a substring s is a good candidate morpheme for
a morphological feature f , if Us = {(x, y) ∈
D|s is a substring of x} and Uf = {(x, y) ∈
D|f ∈ y} define similar distributions of morpho-
logical features.

Kullback-Leibler (KL) divergence is a widely
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# train wf # test wf # lemmas feat. types

Eng 10,000 300 8591 7
Fin 12,693 300 10049 39
Swe 10,000 300 6589 23
Tur 7,645 300 2523 36

Table 1: Data set sizes for English, Finnish,
Swedish and Turkish.

used measure for the distance of two discrete prob-
ability distributions defined on the same sample
space defined by Equation 7.

KL(p||q) =
∑

x

p(x) log
p(x)
q(x)

(7)

We use the negative KL divergence of the distri-
butions over morphological features defined by a
substring x and a morphological feature f , respec-
tively, as score Θ(x, f).

3.5 Baseline
As our baseline, we use the unsupervised morpho-
logical segmentation given by the Morfessor Base-
line method (Creutz and Lagus, 2005). We use its
default settings for all parameters.

We assign labels to segments based on maxi-
mum likelihood as defined by co-occurrence of
segments and labels in the segmented data set.
When there are fewer segments than morphologi-
cal features, we assign at least one feature per seg-
ment. Otherwise, we assign at most one feature
per segment while maximizing the joint probabil-
ity of segments and morphological features.

This baseline was chosen because it is easily ac-
cessible to most researchers and very easy and fast
to apply.

4 Data

We use data from the 2016 SIGMORPHON
shared task on morphological re-inflection (Cot-
terell et al., 2016b) (Finnish and Turkish) and the
2017 CoNLL shared task on morphological re-
inflection6 (English and Swedish). Figure 2 shows
an example of the data format and Table 1 shows
details for each data set.

We use the training and test sets from subtask 1
from the SIGMORPHON shared task (Cotterell
et al., 2016a) and the task 1 high training set to-
gether with the task 1 development set from the

6https://sites.google.com/view/
conll-sigmorphon2017/

CoNLL shared task 2017 (Cotterell et al., 2017).
Figure 3 shows an example of the annotated test
data.

5 Experiments

We first train each of the scoring functions pre-
sented in Section 3 on the combined training data
and unsegmented test data. After that, we find the
optimal segmentation and label alignment for each
word in the test data using each scoring function.
We explore all segmentations consisting of maxi-
mally 5 segments and all assignments of morpho-
logical features to the segments using a dynamic
algorithm in order to speed up inference.

For perceptron and R-W learning, we run the
training algorithm for three epochs over the train
and test data. The learning rate ε for R-W learning
is fixed to 0.01 and the maximum possible associ-
ation response r is fixed to 100.

We evaluate each scoring function with regard
to three different criteria: (1) identification of mor-
pheme boundaries, (2) identification of unlabeled
morphemes, and (3) identification of labeled mor-
phemes. For each criterion, we give recall, pre-
cision and F1-score. Evaluation criteria (1) and
(2) are very similar, but we include both for easier
comparison with earlier work in the field of unsu-
pervised morphological segmentation.

To illustrate our evaluation scheme, consider the
following gold standard segmentation and align-
ment for English

ping/ping ing/V.PTCP,PRS NULL/V

The aligned form contains three morpheme
boundaries: at index 1 (start of word), at index
4 (between the stem and participle suffix) and at
index 7 (end of word). It contains two unlabeled
morphemes: ping and ing, and four labeled mor-
phemes: ping/ping, ing/V.PTCP, ing/PRS and
NULL/V. Counts for these units are used to com-
pute recall, precision and F1-score for each evalu-
ation criterion.

6 Results

Table 2 shows the results of all experiments for
each language.

In general, each of the scoring functions per-
forms substantially better than the baseline Mor-
fessor system. However, SCP delivers lower un-
labeled morpheme F-scores for Turkish and KL-
divergence gives lower performance on morpheme
boundary detection for Finnish.
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psychoanalyse V,V.PTCP,PRS psychoanalysing
aalloittaisuus pos=N,case=ON+ESS,num=PLN aalloittaisuuksilla
centralbank N,DEF,GEN,SG centralbankens
haberleşmek V,IND,3,SG,PST,PROG,POS,DECL haberleşiyordu

Figure 2: Example lines from the English, Finnish, Swedish and Turkish training data set of. The first
field contains the lemma, the second field contains additional morphological features and the last field
contains the word form.

autofocuss/autofocus ed/PST NULL/V
paali/paali n/case=ACC NULL/num=SGN,pos=N
kammarrätt/kammarrätt s/GEN NULL/N,INDF,SG
âmâ/âmâ lar/PL dan/ABL NULL/N

Figure 3: Example entries from the annotated En-
glish, Finnish, Swedish and Turkish test sets. We
align the stem with the lemma and the part-of-
speech with the zero allomorph.

R-W seems to deliver consistently competitive
performance when compared to the other systems
on morpheme boundary recovery and morpheme
identification. The performance of the perceptron
algorithm is quite similar to the R-W but, in gen-
eral, lower. The perceptron algorithm, however,
delivers the best performance for Turkish.

KL divergence seems to perform the worst of
all of the scoring functions. It delivers markedly
worse performance on the Swedish data set than
the other systems.

SCP delivers superior performance when com-
pared to R-W for Finnish on morpheme boundary
recovery and morpheme identification. However,
its performance on English and and Turkish is sub-
stantially worse than both R-W and the perceptron
algorithm.

In the case of labeled morphemes, SCP seems
to deliver consistently good performance. It out-
performs R-W even in the case of Turkish and En-
glish, where it delivers substantially worse perfor-
mance on unlabeled morpheme identification.

7 Discussion

The results show clear improvement over the base-
line approach of first applying unsupervised mor-
phological segmentation and then assigning labels
based on co-occurrence counts of segments and la-
bels. That is, including information about mor-
phological features in the segmentation process is
clearly beneficial.

The perceptron and R-W learning algorithms

have very similar performance, which can be ex-
plained by the fact that the algorithms themselves
are quite similar. However, the R-W algorithm
seems to deliver somewhat superior performance.
One possible reason for this is that the R-W will
prefer solutions where one substring in the word
explains one morphological feature, whereas the
perceptron algorithm does not have such a bias.
This can be attributed to the ‘blocking’ effect of R-
W learning: when one feature (substring) has al-
ready been weighted early during training enough
to yield a maximum response (label), no updates
are made for other features which may also co-
occur with the same label.

The fact that both R-W and the perceptron al-
gorithm seem to perform poorly for labeled mor-
pheme identification can be explained by the fact
that both algorithms are trained to predict each of
the morphological labels of the word from all sub-
strings occurring in the word. This can lead to con-
fusion of features for morphemes occurring in the
same word. For example, the R-W performs com-
paratively poorly on labeled morpheme identifi-
cation for the Finnish, Swedish and English data
sets. This happens because it assigns the part-of-
speech feature to the stem in many words but the
gold standard analysis is that the part-of-speech is
aligned with the zero morpheme. Conversely, it
also assigns the lemma to the zero morpheme in
many words, whereas the gold standard instead as-
signs lemmas to stems. Note that the decision to
align part-of-speech with the zero morpheme in-
stead of the word stem is fairly arbitrary. There-
fore, a different gold standard segmentation could
give substantially higher labeled morpheme per-
formance for R-W.

The arbitrariness of the gold standard annota-
tion as regards certain features may be avoided
by a different evaluation scheme where no gold
standard is used. One can, for example, leave a
held-out data set and first segment and label the
data on a training section, and then investigate

52



# n o u s s e i s s a #
Inessive
Plural
Noun

# a e r o b i c a t k o o n #
3rd5Person
Imperative
Verb

75
65
55
45
35
25
15
5
?5

?10

# t e p k i m e n i z i n #
N
PSS2P
GEN
SG

# m u k a v e m e t l e r e #
N
PL
DAT

# n o u s s e i s s a #
Inessive
Plural
Noun

# a e r o b i c a t k o o n #
3rd5Person
Imperative
Verb

75
65
55
45
35
25
15
5
?5

?10

# t e p k i m e n i z i n #
N
PSS2P
GEN
SG

# m u k a v e m e t l e r e #
N
PL
DAT

# n o u s s e i s s a #
Inessive
Plural
Noun

# a e r o b i c a t k o o n #
3rd5Person
Imperative
Verb

75
65
55
45
35
25
15
5
?5

?10

# t e p k i m e n i z i n #
Noun
2P5Possessive
Genitive
Singular

# m u k a v e m e t l e r e #
Noun
Plural
Dative

# n o u s s e i s s a #
Inessive
Plural
Noun

# a e r o b i c a t k o o n #
3rd5Person
Imperative
Verb

75
65
55
45
35
25
15
5
?5

?10

# t e p k i m e n i z i n #
Noun
2P5Possessive
Genitive
Singular

# m u k a v e m e t l e r e #
Noun
Plural
Dative

# n o u s s e i s s a #
Inessive
Plural
Noun

# a e r o b i c a t k o o n #
3rd5Person
Imperative
Verb

75
65
55
45
35
25
15
5
?5

?10

# t e p k i m e n i z i n #
Noun
2P5Possessive
Genitive
Singular

# m u k a v e m e t l e r e #
Noun
Plural
Dative

Finnish Turkish

Figure 4: Example activations for two inflected Finnish words (noussut ‘risen’, aerobicata ‘to do aer-
obics’) and two Turkish words (tepkime ‘reaction’, mukavemet ‘durability’) with Rescorla-Wagner
learning. The activation score at each character is calculated as a sum of the activations associated with
the substrings that the character participates in. Standard linguistic analyses have the Finnish inessive
as -ssa, the plural as -i-, and both the imperative and 3rd person fused as -koon. For Turkish, the 2P
Possessive is -niz-, the genitive is -in, the plural is -ler-, and the dative is -e.

(a)
Eng Fin Swe Tur

Kullback-Leibler Divergence

R 93.91 82.74 73.81 81.25
P 87.15 80.36 65.89 76.60
F1 90.41 81.54 69.63 78.86

Perceptron

R 98.81 80.67 86.15 86.68
P 95.06 88.05 76.54 90.54
F1 96.90 84.20 81.06 88.57

Rescorla-Wagner

R 98.93 83.74 82.58 82.88
P 97.87 86.81 82.22 91.96
F1 98.40 85.23 82.40 87.18

Symmetric Conditional Probability

R 89.02 81.56 77.38 70.65
P 95.15 91.58 94.33 90.28
F1 91.99 86.28 85.02 79.27

Morfessor baseline

R 80.79 67.36 76.19 77.26
P 61.10 65.67 72.35 93.22
F1 69.58 66.50 74.22 84.50

(b)
Eng Fin Swe Tur

Kullback-Leibler Divergence

R 69.52 45.66 15.71 44.28
P 62.02 43.82 13.35 40.97
F1 65.56 44.72 14.43 42.56

Perceptron

R 90.15 47.62 44.55 61.32
P 84.94 54.05 37.57 65.13
F1 87.47 50.63 40.76 63.16

Rescorla-Wagner

R 94.98 50.84 43.91 56.84
P 93.42 53.53 43.63 65.76
F1 94.19 52.16 43.77 60.97

Symmetric Conditional Probability

R 64.31 50.14 37.82 27.99
P 71.49 59.37 51.53 39.89
F1 67.71 54.37 43.62 32.89

Morfessor baseline

R 21.19 9.94 21.79 39.93
P 14.14 9.59 20.27 52.20
F1 16.96 9.77 21.00 45.24

(c)
Eng Fin Swe Tur

Kullback-Leibler Divergence

R 74.18 39.70 8.88 31.36
P 74.11 37.07 7.64 27.09
F1 74.15 38.34 8.22 29.07

Perceptron

R 90.06 34.77 30.30 59.91
P 90.06 33.59 27.30 54.70
F1 90.06 34.17 28.72 57.19

Rescorla-Wagner

R 43.96 29.98 24.31 43.14
P 43.96 29.98 24.96 43.58
F1 43.96 29.98 24.63 43.36

Symmetric Conditional Probability

R 66.37 56.45 62.88 52.81
P 66.37 53.90 64.07 53.35
F1 66.37 55.15 63.47 53.08

Morfessor baseline

R 1.77 9.66 20.11 8.74
P 1.76 10.97 25.09 11.21
F1 1.77 10.27 22.32 9.82

Table 2: Results for (a) morpheme boundaries; (b) unlabeled morphemes; (c) labeled morphemes. For
each language and each task, the scoring function delivering the best performance is shown in boldface.
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how many new allomorphs are implicitly detected
when the held-out data is also segmented and la-
beled. The expectation is that very few new al-
lomorphs should be found in a held-out set if a
model assigns labels to substrings in a consistent
manner. Whether a good score on such an evalua-
tion would correspond to linguistically motivated
allomorph sets is a question we intent to investi-
gate in the future. If so, a robust evaluation could
potentially be made without any gold segmenta-
tion and labeling at all.

In addition to the scoring functions presented in
Section 3, we investigated a number of other scor-
ing functions, for example pointwise mutual in-
formation (PMI)7 of segments and morphological
features, but these did not yield competitive per-
formance according to preliminary experiments.
We also experimented with IBM models (Brown
et al., 1993) for alignment of characters to mor-
phosyntactic labels, which also performed poorly.

SCP performs poorly on the English and Turk-
ish data sets. For English, a major problem is
that SCP does not find the present participle suf-
fix ing. This suffix is problematic because it is
associated with a combination of morphological
features, namely present tense and the participle
feature. Both of these co-occur more frequently
with other suffixes (ed in the case of participle
and NULL in the case of present tense), however,
when they co-occur, they always occur with the
ing suffix. This seems to be a problem for SCP
which encodes a strong preference that there be a
one-to-one mapping between morphemes and fea-
tures.

A possible explanation for the poor perfor-
mance of SCP on the Turkish data set is that this
is the smallest of all data sets, while still having a
very large number of morphological features.

In this investigation, we have not exhausted the
set of reasonable scoring functions. One objec-
tive function that is particularly interesting is to
simply try to minimize the total number of differ-
ent allomorphs discovered in the data. This ob-

7The reason for the poor performance of PMI is that it
will often align features with rare substrings and, therefore, it
can assign a great number of distinct allomorphs to the same
morphological feature. To illustrate this, let pmi(x, y) =
log p(x, y)/(p(x)p(y)) be the PMI of segment x and fea-
ture y. This quantity can never exceed log 1/p(y) because
p(x, y) ≤ p(x). Assume that x only occurs once in the train-
ing corpus and the sole occurrence is in a word with feature
y. Thus p(x, y) = p(x) and pmi(x, y) = log 1/p(y), i.e.
the maximal PMI for any segment x given feature y.

jective function is difficult to integrate in our cur-
rent approach since the function is discontinuous.
In essence, this objective function calls for an al-
gorithm that discovers a segmentation and label-
ing of the data such that the sum total of different
allomorph types is minimized. The problem ap-
pears to be computationally intractable in princi-
ple, since it bears strong similarities to other in-
tractable problems such as set covering. But good
heuristic solvers for NP-complete problems such
as Moskewicz et al. (2001) may perhaps be har-
nessed to find good solutions under this formula-
tion. A thorough analysis and evaluation of this
type of model remains future work.

8 Conclusion

We have presented a new learning problem for
natural language processing, namely weakly su-
pervised learning of allomorphy. The problem is
important from a practical point of view because
there are many morphologically annotated corpora
where the annotation is not extended to the mor-
pheme level. It is also relevant from a theoretical
point of view because it is related to L1 morphol-
ogy learning.

We explored four different learning methods:
KL divergence, perceptron learning, R-W learning
and SCP. We compared these to a baseline consist-
ing of unsupervised morphological segmentation
augmented by a straightforward labeling mecha-
nism. Our results show that weak supervision de-
livers sizable improvements when evaluated with
regard to F1-score on labeled and unlabeled seg-
mentation. According to our experiments, R-W
learning, while not only efficient, also delivers the
best results on this task.
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Joakim Nivre, Željko Agić, Lars Ahrenberg, Maria Je-
sus Aranzabe, Masayuki Asahara, Aitziber Atutxa,
et al. 2017. Universal dependencies 2.0. LIN-
DAT/CLARIN digital library at the Institute of For-
mal and Applied Linguistics, Charles University in
Prague.

Hoifung Poon, Colin Cherry, and Kristina Toutanova.
2009. Unsupervised morphological segmentation
with log-linear models. In Proceedings of Human
Language Technologies: The 2009 Annual Confer-
ence of the North American Chapter of the Associa-
tion for Computational Linguistics. Association for
Computational Linguistics, pages 209–217.

Michael Ramscar. 2013. Suffixing, prefixing, and
the functional order of regularities in meaningful
strings. Psihologija 46(4):377–396.

Michael Ramscar, Melody Dye, Hanna Muenke
Popick, and Fiona O’Donnell-McCarthy. 2011. The
enigma of number: Why children find the meanings
of even small number words hard to learn and how
we can help them do better. PloS one 6(7).

Michael Ramscar and Daniel Yarlett. 2007. Linguistic
self-correction in the absence of feedback: A new
approach to the logical problem of language acqui-
sition. Cognitive Science 31(6):927–960.

Patricia A. Reeder, Elissa L. Newport, and Richard N.
Aslin. 2013. From shared contexts to syntactic cat-
egories: The role of distributional information in
learning linguistic form-classes. Cognitive psychol-
ogy 66(1):30–54.

Robert A. Rescorla and Allan R. Wagner. 1972. A the-
ory of Pavlovian conditioning: Variations in the ef-
fectiveness of reinforcement and nonreinforcement.
Classical conditioning II: Current research and the-
ory 2:64–99.

Frank Rosenblatt. 1958. The perceptron: A probabilis-
tic model for information storage and organization
in the brain. Psychological Review 65(6):386–408.

Teemu Ruokolainen, Oskar Kohonen, Kairit Sirts, Stig-
Arne Grönroos, Mikko Kurimo, and Sami Virpioja.
2016. A comparative study of minimally supervised
morphological segmentation. Computational Lin-
guistics 42(1):91–120.

Jenny R. Saffran, Richard N. Aslin, and Elissa L. New-
port. 1996. Statistical learning by 8-month-old in-
fants. Science 274(5294):1926–1928.

Patrick Schone and Daniel Jurafsky. 2000.
Knowledge-free induction of morphology us-
ing latent semantic analysis. In Proceedings of
the 2nd workshop on Learning language in logic
and the 4th conference on Computational natural
language learning. Association for Computational
Linguistics, pages 67–72.

Kairit Sirts and Sharon Goldwater. 2013. Minimally-
supervised morphological segmentation using adap-
tor grammars. Transactions of the Association for
Computational Linguistics 1:255–266.

Radu Soricut and Franz Och. 2015. Unsupervised mor-
phology induction using word embeddings. In Pro-
ceedings of the 2015 Conference of the North Amer-
ican Chapter of the Association for Computational
Linguistics: Human Language Technologies. Asso-
ciation for Computational Linguistics, Denver, Col-
orado, pages 1627–1637.

Grigorios Tsoumakas and Ioannis Katakis. 2007.
Multi-label classification: An overview. IJDWM
3(3):1–13.

56


