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Abstract

In this study we address the problem of au-
tomated word stress detection in Russian
using character level models and no part-
speech-taggers. We use a simple bidirec-
tional RNN with LSTM nodes and achieve
the accuracy of 90% or higher. We exper-
iment with two training datasets and show
that using the data from an annotated cor-
pus is much more efficient than using a
dictionary, since it allows us to take into
account word frequencies and the morpho-
logical context of the word.

1 Introduction

Character level models and character embeddings
have received a lot of attention recently. The char-
acter embeddings were used for several NLP tasks,
such as word similarity (Wieting et al., 2016), sen-
tence similarity (Wieting et al., 2016), part-of-
speech tagging (Wieting et al., 2016), NER (Klein
et al., 2003), speech recognition (Mikolov et al.,
2012), question answering (Lukovnikov et al.,
2017), language identification (Jaech et al., 2016),
etc.

In this study we concentrate on a lesser known
problem, which to our knowledge has not been
completely solved yet, namely the automatic de-
tection of word stress. For some languages, e.g.
Russian, this problem might be crucial for speech
processing and generation.

Only a few authors touch upon the problem
of automated word stress detection in Russian.
Among them, one research project in particu-
lar is worth mentioning (Hall and Sproat, 2013).
The authors restricted the task of stress detec-
tion to finding the correct order within an array
of stress assumptions where valid stress patterns
were closer to the top of the list than the invalid

ones. Then, the first stress assumption in the rear-
ranged list was considered to be correct. The au-
thors used the Maximum Entropy Ranking method
to address this problem (Collins and Koo, 2005)
and took character bi- and trigrams, suffixes and
prefixes of ranked words as features as well as
suffixes and prefixes represented in an “abstract”
form where most of the vowels and consonants
were replaced with their phonetic class labels. The
study features the results obtained using the corpus
of Russian wordforms generated on the basis of
Zaliznyaks Dictionary (approx. 2m wordforms).
Testing the model on randomly split train and test
samples showed the accuracy of 0.987. According
to the authors, they observed such a high accuracy
because splitting the sample randomly during test-
ing helped the algorithm benefit from the lexical
information i.e. different wordforms of the same
lexical item often share the same stress position.
The authors then tried to solve a more complicated
problem and tested their solution on a small num-
ber of wordforms for which the paradigms were
not included the training sample. As a result, the
accuracy of 0.839 was achieved. The evaluation
technique that the authors proposed is quite far
from real-life application which is the main dis-
advantage of their study. Usually the solutions
in the field of automated stress detection are ap-
plied to real texts where the frequency distribution
of wordforms differs drastically from the one in a
bag of words obtained from “unfolding” of all the
items in a dictionary.

In addition, another study (Reynolds and Ty-
ers, 2015) describes the rule-based method of au-
tomated stress detection without the help of ma-
chine learning. The authors proposed a system
of finite-state automata imitating the rules of Rus-
sian stress accentuation and formal grammar that
partially solved stress ambiguity by applying syn-
tactical restrictions. Thus, using all the above-
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mentioned solutions together with wordform fre-
quency information, the authors achieved the ac-
curacy of 0.962 on a relatively small hand-tagged
Russian corpus (7689 tokens) that was not found
to be generally available. We can treat the pro-
posed method as a baseline for the automated word
stress detection problem in Russian.

In many languages, such as French, Czech,
Finnish and German the rules for automated word
stress detection can be formalized quite easily.
Nevertheless there are languages where phono-
logical characteristics do not predict stress po-
sition, for instance such word prosodic systems
can be found in North-West Caucasian (Abkhaz)
and Balto-Slavic languages (Lithuanian, Serbo-
Croatian, Russian) (van der Hulst, 1999).

In Russian every word has one and only one
stressed syllable. Lexical stress is free in its po-
sitioning (any syllable can be stressed as shown
in (1)) and is movable (for many lexemes lexical
stress depends on the word form, as shown in (2)).

1. éta [This-Sg.F.Nom] neyrosét’ [network-
Gg.Nom] búdet [be-3Sg.Fut] rasstavl’át’
[put-Inf] udaréniya [stress-Pl.Acc] [in]
slováh [word-Pl.Loc] rússkogo [russian-
Sg.M.Gen] yaziká [language-Sg.Gen]

2. dérevo [tree-Sg.Nom] derévya [tree-Pl.Nom]

Lexical stress can be crucial in disambiguat-
ing between homographs, both between two
wordforms ((3)) as well as between two lex-
emes ((4)):

3. rukı́ [hand-Sg.Gen] rúki [hand-Pl.Nom]

4. béregu [river.bank-Sg.Dat] beregú [protect-
1Sg.Pres]

The position of lexical stress in Russian de-
pends on many factors including the morpholog-
ical content of the word, but also the type of word
formation, its frequency and its meaning. A com-
plex system of markers which are defined for all
morphemes has been developed in fundamental re-
search (Zaliznyak, 1985). There are rules that de-
fine the hierarchy and interaction of markers but
some of them are not strict and can be considered
more of a tendency.

For practical purposes the dictionary approach
to text accentuation can be appropriate. It is pos-
sible to imagine a system that finds an accented
form for each token using some predefined list.

However such a system would have several dis-
advantages, the most important of which would be
its inability to predict stress for unknown words.

In this paper we propose a formal approach to
the problem of automatic accentuation of Russian
text by trying to exploit neural character models
for these purposes. Furthermore, we try to avoid
using any additional or third-party tools for part
of speech tagging and try to develop a simplistic
approach that is based only on using the training
data.

2 Datasets

We considered two datasets:

1. Zaliznyak’s Russian Grammar Dictionary,
which lists over 100,000 lexemes (Zaliznyak,
1985). Each lexeme and its wordforms are
stressed. The dictionary was split into a train
and test datasets in a 2:1 ratio, so that all
forms of one lexeme belong either to the train
or to the test dataset and no lexeme belongs
to both. We’ve assigned the name Dictionary
Model (DictM) to the RNN trained on this
dataset.

2. Transcriptions from the speech subcorpus1 of
Russian National Corpus (RNC) (Grishina,
2003). The spoken corpus was collected
by recording people talking in different
situations after which it was transcripted
and annotated with word stress, also the
transcripts of the Russian movies were
included. The main difference between these
transcriptions and Zaliznyak’s Dictionary is
that the transcription usually doesnt contain
all forms of a word and, more importantly
contains word contexts, i.e. previous words.
By taking context into account we can
attempt to differentiate between cases such
as “óblaka” [cloud-Sg.Gen] and “oblaká”
[clouds-Pl.Nom], since the previous word
in most instances will reveal whether the
word is singular or plural. This dataset
was split into train and test datasets using
the same 2:1 ratio. We trained two models
on the corpus. Let us call the first RNN a
Context Dependant Model (CDM). In order

1Word stress in spoken texts database in Russian
National Corpus[Baza dannykh aktsentologicheskoy
razmetki ustnykh tekstov v sostave Natsional’nogo korpusa
russkogo yazyka], http://www.ruscorpora.ru/en/
search-spoken.html
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to take the previous word into account we
used the following algorithm: if the previous
word has less than three letters, we remove
its word stress and concatenate it with the
current word (for example, “te oblaká”
[that-Pl.Nom cloud-Pl.Nom]). If the previ-
ous word has 3 or more letters, we use the
last three, since Russian endings are typically
2-3 letters long and derivational morphemes
are usually located on the right periphery
of the word. As such we get, for example
“ogo óblaka” [Sg.N.Gen cloud-Sg.Gen]
from “belogo óblaka” [white-Sg.N.Gen
cloud-Sg.Gen]. The second model (Context
Free Model, CFM) has the same architecture
but it doesn’t take context into account.

3 Architecture

We adopted a character level architecture from
standard tutorials on Keras framework2. Our neu-
ral network is a bidirectional recurrent neural net-
work with 64 LSTM nodes and dropout regular-
ization. Every input word is represented by a 40
by 33 matrix, where 40 stands for the maximum
observed word length in characters. Shorter words
are padded with a padding symbol. 33 is the num-
ber of letters in the Russian alphabet and every let-
ter in a word is encoded with one-hot encodings.

Stress can be considered a characteristic of a
vowel that has two possible values. A syllable in
Russian has a (C)V(C) structure, so the number
of vowels equals the number of syllables and in
every word only one vowel will be stressed. The
word stress is encoded by one-hot encoding too
and shows which of the 40 letters is annotated with
the word stress. The output layer of the RNN again
has 40 nodes and is activated by softmax. In or-
der to evaluate the quality of word stress detection
we used accuracy.

4 Results and discussion

While testing3 the presented approach on Zal-
iznyakś Dictionary we had 1,767,041 instances in
the train dataset and 878,306 instances in the test
dataset. We trained DictM for 10 epochs and re-
ceived the best results on the fourth epoch with
88.7% accuracy for the test set from the dictionary.
The score can be compared with the results of the

2https://keras.io
3Our implementation of the method can be found here:

https://github.com/MashaPo/accent_lstm.

# of
sylla-
bles

Correct detec-
tions, %

Correct detections

2 0.690 182,285 of 263,952
3 0.721 127,012 of 176,144
4 0.846 85,675 of 101,229
5 0.918 42,124 of 45,879
6 0.952 15,241 of 16,009
7 0.958 3,813 of 3,979
8 0.96 744 of 775
9 0.928 156 of 168
Micro-average 0.751

Table 1: Word length in syllables and the number
of correct detections for Dictionary Model

second experiment in (Hall and Sproat, 2013) and
proves that RNN is as efficient as Maximum En-
tropy Ranking for this problem.

The second dataset was slightly bigger and
comprised 2,306,776 unique train instances and
1,154,067 unique test instances. We used this
dataset to train CDM and CFM for 10 epochs.
CDM achieved the best results during the fifth
epoch with 97.7% accuracy on all words. CFM
showed the highest accuracy of 97.9% during the
sixth epoch.

The significant difference between those values
shows that taking the previous context into ac-
count increases the accuracy, although by using
corpus we could have ignored some complex cases
that are not widely used in actual speech but are
present in Zaliznyak’s dictionary and increase the
weight of most frequent words that do not neces-
sarily have a common type of stress placement.
Here we are referring to numerals and frequent
adverbs that have their own special type of stress
placement. Due to their frequency such cases neg-
atively influenced the accuracy of DictM.

We implemented the following method to com-
pare the RNN’s. We used those three models to
detect word stress in the test set of the corpus.
We then computed the number of correct predic-
tions for words of different length and calculated
the micro-average of accuracy for every model. It
is worth mentioning that the accuracy value for
the DictM dropped in comparison to the score ob-
tained from the dictionary test set (88.7% for the
dictionary test set and 75.1% for the corpus test
set). The results for DictM, CFM, CDM are pre-
sented in tables 1, 2 and 3 respectively.

The comparison of the results proves that train-
ing the model using the corpus gives us a visible
increase in accuracy even when the left context is
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# of
sylla-
bles

Correct detec-
tions, %

Correct detections

2 0.981 259,179 of 263,952
3 0.974 171,645 of 176,144
4 0.975 98,707 of 101,229
5 0.975 44,774 of 45,879
6 0.972 15,567 of 16,009
7 0.950 3,782 of 3,979
8 0.940 729 of 775
9 0.934 157 of 168
Micro-average 0.977

Table 2: Word length in syllables and the number
of correct detections for Context Free Model

# of
sylla-
bles

Correct detec-
tions, %

Correct detections

2 0.983 259,656 of 263,952
3 0.977 172,164 of 176,144
4 0.976 98,887 of 101,229
5 0.977 44,837 of 45,879
6 0.973 15,591 of 16,009
7 0.955 3,802 of 3,979
8 0.923 716 of 775
9 0.952 160 of 168
Micro-average 0.979

Table 3: Word length in syllables and the num-
ber of correct detections for Context Dependant
Model

# of
sylla-
bles

Correct detec-
tions, %

Correct detections

2 0.756 17,852 of 23,606
3 0.829 5,402 of 6,510
4 0.823 1,011 of 1,227
Micro-average 0.77

Table 4: CFM score on 50 homograph pairs

# of
sylla-
bles

Correct detec-
tions, %

Correct detections

2 0.810 19,143 of 23,606
3 0.844 5,498 of 6,510
4 0.847 1,040 of 1,227
Micro-average 0.819

Table 5: CDM score on 50 homograph pairs

Stressed wordform # CDM
accuracy

CFM
accuracy

slová [word-Pl.Nom] 984 0.871 0.80 1.0 0.54slóva [word-Sg.Gen] 812 0.714 0.0
delá [affair-Pl.Nom] 976 0.929 0.86 1.0 0.62déla [affair-Sg.Gen] 588 0.753 0.0
nógi [leg-Pl.Nom] 542 0.797 0.74 1.0 0.85nogı́ [leg-Sg.Gen] 92 0.44 0.0
vólny [wave-Pl.Nom] 88 0.72 0.77 1.0 0.60volný [wave-Sg.Gen] 57 0.85 0.0

Table 6: CDM and CFM detailed results for some
of the homograph pairs

not considered. For DictM there is a clear positive
correlation between the number of words and the
accuracy of predictions, DictM gets better results
then CDM on 8- and 9-syllable words, which are
rare in the corpus and can be new for CFM and
CDM, while DictM could have learned the whole
paradigm. CFM and DFM show negative correla-
tion between the accuracy and the number of syl-
lables which is expected due to lower frequency of
longer words.

Next, the results from CDM clearly present the
advantages of training the RNN while taking the
previous word into account, since it increases the
number of correctly detected word stresses includ-
ing homograph cases. The similar way of model
testing makes our results comparable with those
obtained in (Reynolds and Tyers, 2015), our Con-
text Free Model and Context Dependant Model
showed higher micro-average of accuracy than the
baseline.

In order to show CDM to be more accurate
than CFM due to the homograph disambigua-
tion we conducted additional tests to learn how
both models treat the homographs. More pre-
cisely, we extracted the tuples of words from
the dictionary that only differed in stress position
(“dorogóy” [expensive-M.Sg.Nom] “dorógoy”
[road-Sg.Instr] ). Next, we selected such homo-
graph pairs that for both words the number of oc-
currences in the corpus was above the predeter-
mined threshold. Tables 4 and 5 show the scores
after testing CFM and CDM on 50 most frequent
pairs. More detailed results for four homograph
pairs are displayed in Table 6. The data clearly
indicates that CFM simply chooses the most fre-
quent word in a homograph pair. Even though
CDM makes mistakes when analysing more fre-
quent words in the pair, it significantly increases
the accuracy for less frequent words. The over-
all accuracy for cases where the frequency of the
homographs is comparable (rows 1,2 and 4 of the
table) is notably higher for CDM than CFM.

We have also conducted error analysis. First of
all, a huge source of errors are proper names both
first names and surnames. Several typical Russian
surnames are derived from nouns or adjectives and
differ from other wordforms only in stress posi-
tion. We may address this issue by exploiting
NER algorithms and introducing special rules for
proper names. Another kind of error is related to
words with ambiguous word stress. For example,
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in words like “musoroprovod” [garbage.chute-
Sg.Nom] two word stress positions are possible in
modern Russian: musoropróvod or musoroprovód.
Last but not the least, in Russian the letter ë is al-
ways stressed, but if this letter is written as a reg-
ular e, the RNN may erroneously ignore it.

5 Future work

There are a few directions for future work:

1. improving the way we take word context into
account. We may use more sophisticated
techniques to define the ending and morpho-
logical features of the previous word. We
may also explore how considering the next
word improves the performance.

2. introducing rules for named entities in gen-
eral and proper names in particular;

3. experimenting with reducing the number of
instances in a train dataset to both lower the
training time and to find specific important
examples for training;

4. experimenting with RNNs carefully in order
to gain more linguistic intuition on how word
stress is chosen.

6 Conclusions

In this study we conducted a few experiments on
training RNNs to detect word stress in Russian
words. Our results show that, first of all, the char-
acter level RNNs are quite suitable for the task,
since on average we achieve the accuracy around
90% or higher. Secondly, we explored two dif-
ferent sources of training data (namely, a dictio-
nary and an annotated corpus) and we can defini-
tively state that using the corpus suits the task bet-
ter, since it allows us to take frequent cases and
morphological context into account and use this
information for further disambiguation.
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