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Introduction

Traditional NLP starts with a hand-engineered layer of representation, the level of tokens or words.
A tokenization component first breaks up the text into units using manually designed rules. Tokens
are then processed by components such as word segmentation, morphological analysis and multiword
recognition. The heterogeneity of these components makes it hard to create integrated models of
both structure within tokens (e.g., morphology) and structure across multiple tokens (e.g., multi-word
expressions). This approach can perform poorly (i) for morphologically rich languages, (ii) for noisy
text, (iii) for languages in which the recognition of words is difficult and (iv) for adaptation to new
domains; and (v) it can impede the optimization of preprocessing in end-to-end learning.

The workshop provides a forum for discussing recent advances as well as future directions on sub-word
and character-level natural language processing and representation learning that address these problems.

We received 37 submissions, out of which we accepted 24 as papers and 4 as extended abstracts.
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Abstract

Most of neural language models use dif-
ferent kinds of embeddings for word pre-
diction. While word embeddings can be
associated to each word in the vocabulary
or derived from characters as well as fac-
tored morphological decomposition, these
word representations are mainly used to
parametrize the input, i.e. the context of
prediction. This work investigates the ef-
fect of using subword units (character and
factored morphological decomposition) to
build output representations for neural lan-
guage modeling. We present a case study
on Czech, a morphologically-rich lan-
guage, experimenting with different input
and output representations. When work-
ing with the full training vocabulary, de-
spite unstable training, our experiments
show that augmenting the output word rep-
resentations with character-based embed-
dings can significantly improve the perfor-
mance of the model. Moreover, reducing
the size of the output look-up table, to let
the character-based embeddings represent
rare words, brings further improvement.

1 Introduction

Most of neural language models, such as n-gram
models (Bengio et al., 2003) are word based and
rely on the definition of a finite vocabulary V .
Therefore, a look-up table maps each wordw ∈ V
to a vector of real features, and is stored in a ma-
trix. While this approach yields significant im-
provement for a variety of tasks and languages,
see for instance (Schwenk, 2007) in speech recog-
nition and (Le et al., 2012; Devlin et al., 2014;
Bahdanau et al., 2014) in machine translation, it
induces several limitations.

For morphologically-rich languages, like Czech
or German, the lexical coverage is still an impor-
tant issue, since there is a combinatorial explosion
of word forms, most of which are hardly observed
on training data. On the one hand, growing the
look-up table is not a solution, since it would in-
crease the number of parameters without having
enough training examples for a proper estimation.
On the other hand, rare words can be replaced by
a special token. This acts as a word class merg-
ing very different words without any distinction,
while using different word classes to handle out-
of-vocabulary words (OOVs) (Allauzen and Gau-
vain, 2005) does not really solve this issue, since
rare words are difficult to classify. Moreover, for
most inflected or agglutinative forms, as well as
for compound words, the word structure is over-
looked, wasting parameters for modeling forms
that could be more efficiently handled by word de-
composition into subwords units.

Using subword units, whether they are built via
a different supervised method with embedded lan-
guage knowledge, or from the training data, has
been attempted many times, especially for speech
recognition. The main goal is to reduce the OOV
rate. While most of them were focused on a spe-
cific language, (Creutz et al., 2007) is a represen-
tative example of such a model applied to several
morphologically-rich languages.

One of the first occurrences of general lan-
guage models integrating morphological features
to represent words are the factored language
model (Bilmes and Kirchhoff, 2003) and its neu-
ral version (Alexandrescu and Kirchhoff, 2006).
Input words are represented by their embedding,
plus several other features, some of which include
morphemes. To alleviate the impact of OOVs,
(Mueller and Schuetze, 2011) used morphologi-
cal features for class-based predictions when in-
put words are unknown, obtaining state-of-the-art
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results on English. More recently, several types
of language models represent words as function of
subwords units: using a recursive structure (Lu-
ong et al., 2013), or an additive one (Botha and
Blunsom, 2014). Quite a lot of work has been
made on language models that extract features di-
rectly from the character sequence, whether they
use character n-grams (Sperr et al., 2013), or char-
acters composed by a convolutional layer (Santos
and Zadrozny, 2014; Kim et al., 2015) or a Bi-
LSTM layer (Ling et al., 2015). This avoids us-
ing an external morphological analyser. We can
note that these types of models have also been ap-
plied with success to several other task, including
learning word representations (Qiu et al., 2014;
Cotterell et al., 2016; Bojanowski et al., 2016;
Wieting et al., 2016), POS tagging (Plank et al.,
2016; Ma and Hovy, 2016; Heigold et al., 2017),
Named entity recognition (Gillick et al., 2016),
Parsing (Ballesteros et al., 2015) and Machine
translation (Costa-jussà and Fonollosa, 2016). Re-
cently, an exhaustive summary of previous work
on word representation by composing subword
units was presented in (Vania and Lopez, 2017).
This work also compares the types of subword
unit, how they are composed, and their impact on
various morphological typologies.

While recurrent neural networks have shown
excellent performances for character-level lan-
guage modeling (Sutskever et al., 2011; Hermans
and Schrauwen, 2013), the results of such models
are usually worse than those that use word-level
prediction, since they have to consider a far longer
history of tokens to be able to predict the next one
correctly. However, more recent work (Hwang and
Sung, 2017) seems to obtain very satisfactory re-
sults with a supplementary word-level layer that
allows a better processing of the longer history.

Our work focuses on replacing output word
embeddings by representations built from sub-
words. To the best of our knowledge, such a model
has only been proposed in (Józefowicz et al.,
2016), which evaluates the use of convolutional
and LSTM layers to build word representations
for outputs words. They allow the model to trade
size against perplexity, since their model performs
worse than the classic softmax approach, but with
far less parameters. We first propose to study the
training of a language model which augments or
completely replaces output words representations
with character-based representations. We compare

the effect of different architectures, as well as the
effect of different input representations. Our re-
sults show that:

• When evaluating perplexity on the full training
vocabulary, using an augmented output repre-
sentation improves the model performance.

• Not using the look-up table for rare words also
improves the model performance.

Finally, we describe a short experiment with fac-
toring the output predictions using a morphologi-
cal analysis, which we believe could lead to a fa-
cilitated word generation when combined with re-
inflexion models.

Our paper is organized as follows: Section 2
describes the general architecture of the language
model, and of the representations used, as well as
its training, Section 3 presents the experiments and
Section 4 gives our results and discussion.

2 Language model

We use a recurrent neural language
model (Mikolov et al., 2010). The input of the net-
work is a sequence of words S = (w1, . . . , w|S|).
Given a fixed sized vocabulary V , the lan-
guage model outputs a multinomial distribution
P (wi = j|wi−1

1 ), ∀j ∈ V for each position i in
the sequence, and with the prediction contexte
wi−1

1 = w1, . . . , wi−1. This allows us to compute
the following probability :

P (w1, . . . , w|S|) =
|S|∏
i=1

P (wi|wi−1
1 )

Our model uses the LSTM variant (Hochreiter
and Schmidhuber, 1997). The hidden state hi will
be computed using the previous hidden state and a
computed representation rwi of the word in posi-
tion i in the sequence:

hi = LSTM(rwi ,hi−1)

The conditional probability distribution of the
next word is computed with a softmax function:

P (wi = j|wi−1
1 ) =

exp
(
hiroutj + bj

)
∑
k∈V

exp
(
hiroutk + bk

) (1)
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We propose to improve output word embed-
dings by using representations built from sub-
words, as it is often done for input words.

Usually, input and output word embeddings are
parameters, stored in look-up matrices W and
Wout. The word embedding rwordw of a word w
is simply the column of W corresponding to its
index in the vocabulary V:

rwordw = [W]w

2.1 Representing words

We consider two other types of representations:
decomposition of the words into characters (or n-
grams of characters), and decomposing them into
a Lemma and positional tags using a morpholog-
ical analysis. An example of these different de-
compositions is shown in table 1.

Representation Decomposition

Word poc̆átku
Characters p+o+c̆+á+t+k+u
Character 3-grams poc̆+oc̆á+c̆át+átk+tku
Lemma + Tags poc̆átek+N+MascIn+Sg+Loc+Act

Table 1: Example of subword decompositions
used for Czech word

2.1.1 Character-based representations
A word w is a character sequence {c1, .., c|w|}
represented by their embeddings {rcharc1 , .., rcharc|w| },
where rcharci = [C]ci denotes the vector associated
to the character ci. To infer a word embedding
from its character embeddings, we use two differ-
ent architectures:

First, a convolution layer (Waibel et al., 1990;
Collobert et al., 2011), similar to layers used
in (Santos and Zadrozny, 2014; Kim et al., 2015),
applies a convolution filter WCNN

nc over a sliding
window of nc characters, producing local features:

xnnc = WCNN
nc (rcharcn−nc+1

: .. : rcharcn )T + bCNNnc

where xnnc is a vector obtained for each posi-
tion n in the word. The embeddings of w is then
obtained by applying a max-pooling and the acti-
vation function φ:

[rncw ]i = φ

(
|w|−nc+1

max
n=1

[xnnc ]i

)
(2)

We can use multiple filters of ncf different sizes
and concatenate their results:

rCharCNNw = (rnc1w : . . . : r
ncf
w ) (3)

Our second method uses a bi-LSTM (Hochreiter
and Schmidhuber, 1997; Graves et al., 2005), on
characters, similarly to (Ling et al., 2015). It com-
bines the final states

−−→
h|w| and

←−
h1 of two LSTMs,

respectively over the character sequence and the
reverse character sequence, which are computed
as such:

−→
hi = LSTM(rcharci ,

−−→
hi−1)

←−
hj = LSTM(rcharcj ,

←−−
hj+1)

rCharBiLSTMw =
−−→
h|w| :

←−
h1 (4)

2.1.2 Lemma+Tags decomposition
For morphologically-rich languages, the different
morphological properties of a word (gender, case,
... ) are usually encoded using mutliple tags as
shown in table 1. Therefore a word w is decom-
posed into a lemma l along with a set of associ-
ated sub-tags T = {t1, .., t|T |} of fixed size |T |.
For a given word, a single tag can be simply cre-
ated by the concatenation of the subtags. How-
ever, this implies a large tagset and mitigates the
generalization power since some sub-tags combi-
nations can remain unobserved on training data.
In this work we prefer a factored representation
where each sub-tags is considered independently.

Lemmas, similarly to surface forms, are repre-
sented by |VL| vectors stored in a look-up matrix
L, and rlemmal = [L]l. For every words, each sub-
tag has its own vocabulary and its own look-up
matrix. However, the additional cost is negligi-
ble given their small size (see table 3). To infer a
word embedding from a sub-tags set, we also use
two methods. First, we simply concatenate their
embeddings:

rTagConcatT = rtag1t1
: . . . : rtagiti

: . . . : r
tag|T |
t|T | (5)

The second method uses a bidirectionnal LSTM
on the sequence of tags T , using exactly the same
structure as in section 2.1.1:

rTagBiLSTMT =
−−→
h|T | :

←−
h1 (6)

3
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Words +
CharCNN

Figure 1: Example architecture of our language model, when using word embeddings and a character
CNN to build both input and output word representations.

2.2 Training

Our final model, as illustrated in figure 1, uses
concatenation of word, character-based or lemma
and tags embeddings, to obtain input and out-
put word representations. Following (Kim et al.,
2015), we used a Highway layer (Srivastava et al.,
2015) to model interactions between concatenated
embeddings of various sources.

Usually, such a model is trained by maximizing
the log-likelihood. For a given word wi given its
preceding sequence w1, . . . , wi−1, the model pa-
rameters θ are estimated in order to maximize the
following function for all the sequences observed
in the training data:

LL(θ) =
|S|∑
i=1

logPθ(wi|wi−1
1 ) (7)

This objective function implies a very costly
summation imposed by the softmax activation of
the output layer: large output vocabularies cause
a computational bottleneck due to the output nor-
malization.

Different solutions have been proposed, as
shortlists (Schwenk, 2007), hierarchical soft-
max (Morin and Bengio, 2005; Mnih and Hinton,

2009; Le et al., 2011), or self-normalisation tech-
niques (Devlin et al., 2014; Andreas et al., 2015;
Chen et al., 2016). Sampling-based techniques ex-
plore a different solution, where a limited number
of negative examples are sampled to reduce the
normalization cost. Working with a large vocab-
ulary, and with output representations potentially
more costly to compute, we choose to use the fol-
lowing sampling-based training algorithms:

• Target sampling, which is based on importance
sampling (Bengio and Sénécal, 2008; Jean et al.,
2015), directly approximates the normalization
over V by normalizing over a sampled subset.

Indeed, the gradient of the objective described
in equation 7 is written as:

∂

∂θ
logPθ(wi|wi−1

1 ) =
∂

∂θ
(hiroutwi + bwi)

− Ew∼Pθ(.|wi−1
1 )

[
∂

∂θ
(hiroutwi + bwi)

]
(8)

The idea is to approximate the expectation of
the second term by importance sampling a sub-
set of V from a proposal distribution Q. Tar-
get sampling implies associating with a part
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Di of the training data a subset Vi of V that
corresponds to the target words of Di plus a
small subset of the remaining words. The re-
sulting objective is equivalent to approximating
the probability computed in equation 1 by nor-
malizing it only over Vi.
• Noise contrastive estimation (NCE), introduced

in (Gutmann and Hyvärinen, 2012; Mnih and
Teh, 2012), aims to discriminate between one
example sampled from the real data D and k
from a noise distribution Pn, and results in the
model being theoretically unnormalized. The
idea is to sample examples according to a mix-
ture:

P (w|wi−1
1 ) =

1
k + 1

PD(w|wi−1
1 )

+
k

k + 1
Pn(w|wi−1

1 )
(9)

and train the model to recover whether the sam-
ple came from the data or the noise distribution.
This is done by minimizing the binary cross-
entropy of recognizing the current sample’s ori-
gin, using the posterior probabilities:

P (w ∼ PD|w,wi−1
1 ) =

Pθ(w|wi−1
1 )

Pθ(w|wi−1
1 ) + kPn(w|wi−1

1 )

(10)

P (w ∼ Pn|w,wi−1
1 ) = 1

− P (w ∼ PD|w,wi−1
1 )

(11)

Besides, the probabilities intervening in equa-
tion 10 can be replaced by unnormalized scores
at training time, since we can consider normal-
izing quantities as parameters to be learned.

• BlackOut (Ji et al., 2015), also approximating
the normalization computation, with a weighted
sampling scheme and a discriminative objec-
tive.It can be considered as a variant from NCE
where we sample a set of k examples Sk from a
proposal distributionQ. We then proceed to ap-
ply NCE with a re-weighted noise distribution

Pn(w|wi−1
1 ) =

1
k

∑
wj∈Sk

Q(wj)
Q(w)

Pθ(ww|wi−1
1 )

(12)
which empirically behaves far better than NCE,
providing an improved stability. BlackOut can
also be linked to Importance sampling.

Ultimately, these three algorithms approximate
the negative log-likelihood computed on a number
k of negative samples from V , using an easy to
sample distribution.

3 Experiments

Experiments are carried out on Czech, a morpho-
logically rich language using the different criteria
described in section 2.2.

3.1 Data
We used data from the parallel corpus News-
commentary 2015, from the WMT News MT
Task. The data consists in 210K word sequences,
amounting in about 4,7M tokens. We divided the
data into a training, development and testing sets,
these last two amounting to 150K tokens each. In
our experiments, we use different vocabulary sizes
by varying the frequency threshold: words are se-
lected when their frequency in the training data are
stricly higher than the threshold. Table 2 shows
the correspondences between vocabulary sizes and
these thresholds.

fTh |VTh|
0 (All words) 159142

1 66743
5 37010
10 25295

Table 2: Vocabulary sizes for different frequency
thresholds

The lemma and tags decomposition pre-
sented in section 2.1.2 were obtained with Mor-
phodita (Straková et al., 2014). There is 12 tag
categories for Czech. Vocabulary sizes for charac-
ters, lemma and tags are detailed in table 3.

|VC | |VL| |Vtagi |i=1..|T |
155 61364 [12, 65, 11, 6, 9, 6, 3, 5, 5, 4, 3, 3]

Table 3: Vocabulary sizes for subword units

3.2 Setup
The different versions of our model used in ex-
periments are shown in table 4. We used a High-
way layer when there is a concatenation of em-
beddings of different sources, which is for almost
all architectures. We tried applying a Highway
layer to the output representation, but it seemed
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almost always counter-productive, rendering train-
ing more unstable. In all experiments presented
here, weights are not tied between input and output
representations, since our preliminary experiments
with tied weights always gave worst results. Be-
sides, we didn’t mix structures for character-level
representations (for example, using an input Char-
CNN and output CharLSTM) since our first ex-
periments gave systematically worse results than
using the same structures). When using different
types of representations, we kept consistency be-
tween vocabularies: if both lemmas and words are
used in a model, any lemma considered unknown
will have its corresponding word unknown, and in-
versely. The same (or corresponding) vocabularies
are used for inputs, outputs, and evaluation. The
only exception is presented in section 4.4. When
using a character-based output representation, dur-
ing evaluation, the unknown token is built from a
specific character token, a specific lemma token,
and 12 specific tag tokens that are parameters of
the model.

Input representation rw Eq

Words rwordw

CharCNN Hw(rCharCNNw ) 3
CharBiLSTM Hw(rCharBiLSTMw ) 4
Words + CharCNN Hw(rwordw : rCharCNNw )
Words + CharBiLSTM Hw(rwordw : rCharBiLSTMw )
Lemma + Tags Concat. Hw(rlemmal : rTagConcatT ) 5
Lemma + TagsBiLSTM Hw(rlemmal : rTagBiLSTMT ) 6

Output representation routw

Words rwordw

Words + CharCNN rwordw : rCharCNNw

Words + CharBiLSTM rwordw : rCharBiLSTMw

Lemmas rlemmal

Lemmas + CharCNN rlemmal : rCharCNNl

Lemmas + CharLSTM rlemmal : rBiLSTMl

Table 4: Detail of input and output representations
used in our experiments. Hw designate the use of
a Highway layer

Our experiments aim at comparing potential use
of subword-based word representation, and thus
are not directed towards performance. For this rea-
son, we used the same implementation for all ex-
periments and did not specifically try to optimize
the general model structure or the dimensional hy-
perparameters, neither compared our results with
benchmarks on Czech corpora.

3.3 Training and evaluation

Language models are evaluated with perplexity:

PPL = exp

 |S|∑
i=1

− logPθ(wi|wi−1
1 )

|S|


over all sequences in the testing data. Perplex-

ity is computed for a fixed output vocabulary V ,
which allows to compare models using the same
output vocabulary. However, we can’t evaluate
model performance on out-of-vocabulary words,
since those are to be classified as the unknown to-
ken in V .

Our models are implemented with Tensor-
flow (Abadi et al., 2015). We use the Adam algo-
rithm (Kingma and Ba, 2014) with an initial learn-
ing rate of 5 ∗ 10−4 for training, over a maximum
of 10 epochs, with a batch size of 128 sequences.
However, since the training is often unstable, the
model backtracks to the last checkpoint if it does
not improve its performance on validation data af-
ter 1/10 of an epoch, and stop training after 10 un-
successful loadings in a row. To avoid overfitting,
we use dropout with probability 0.5 on recurrent
layers, and L2 regularization on feedforward lay-
ers.

We use two hidden layers, and choose our em-
beddings dimensions in order to obtain, for each
type of representation, an embedding dimension
of 150. In the case of the CNN, we used filters
of 3, 5 and 7 characters, of dimension 30, 50, and
70. Whether we use NCE, blackOut, or impor-
tance sampling, we draw k = 500 noise samples
by batch. For all experiments, we report the per-
plexity on test data at the end of training. Results
presented in tables 5, 6, 7 are the average of the
results obtained on 5 models, and the standard de-
viation.

4 Results

4.1 Influence of the vocabulary size
We first train our model with different vocabulary
sizes. As shown in figure 2, our model fails to im-
prove upon the conventional word model when the
output vocabulary size is relatively small (shown
on the two leftmost graphs). More precisely, mod-
els that use word and character-based representa-
tions at the output seem unable to learn after a
couple of iterations. We first link this behaviour
to the difficulty met by the authors in (Józefowicz
et al., 2016): since most logits are tied when we
use an output character-based representation - as
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Figure 2: Test perplexities obtained when training models using Words as input representation and
Words+CharCNN as output representations, for various vocabulary sizes. Corresponding vocabulary
sizes are given in table 2. The models are trained with target sampling.

opposed to independently learned word embed-
dings, the function mapping from word to word
representation is smoother and training becomes
more difficult. They used a smaller learning rate
and a low dimensional correction factor, learned
for each word, as a work-around.

However, increasing the vocabulary size re-
duces this effect . This is especially clear with the
whole training vocabulary (on the rightmost graph
of figure 2): in this setup, using a character-based
representation improves the performance of the
model. We can assume that, for rare words, learn-
ing independent embeddings fails since scarce up-
dates of these embeddings are insufficient. For the
rare words, combining word and character-based
embeddings allows the model to better counteract
the sparsity issue.

4.2 Choice of the training criterion

Given the previous results, we use the full train-
ing vocabulary to assess the impact of the train-
ing criterion. However, using this full training
vocabulary renders training very unstable, espe-
cially with sampling-based algorithms. Stability
issues, especially for the Noise-contrastive estima-
tion, have previously been discussed (Chen et al.,
2016; Józefowicz et al., 2016). We shortly ex-
perimented to choose the most practical criterion
to use. Figure 3 shows the shape of the training
curves. While target sampling and blackOut both
seem to work properly, NCE needs far more noise
samples to converge. We believe this is related
to the tensorflow implementation, which re-use
the same noise samples for every example in the
batch, which leads to a lack of diversity in negative
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Figure 3: Test perplexities obtained when train-
ing models using Words as input representation
and Words+CharCNN as output representations,
for various training methods: Noise contrastive es-
timation, blackOut and Target sampling.
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examples. Augmenting the number of samples or
reducing the size of the batch are possible solu-
tions, but they increase the training time. Black-
Out obtains better results because, while very sim-
ilar to NCE, the scores used as coming from the
noise distribution are context-dependent, which
brings diversity to negative examples.

Overall, across several experiments, target sam-
pling performs better than blackOut, and we
choose to use it for the rest of our experiments.
Since training is still quite unstable, depending on
the architecture, we report results across 5 train-
ings for the next sections.

Output Representation
Words

Words + Char

Input Representation CNN BiLSTM

Words 563 ± 53 432 ± 18 480 ± 31

Char
CNN 698 ± 41 543 ± 16 -

BiLSTM 971 ± 24 - 938 ± 48

Words +
Char

CNN 495 ± 34 411 ± 40 -

BiLSTM 537 ± 24 - 480 ± 21

Lemmas +
Tags

Concat. 521 ± 47 424 ± 22 502 ± 54

BiLSTM 541 ± 8 445 ± 24 496 ± 39

Table 5: Average test perplexities obtained when
training 5 models with target sampling, for various
input/output representations. Results in bold are
the best models for a given output representation.

4.3 Effects of the representation choice
Table 5 gathers the main experimental results to
assess which combination of input and output rep-
resentations gives the best performance. For any
input representation, augmenting the output rep-
resentation with a character-based embedding im-
proves the performance of the model. It is espe-
cially true for convolutional layers. We also can
notice that the improvement is better for models
that performed badly with basic output word em-
beddings.

Overall, biLSTMs perform worse than their
convolution/concatenation counterparts. Finally,
the best average perplexity of 495 for word only
output representations is improved to an average
of 411 for augmented output representations.

Other output representations: First, our ex-
periments with only character-based embeddings
as output representations give results far worse
than those reported in 5, with our best model ob-
taining an average perplexity of ≈ 2500. Train-

ing is also far more unstable. We believe these
results are linked to the difficulties mentioned
in (Józefowicz et al., 2016) and in section 4.1.

We also tried to use the lemma+tags decompo-
sition presented in section 2.1.2, but without suc-
cess. When tags were ambiguous across several
occurrences of the same words, we tried using spe-
cific tokens, or choosing the most frequent tags,
but in both cases the model severely overfits.

Finally, we tried to use word embeddings pre-
trained with word2vec (Mikolov et al., 2013) as
output representations. We obtained results very
similar to those of classical word embeddings,
with a small but noticeable improvement when the
input representation used LSTM. However, these
improvements are still well under those obtained
by augmenting the output representation with a
character-based embedding.

4.4 Influence of the size of the word
embeddings vocabulary

Input
Representation

fWTh
Words + CharCNN

All words Frequent words Rare words

Words

0 432 ± 18 286 ± 13 5170 ± 1310
1 415 ± 26 258 ± 13 6510 ± 780
5 390 ± 20 250 ± 14 7210 ± 1290
10 416 ± 20 265 ± 11 8100 ± 580

CharCNN

0 543 ± 16 348 ± 10 6400 ± 1480
1 523 ± 17 328 ± 22 5070 ± 1080
5 478 ± 16 316 ± 27 7000 ± 1800
10 488 ± 31 338 ± 25 8210 ± 2160

Words +
CharCNN

0 411 ± 40 271 ± 30 4470 ± 190
1 374 ± 10 242 ± 7 5020 ± 870
5 367 ± 14 241 ± 8 5560 ± 1220
10 393 ± 19 254 ± 13 6600 ± 1910

Lemma +
TagsConcat.

All 449 ± 26 293 ± 16 5830 ± 760
1 439 ± 34 287 ± 11 6220 ± 1080
5 408± 32 269 ± 20 4600 ± 1280
10 430 ± 32 269 ± 20 8410 ± 1140

Lemma +
TagsBiLSTM

All 445 ± 24 288 ± 13 7150 ± 1560
1 424 ± 34 281 ± 21 5380 ± 1000
5 387± 9 258 ± 5 4300 ± 1390
10 442 ± 17 287 ± 13 7390 ± 1690

Table 6: Test perplexity averaged on 5 models
trained with target sampling, for various input rep-
resentations and output word look-up table sizes.
Corresponding vocabulary sizes are given in ta-
ble 2. Test perplexities are given for all words,
frequent words (frequency > 10) and rare words
(frequency < 10). In bold are the best models for
a given input representation.
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Following our observations in section 4.1, we
then assess the effect of reducing the word vo-
cabulary size for Words+CharCNN output repre-
sentation. We don’t change the size of the event
space: when constructing output representations
for words under a chosen frequency, we simply
don’t use the word representation. For example,
using a threshold of fWTh = 10 means that words
that appear less thant ten times won’t have their
own word embedding, and will be represented
by the unknown word token combined with their
character-based representation. Results are shown
in table 6. We can see that for all input representa-
tions, using a specific unknown token in place of a
specific word embedding for words appearing less
than 5 times in training data gives the best perfor-
mance. Reducing the look-up table to words only
appearing more than 10 times gives worse results,
while they are still better than if we keep the full
table. However, there is no clear trend when look-
ing at the rare words perplexities, which are very
hard to interpret, given their very high standard de-
viation. With a smaller output word look-up table,
our best average perplexity of 411 is reduced to
376, which is a very sizeable overall improvement.

Output Representation
Lemmas

Lemmas + Char

Input Representation CNN BiLSTM

Words 240 ± 12 220 ± 9 222 ± 12

Char
CNNN 308 ± 15 270 ± 11 -

BiLSTM 477 ± 17 - 429 ± 9

Words +
Char

CNN 234 ± 9 203 ± 7 -

BiLSTM 238 ± 6 - 225 ± 11

Lemmas +
Tags

Concat. 239 ± 3 211 ± 5 217 ± 9

BiLSTM 232 ± 5 203 ± 6 212 ± 6

Table 7: Test perplexities averaged on 5 models on
lemmas with a multiple objectives cost function.
Results are given for various input/output repre-
sentations. In bold are the best models for a given
output representation.

4.5 Predicting root and tags jointly
While using the lemma+tags decomposition to
build output representation was not, in our ex-
periments, successful, we investigated a factorised
prediction of lemma and tags. We used different
costs for predicting lemmas and each tag, which
are summed into a final objective function. As re-
cently seen in (Martinez et al., 2016; Burlot and

Yvon, 2017), these objectives are individually eas-
ier when working with morphologically-rich lan-
guages, and fully inflected words can be obtained
by using morphological inflection models, which
have been shown to be quite successful (Faruqui
et al., 2016; Kann et al., 2017).

Table 7 shows the test perplexities on lemmas
for various input and output representations. We
can observe that in all cases training is far more
stable, with generally lower standard deviations.
In this case, using a lemma+tags with a BiLSTM
or a Words+CharCNN input representation both
give the best results, while augmenting the output
representation of the lemma with a character-build
embedding also improves results. This makes the
joint learning of a factored prediction and reinflec-
tion language model a very interesting direction
for future work.

5 Conclusion

We described a neural language model allowing
the use of subword units for both input and output
word representations. While in our experiments
training with a full vocabulary is unstable, we can
identify important trends: augmenting output rep-
resentations with character-based embeddings im-
proves the model performance, and in this setup,
replacing independent word embeddings by the
unknown token for rare words yields further im-
provement. It is worth noticing that this also opens
the vocabulary, since our model can be used to
rescore unknown words. Additional experiments
suggest that factoring the output of the model with
a lemma+tags decomposition, then re-inflecting
these into words, could make generation easier:
this is a direction we plan to investigate.
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Character-based neural machine translation. In
Proceedings of the 54th Annual Meeting of the
Association for Computational Linguistics (Vol-
ume 2: Short Papers). Association for Computa-
tional Linguistics, Berlin, Germany, pages 357–361.
http://anthology.aclweb.org/P16-2058.

Ryan Cotterell, Hinrich Schütze, and Jason Eis-
ner. 2016. Morphological smoothing and ex-
trapolation of word embeddings. In Proceed-
ings of the 54th Annual Meeting of the As-
sociation for Computational Linguistics (Volume
1: Long Papers). Association for Computational
Linguistics, Berlin, Germany, pages 1651–1660.
http://www.aclweb.org/anthology/P16-1156.

Mathias Creutz, Teemu Hirsimäki, Mikko Kurimo,
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Abstract

We explore the use of segments learnt us-
ing Byte Pair Encoding (referred to as
BPE units) as basic units for statistical
machine translation between related lan-
guages and compare it with orthographic
syllables, which are currently the best
performing basic units for this transla-
tion task. BPE identifies the most fre-
quent character sequences as basic units,
while orthographic syllables are linguis-
tically motivated pseudo-syllables. We
show that BPE units modestly outperform
orthographic syllables as units of transla-
tion, showing up to 11% increase in BLEU
score. While orthographic syllables can
be used only for languages whose writing
systems use vowel representations, BPE is
writing system independent and we show
that BPE outperforms other units for non-
vowel writing systems too. Our results
are supported by extensive experimenta-
tion spanning multiple language families
and writing systems.

1 Introduction

The term, related languages, refers to languages
that exhibit lexical and structural similarities on
account of sharing a common ancestry or being in
contact for a long period of time (Bhattacharyya
et al., 2016). Examples of languages related by
common ancestry are Slavic and Indo-Aryan lan-
guages. Prolonged contact leads to convergence of
linguistic properties even if the languages are not
related by ancestry and could lead to the formation
of linguistic areas (Thomason, 2000). Examples
of such linguistic areas are the Indian subcontinent
(Emeneau, 1956), Balkan (Trubetzkoy, 1928) and
Standard Average European (Haspelmath, 2001)

linguistic areas. Genetic as well as contact rela-
tionship lead to related languages sharing vocabu-
lary and structural features.

There is substantial government, commercial
and cultural communication among people speak-
ing related languages (Europe, India and South-
East Asia being prominent examples and linguis-
tic regions in Africa possibly in the future). As
these regions integrate more closely and move to
a digital society, translation between related lan-
guages is becoming an important requirement. In
addition, translation to/from related languages to
a lingua franca like English is also very impor-
tant. However, despite significant communica-
tion between people speaking related languages,
most of these languages have few parallel corpora
resources. It is therefore important to leverage
the relatedness of these languages to build good-
quality statistical machine translation (SMT) sys-
tems given the lack of parallel corpora.

Modelling lexical similarity among related lan-
guages is the key to building good-quality SMT
systems with limited parallel corpora. Lexical
similarity implies related languages share many
words with similar form (spelling/pronunciation)
and meaning e.g. blindness is andhapana
in Hindi, aandhaLepaNaa in Marathi. These
words could be cognates, lateral borrowings or
loan words from other languages.

Subword level transformations are an effective
way for translation of such shared words. In
this work, we propose use of Byte Pair Encoding
(BPE) (Gage, 1994; Sennrich et al., 2016), a en-
coding method inspired from text compression lit-
erature, to learn basic translation units for transla-
tion between related languages. In previous work,
the basic units of translation are either linguisti-
cally motivated (word, morpheme, syllable, etc.)
or ad-hoc choices (character n-gram). In contrast,
BPE is motivated by statistical properties of text.
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The major contributions of our work are:

• We show that BPE units modestly out-
perform orthographic syllable units
(Kunchukuttan and Bhattacharyya, 2016b),
the best performing basic unit for translation
between related languages, resulting in up to
11% improvement in BLEU score.
• Unlike orthographic syllables, BPE units are

writing system independent. Orthographic
syllables can only be applied to alphabetic
and abugida writing systems. We show BPE
units improve translation over word and mor-
pheme level models for languages using ab-
jad and logographic writing systems. Aver-
age BLEU score improvements of 18% and
6% over a baseline word-level model for lan-
guage pairs involving abjad and logographic
writing systems respectively were observed.
• Like orthographic syllables, BPE units out-

perform character, morph and word units
when the language pairs show relatively less
lexical similarity or belong to different lan-
guage families (but have sufficient contact re-
lation).
• While orthographic syllables approximate

true syllables, we observe that BPE units
learnt from the corpus span various linguis-
tic entities (syllables, suffixes, morphemes,
words, etc. ). This may enable BPE level
models to learn translation mappings at vari-
ous levels simultaneously.
• We have reported results over a large number

of languages (16 language pairs and 17 lan-
guages) which span 4 major language fami-
lies and 10 writing systems of various types.
To the best of our knowledge, this is the
largest experiment for translation over related
languages and the broad coverage strongly
supports our results.
• We also show BPE units outperform other

translation units in a cross-domain transla-
tion task.

The paper is organized as follows. Section 2
discusses related work. Section 3 discusses why
BPE is a promising method for learning subword
units and describes how we train BPE unit level
translation models. Section 4 describes our exper-
imental set-up. Section 5 reports the results of our
experiments and analyses the results. Based on ex-
perimental results, we analyse why BPE units out-

perform other units in Section 6. Section 7 con-
cludes the paper by summarizing our work and
discussing further research directions.

2 Related Work

There are two broad set of approaches that have
been explored in the literature for translation be-
tween related languages that leverage lexical sim-
ilarity between source and target languages.

The first approach involves transliteration of
source words into the target languages. This
can done by transliterating the untranslated words
in a post-processing step (Nakov and Tiedemann,
2012; Kunchukuttan et al., 2014), a technique
generally used for handling named entities in
SMT. However, transliteration candidates cannot
be scored and tuned along with other features used
in the SMT system. This limitation can be over-
come by integrating the transliteration module into
the decoder (Durrani et al., 2010), so both trans-
lation and transliteration candidates can be evalu-
ated and scored simultaneously. This also allows
transliteration vs. translation choices to be made.

Since a high degree of similarity exists at the
subword level between related languages, the sec-
ond approach looks at translation with sub-
word level basic units. Character-level SMT
has been explored for very closely related lan-
guages like Bulgarian-Macedonian, Indonesian-
Malay, Spanish-Catalan with modest success (Vi-
lar et al., 2007; Tiedemann, 2009a; Tiedemann and
Nakov, 2013). Unigram-level learning provides
very little context for learning translation models
(Tiedemann, 2012). The use of character n-gram
units to address this limitation leads to data spar-
sity for higher order n-grams and provides little
benefit (Tiedemann and Nakov, 2013). These re-
sults were demonstrated primarily for very close
European languages. Kunchukuttan and Bhat-
tacharyya (2016b) proposed orthographic syl-
lables, a linguistically-motivated variable-length
unit, which approximates a syllable. This unit
has outperformed character n-gram, word and
morpheme level models as well as transliteration
post-editing approaches mentioned earlier. They
also showed orthographic syllables can outper-
form other units even when: (i) the lexical distance
between related languages is reasonably large, (ii)
the languages do not have a genetic relation, but
only a contact relation.

Recently, subword level models have also gen-
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erated interest for neural machine translation
(NMT) systems. The motivation is the need to
limit the vocabulary of neural MT systems in
encoder-decoder architectures (Sutskever et al.,
2014). It is in this context that Byte Pair En-
coding, a data compression method (Gage, 1994),
was adapted to learn subword units for NMT (Sen-
nrich et al., 2016). Other subword units for NMT
have also been proposed: character (Chung et al.,
2016), Huffman encoding based units (Chitnis and
DeNero, 2015), wordpieces (Schuster and Naka-
jima, 2012; Wu et al., 2016). Our hypothesis is
that such subword units learnt from corpora are
particularly suited for translation between related
languages. In this paper, we test this hypothesis by
using BPE to learn subword units.

3 BPE for related languages

We discuss why BPE is a promising method for
learning subword units (subsections 3.1 and 3.2)
and describe how we trained our BPE unit level
translation models (subsections 3.3 and 3.4).

3.1 Motivation

Byte Pair Encoding is a data compression algo-
rithm which was first adapted for Neural Machine
Translation by Sennrich et al. (2016). For a given
language, it is used to build a vocabulary rel-
evant to translation by discovering the most fre-
quent character sequences in the language.

For NMT, BPE enables efficient, high quality,
open vocabulary translation by (i) limiting core
vocabulary size, (ii) representing the most fre-
quent words as atomic BPE units and rare words
as compositions of the atomic BPE units. These
benefits of BPE are not particular to NMT, and ap-
ply to SMT between related languages too. Given
the lexical similarity between related languages,
we would like to identify a small, core vocabulary
of subwords from which words in the language can
be composed. These subwords represent stable,
frequent patterns (possibly linguistic units like syl-
lables, morphemes, affixes) for which mappings
exist in other related languages. This alleviates the
need for word level translation.

3.2 Comparison with orthographic syllables

We primarily compare BPE units with ortho-
graphic syllables (OS) (Kunchukuttan and Bhat-
tacharyya, 2016b), which are good translation
units for related languages. The orthographic syl-

lable is a sequence of one or more consonants fol-
lowed by a vowel, i.e. a C+V unit, which approxi-
mates a linguistic syllable (e.g. spacious would be
segmented as spa ciou s). Orthographic syllabifi-
cation is rule based and applies to writing systems
which represent vowels (alphabets and abugidas).

Both OS and BPE units are variable length units
which provide longer and more relevant context
for translation compared to character n-grams. In
contrast to orthographic syllables, the BPE units
are highly frequent character sequences reflect-
ing the underlying statistical properties of the text.
Some of the character sequences discovered by the
BPE algorithm may be different linguistic units
like syllables, morphemes and affixes. Moreover,
BPE can be applied to text in any writing system.

3.3 The BPE Algorithm
We briefly summarize the BPE algorithm (de-
scribed at length in Sennrich et al. (2016)). The
input is a monolingual corpus for a language (one
side of the parallel training data, in our case). We
start with an initial vocabulary viz. the characters
in the text corpus. The vocabulary is updated using
an iterative greedy algorithm. In every iteration,
the most frequent bigram (based on current vocab-
ulary) in the corpus is added to the vocabulary (the
merge operation). The corpus is again encoded us-
ing the updated vocabulary and this process is re-
peated for a pre-determined number of merge op-
erations. The number of merge operations is the
only hyperparameter to the system which needs to
be tuned. A new word can be segmented by look-
ing up the learnt vocabulary. For instance, a new
word scion may be segmented as sc ion after
looking up the learnt vocabulary, assuming sc and
ion as BPE units learnt during training.

3.4 Training subword level translation model
We train subword level phrase-based SMT models
between related languages. Along with BPE level,
we also train PBSMT models at morpheme and
OS levels for comparison.

For BPE, we learn the vocabulary separately for
the source and target languages using the respec-
tive part of the training corpus. We segment the
data into subwords during pre-processing and in-
dicate word boundaries by a boundary marker ( )
as shown in the example below. The boundary
marker helps keep track of word boundaries, so
the word level representation can be reconstructed
after decoding.
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ben Bengali kok Konkani pan Punjabi
bul Bulgarian kor Korean swe Swedish
dan Danish mac Macedonian urd Urdu
hin Hindi mar Marathi tam Tamil
ind Indonesian mal Malayalam tel Telugu
jpn Japanese may Malay

(a) List of languages used in experiments along with ISO 639-
3 codes. These codes are used in the paper.

Language Family Type of writing system

Dravidian mal,tam,tel Alphabet dan1,swe1,may1

Indo-Aryan hin,urd,ben ind1,buc2,mac2

kok,mar,pan Abugida mal,tam,tel,hin
Slavic bul,mac ben,kok,mar,pan
Germanic dan,swe Syllabic kor
Polynesian may,ind Logographic jpn
Altaic jpn,kor Abjad urd

(b) Classification of the languages and writing systems. (i)
Indo-Aryan, Slavic and Germanic belong to the larger Indo-
European language family. (ii) Alphabetic writing systems
used by selected languages: Latin1 and Cyrillic2.

Table 1: Languages under experiments: details

word: Childhood means simplicity .

subword: Chi ldhoo d mea ns si mpli ci ty .

While building phrase-based SMT models at
the subword level, we use (a) monotonic decod-
ing since related languages have similar word or-
der, (b) higher order languages models (10-gram)
since data sparsity is a lesser concern owing to
small vocabulary size (Vilar et al., 2007), and (c)
word level tuning (by post-processing the decoder
output during tuning) to optimize the correct trans-
lation metric (Nakov and Tiedemann, 2012). Fol-
lowing decoding, we used a simple method to re-
generate words from subwords (desegmentation):
concatenate subwords between consecutive occur-
rences of boundary marker characters.

4 Experimental Setup

We trained translation systems over the follow-
ing basic units: character, morpheme, word, or-
thographic syllable and BPE unit. In this section,
we summarize the languages and writing systems
chosen for our experiments, the datasets used and
the experimental configuration of our translation
systems, and the evaluation methodology.

4.1 Languages and writing systems

Our experiments spanned a diverse set of lan-
guages: 16 language pairs, 17 languages and 10
writing systems. Table 1 summarizes the key as-
pects of the languages involved in the experiments.

The chosen languages span 4 major language
families (6 major sub-groups: Indo-Aryan, Slavic
and Germanic belong to the larger Indo-European
language family). The languages exhibit diversity
in word order and morphological complexity. Of
course, between related languages, word order and
morphological properties are similar. The clas-
sification of Japanese and Korean into the Altaic
family is debated, but various lexical and gram-
matical similarities are indisputable, either due to
genetic or cognate relationship (Robbeets, 2005;
Vovin, 2010). However, the source of lexical sim-
ilarity is immaterial to the current work. For want
of a better classification, we use the name Altaic
to indicate relatedness between Japanese and Ko-
rean.

The chosen language pairs also exhibit vary-
ing levels of lexical similarity. Table 3 shows an
indication of the lexical similarity between them
in terms of the Longest Common Subsequence
Ratio (LCSR) (Melamed, 1995). The LCSR has
been computed over the parallel training sentences
at character level (shown only for language pairs
where the writing systems are the same or can be
easily mapped in order to do the LCSR compu-
tation). At one end of the spectrum, Malayalam-
India, Urdu-Hindi, Macedonian-Bulgarian are di-
alects/registers of the same language and exhibit
high lexical similarity. At the other end, pairs
like Hindi-Malayalam belong to different lan-
guage families, but show many lexical and gram-
matical similarities due to contact for a long time
(Subbarao, 2012).

The chosen languages cover 5 types of writing
systems. Of these, alphabetic and abugida writ-
ing systems represent vowels, logographic writing
systems do not have vowels. The use of vowels
is optional in abjad writing systems and depends
on various factors and conventions. For instance,
Urdu word segmentation can be very inconsistent
(Durrani and Hussain, 2010) and generally short
vowels are not denoted. The Korean Hangul writ-
ing system is syllabic, so the vowels are implicitly
represented in the characters.

4.2 Datasets

Table 2a shows train, test and tune splits of the
parallel corpora used. The Indo-Aryan and Dra-
vidian language parallel corpora are obtained from
the multilingual Indian Language Corpora Initia-
tive (ILCI) corpus (Jha, 2012). Parallel corpora
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Language Pair train tune test

ben-hin,pan-hin,
44,777 1000 2000kok-mar,

mal-tam,tel-mal,
hin-mal,mal-hin

urd-hin,ben-urd 38,162 843 1707urd-mal,mal-urd

bul-mac 150k 1000 2000
dan-swe 150k 1000 2000
may-ind 137k 1000 2000

kor-jpn,jpn-kor 69,809 1000 2000

(a) Parallel Corpora Size (no. of sentences)

Language Size Language Size

hin (Bojar et al., 2014) 10M urd (Jawaid et al., 2014) 5M
tam (Ramasamy et al., 2012) 1M mar (news websites) 1.8M
mal (Quasthoff et al., 2006) 200K swe (OpenSubtitles2016) 2.4M
mac (Tiedemann, 2009b) 680K ind (Tiedemann, 2009b) 640K

(b) Details of additional monolingual corpora for training
word-level language models (source and size in number of
sentences)

Table 2: Training Corpus Statistics

for other pairs were obtained from the OpenSub-
titles2016 section of the OPUS corpus collection
(Tiedemann, 2009b). Language models for word-
level systems were trained on the target side of
training corpora plus additional monolingual cor-
pora from various sources (See Table 2b for de-
tails). We used just the target language side of the
parallel corpora for character, morpheme, OS and
BPE-unit level LMs.

4.3 System details

We trained phrase-based SMT systems using the
Moses system (Koehn et al., 2007), with the grow-
diag-final-and heuristic for extracting phrases, and
Batch MIRA (Cherry and Foster, 2012) for tuning
(default parameters). We trained 5-gram LMs with
Kneser-Ney smoothing for word and morpheme
level models and 10-gram LMs for character, OS
and BPE-unit level models. Subword level rep-
resentation of sentences is long, hence we speed
up decoding by using cube pruning with a smaller
beam size (pop-limit=1000). This setting has been
shown to have minimal impact on translation qual-
ity (Kunchukuttan and Bhattacharyya, 2016a).

We used unsupervised morphological-
segmenters for generating morpheme repre-
sentations (trained using Morfessor (Smit et al.,
2014)). For Indian languages, we used the
models distributed as part of the Indic NLP

Library1 (Kunchukuttan et al., 2014). We used
orthographic syllabification rules from the Indic
NLP Library for Indian languages, and custom
rules for Latin and Slavic scripts. For training
BPE models, we used the subword-nmt2 library.
We used Juman3 and Mecab4 for Japanese and
Korean tokenization respectively.

For mapping characters across Indic scripts, we
used the method described by Kunchukuttan et al.
(2015) and implemented in the Indic NLP Library.

4.4 Evaluation

The primary evaluation metric is word-level
BLEU (Papineni et al., 2002). We also report
LeBLEU (Virpioja and Grönroos, 2015) scores as
an alternative evaluation metric. LeBLEU is a
variant of BLEU that does an edit-distance based,
soft-matching of words and has been shown to
be better for morphologically rich languages. We
used bootstrap resampling for testing statistical
significance (Koehn, 2004).

5 Results and Analysis

This section describes the results of various exper-
iments and analyses them. A comparison of BPE
with other units across languages and writing sys-
tems, choice of number of merge operations and
effect of domain change and training data size are
studied. We also report initial results with a joint
bilingual BPE model.

5.1 Comparison of BPE with other units

Table 3 shows translation accuracies of all the
language pairs under experimentation for differ-
ent translation units, in terms of BLEU as well as
LeBLEU scores. The number of BPE merge op-
erations was chosen such that the resultant vocab-
ulary size would be equivalent to the vocabulary
size of the orthographic syllable encoded corpus.
Since we could not do orthographic syllabification
for Urdu, Korean and Japanese, we selected the
merge operations as follows: For Urdu, number of
merge operations were selected based on Hindi OS
vocabulary since Hindi and Urdu are registers of
the same language. For Korean and Japanese, the
number of BPE merge operations was set to 3000,
discovered by tuning on a separate validation set.

1http://anoopkunchukuttan.github.io/indic nlp library
2https://github.com/rsennrich/subword-nmt
3http://nlp.ist.i.kyoto-u.ac.jp/EN/index.php?JUMAN
4https://bitbucket.org/eunjeon/mecab-ko
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Language Pair BLEU LeBLEU

Src-Tgt LCSR C W M O Bmatch C W M O Bmatch

ben-hin 52.30 27.95 32.47 32.17 33.54 33.22 0.672 0.682 0.708 0.715 0.716
pan-hin 67.99 71.26 70.07 71.29 72.41 72.22 0.905 0.871 0.899 0.906 0.907
kok-mar 54.51 19.83 21.30 22.81 23.43 23.63 0.632 0.636 0.659 0.671 0.665
mal-tam 39.04 4.50 6.38 7.61 7.84 8.67† 0.311 0.314 0.409 0.447 0.465
tel-mal 39.18 6.00 6.78 7.86 8.50 8.79 0.346 0.314 0.383 0.439 0.443
hin-mal 33.24 6.28 8.55 9.23 10.46 10.73 0.324 0.393 0.436 0.477 0.468
mal-hin 33.24 12.33 15.18 17.08 18.44 20.54 0.444 0.460 0.528 0.551 0.565

urd-hin - 52.57 55.12 52.87 NA 55.55 0.804 0.795 0.792 NA 0.823
ben-urd - 18.16 27.06 27.31 NA 28.06 0.607 0.660 0.671 NA 0.692
urd-mal - 3.13 6.49 7.05 NA 8.44 0.247 0.350 0.379 NA 0.416
mal-urd - 8.90 13.22 15.30 NA 18.48 0.444 0.454 0.522 NA 0.568

bul-mac 62.85 20.61 21.20 - 21.95 21.73 0.603 0.606 - 0.613 0.599
dan-swe 63.39 35.36 35.13 - 35.46 35.77 0.692 0.694 - 0.682 0.682
may-ind 73.54 60.50 61.33 - 60.79 59.54† 0.827 0.832 - 0.828 0.825

kor-jpn - 8.51 9.90 - NA 10.23 0.396 0.372 - NA 0.408
jpn-kor - 8.17 8.44 - NA 9.02 0.372 0.350 - NA 0.374

Table 3: Translation accuracies for various translation units (BLEU and LeBLEU scores reported). The
reported scores are:- W: word-level, M: morpheme, O: orthographic syllable, Bmatch: BPE units with
number of merge operations selected to match vocabulary size of OS encoding. See discussion related to
exceptions for pairs involving Urdu, Korean and Japanese. (a) The values marked in bold indicate best
score for a language pair (b) LCSR indicates lexical similarity (c) NA: Not Applicable. (d) † indicates
that difference in BLEU scoresbetween Bmatch and O are statistically significant (p < 0.05)

Our major observations are described below
(based on BLEU scores):

• BPE units are clearly better than the traditional
word and morpheme representations. The aver-
age BLEU score improvement is 15% over word-
based results and 11% over morpheme-based re-
sults. The only exception is Malay-Indonesian,
which are registers of the same language.

• BPE units also show modest improvement
over the recently proposed orthographic sylla-
bles over most language pairs (average improve-
ment of 2.6% and maximum improvement of up
to 11%). The improvements are not statistically
significant for most language pairs. The only
exceptions are Bengali-Hindi, Punjabi-Hindi and
Malay-Indonesian - all these languages pairs have
relatively less morphological affixing (Bengali-
Hindi, Punjabi-Hindi) or are registers of the same
language (Malay-Indonesian). For Bengali-Hindi
and Punjabi-Hindi, the BPE unit translation accu-
racies are quite close to OS level accuracies. Since
OS level models have been shown to be better than
character level models (Kunchukuttan and Bhat-
tacharyya, 2016b), BPE units are better than char-
acter level models by transitivity.

• BPE units also outperform other units for trans-
lation between language pairs belonging to dif-

ferent language pairs, but having a long con-
tact relationship viz. Malayalam-Hindi and Hindi-
Malayalam.
• It is worth mentioning that BPE units provide
a substantial benefit over OS units when trans-
lation involves a morphologically rich language.
In translations involving Malayalam, Tamil and
Telugu, average accuracy improvement of 6.25%
were observed.

The LeBLEU scores also show the same trends
as the BLEU scores.

5.2 Applicability to different writing systems
The utility of orthographic syllables as transla-
tion units is limited to languages that use writ-
ing systems which represent vowels. Alphabetic
and abugida writing systems fall into this category.
On the other hand, logographic writing systems
(Japanese Kanji, Chinese) and abjad writing sys-
tems (Arabic, Hebrew, Syriac, etc.) do not rep-
resent vowels. To be more precise, abjad writing
systems may represent some/all vowels depending
on language, pragmatics and conventions. Syl-
labic writing systems like Korean Hangul do not
explicitly represent vowels, since the basic unit
(the syllable) implicitly represents the vowels. The
major advantage of Byte Pair Encoding is its writ-
ing system independence and our results show
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O Bmatch B1k B2k B3k B4k

ben-hin 33.54 33.22 33.16 33.25 33.30 32.99
pan-hin 72.41 72.22 72.28 72.19 72.08 71.94
kok-mar 23.43 23.63 23.84 23.73 23.79 23.30
mal-tam 7.84 8.67 8.66 8.71 8.63 8.74
tel-mal 8.50 8.79 8.99 8.83 9.12 8.76
hin-mal 10.46 10.73 10.96 10.89 10.61 10.55
mal-hin 18.44 20.54 21.23 20.53 20.64 20.19

urd-hin NA 55.55 55.69 55.49 55.57 55.47
ben-urd NA 28.06 28.12 28.19 28.03 27.93
urd-mal NA 8.44 8.22 8.04 8.02 8.57
mal-urd NA 18.48 18.72 18.47 18.79 18.18

bul-mac 21.95 21.73 21.74 22.27 21.95 21.94
dan-swe 35.46 35.77 36.38 36.18 36.61 36.2
may-ind 60.79 59.54 60.63 60.24 60.35 60.15

kor-jpn NA NA 10.13 9.8 10.23 9.92
jpn-kor NA NA 9.29 9.23 9.02 8.96

Table 4: Translation accuracies for BPE models
trained with different number of merge operations
(BLEU). Underlined scores indicate the best BPE
configuration when OS is the best-performing for
a language pair.

that BPE encoded units are useful for translation
involving abjad (Urdu uses an extended Arabic
writing system), logographic (Japanese Kanji) and
syllabic (Korean Hangul) writing systems. For
language pairs involving Urdu, there is an 18% av-
erage improvement over word-level and 12% aver-
age improvement over morpheme-level translation
accuracy. For Japanese-Korean language pairs, an
average improvement of 6% in translation accu-
racy over a word-level baseline is observed.

5.3 Choosing number of BPE merges

The above mentioned results for BPE units do not
explore optimal values of the number of merge
operations. This is the only hyper-parameter that
has to be selected for BPE. We experimented with
number of merge operations ranging from 1000
to 4000 and the translation results for these are
shown in Table 4. Selecting the optimal value
of merge operations lead to a modest, average in-
crease of 1.6% and maximum increase of 3.5% in
the translation accuracy over Bmatch across differ-
ent language pairs .

We also experimented with higher number of
merge operations for some language pairs, but
there seemed to be no benefit with a higher num-
ber of merge operations. Compared to the number
of merge operations reported by Sennrich et al.
(2016) in a more general setting for NMT (60k),
the number of merge operations is far less for

Pair C W M O Bmatch

pan-hin 58.07 58.95 59.71 57.95 59.66†

kok-mar 17.97 18.83 18.53 19.12 18.42†

mal-tam 4.12 5.49 5.84 5.93 6.75†
tel-mal 3.11 3.26 4.06 3.83 3.75
hin-mal 3.85 5.18 5.99 6.24 6.37
mal-hin 8.42 9.92 11.12 13.36 14.45†

(a) BLEU scores

Pair C W M O Bmatch

pan-hin 0.869 0.825 0.868 0.863 0.876
kok-mar 0.647 0.641 0.643 0.665 0.653
mal-tal 0.301 0.261 0.378 0.452 0.475
tel-mal 0.246 0.198 0.238 0.297 0.300
hin-mal 0.281 0.336 0.354 0.404 0.384
mal-hin 0.439 0.371 0.466 0.548 0.565

(b) LeBLEU scores

Table 5: Translation accuracies for Agriculture
Domain † indicates statistically significant dif-
ference in BLEU score between O and Bmatch.
BLEU score differences between Bmatch and W
are also statistically significant (except Konkani-
Marathi) (p < 0.05)

translation between related languages with limited
parallel corpora. We must bear in mind that their
goal was different: available parallel corpus was
not an issue, but they wanted to handle as large a
vocabulary as possible for open-vocabulary NMT.
Yet, the low number of merge operations suggest
that BPE encoding captures the core vocabulary
required for translation between related tasks.

5.4 Robustness to Domain Change

Since we are concerned with low resource sce-
narios, a desirable property of subword units is
robustness of the translation models to change
of translation domain. Kunchukuttan and Bhat-
tacharyya (2016b) have shown that OS level mod-
els are robust to domain change. Since BPE
units are learnt from a specific corpus, it is not
guaranteed that they would also be robust to do-
main changes. To study the behaviour of BPE
unit trained models, we also tested the transla-
tion models trained on tourism & health domains
on an agriculture domain test set of 1000 sen-
tences (see Table 5 for results). In this cross-
domain translation scenario, the BPE level model
outperforms the OS-level and word-level models
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Figure 1: Effect of training data size on translation
accuracy for different basic units

for most language pairs. The Konkani-Marathi
pair alone shows a degradation using the OS level
model. The BPE model is almost on par with the
OS level model for Telugu-Malayalam and Hindi-
Malayalam.

5.5 Effect of training data size

For different training set sizes, we trained SMT
systems with various representation units (Fig-
ure 1 shows the learning curves for two language
pairs). BPE level models are better than OS, mor-
pheme and word level across a range of dataset
sizes. Especially when the training data is very
small, the OS and BPE level models perform sig-
nificantly better than the word and morpheme level
models. For Malayalam-Hindi, the BPE level
model is better than the OS level model at utilizing
more training data.

5.6 Joint bilingual learning of BPE units

In the experiments discussed so far, we learnt the
BPE vocabulary separately for the source and tar-
get languages. In this section, we describe our
experiments with jointly learning BPE vocabulary
over source and target language corpora as sug-
gested by Sennrich et al. (2016). The idea is to

Bestprev JB1k JB2k JB3k JB4k

ben-hin O (33.46) 33.54 33.23 33.54 33.35
pan-hin O (72.51) 72.41 72.35 72.13 72.04
kok-mar B1k (23.84) 24.01 23.76 23.8 23.86
mal-tam B4k (8.74) 8.6 8.82 8.74 8.72
tel-mal B3k (9.12) 8.47 8.84 8.89 8.92
hin-mal B1k (10.96) 11.19 11.09 11.1 10.96
mal-hin B1k (21.23) 20.79 21.22 21.12 21.06

bul-mac B2k (22.27) 22.11 22.17 21.58 22.24
dan-swe B3k (36.61) 36.15 36.86 36.51 36.71
may-ind O (61.24) 61.26 60.98 61.11 60.66

Table 6: Translation accuracies for Joint BPE
models trained with different number of merge op-
erations (BLEU). The Bestprev indicates the best
performing units and their accuracy scores from
Tables 3 and 4 shown for comparison.

learn an encoding that is consistent across source
and target languages and therefore helps align-
ment. We expect a significant number of common
BPE units between related languages. If source
and target languages use the same writing sys-
tem, then a joint model is created by learning BPE
over concatenated source and target language cor-
pus. If the writing systems are different, then
we transliterate one corpus to another by one-one
character mappings. This is possible between In-
dic scripts. But this scheme cannot be applied be-
tween Urdu and Indic scripts as well as between
Korean Hangul and Japanese Kanji scripts.

Table 6 shows the results of the joint BPE model
for language pairs where such a model is built. We
do not see any major improvement over the mono-
lingual BPE model due to the joint BPE model.

6 Why are BPE units better than others?

The improved performance of BPE units com-
pared to word-level and morpheme-level represen-
tations is easy to explain: with a limited vocab-
ulary they address the problem of data spar-
sity. But character level models also have a lim-
ited vocabulary, yet they do not improve transla-
tion performance except for very close languages.
Character level models learn character mappings
effectively, which is sufficient for translating re-
lated languages which are very close to each
other (translation is akin to transliteration in these
cases). But they are not sufficient for translat-
ing related languages that are more divergent. In
this case, translating cognates, morphological af-
fixes, non-cognates etc. require a larger context.
So, BPE and OS units — which provide more
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Src-Tgt Word Morph BPE OS Char

ben-hin 0.40 0.58 0.60 0.62 0.71
pan-hin 0.50 0.64 0.69 0.70 0.72
kok-mar 0.66 0.63 0.64 0.67 0.74
mal-tam 0.46 0.56 0.70 0.71 0.77
tel-mal 0.45 0.52 0.62 0.64 0.78
hin-mal 0.39 0.46 0.52 0.58 0.79
mal-hin 0.37 0.45 0.54 0.60 0.71

Table 7: Pearson’s correlation coefficient between
lexical similarity and translation accuracy (both in
terms of LCSR at character level). This was com-
puted over the test set between: (i) sentence level
lexical similarity between source and target sen-
tences and (ii) sentence level translation accuracy
between hypothesis and reference.

hin mar mal
OS tI, stha mA, nA kka, nI
Suffix ke, me.m ChyA, madhIla unnu, .e∼Nkill.m
Word paryaTaka, athavA prAchIna, aneka bhakShaN.m, yAtra

Table 8: Examples of BPE units for Indian lan-
guages. (ITRANS transliteration shown)

context — outperform character units.
A study of the correlation between lexical sim-

ilarity and translation quality makes this evident
(See Table 7). We see that character models work
best when the source and target sentences are lex-
ically very similar. The additional context de-
couples OS and BPE units from lexical similarity.
Words and morphemes show the least correlation
since they do not depend on lexical similarity.

Why does BPE performs better than OS which
also provides a larger contextual window for trans-
lation? While orthographic syllables represent just
approximate syllables, we observe that BPE units
also represent higher level semantic units like
frequent morphemes, suffixes and entire words.
Table 8 shows a few examples for some Indian
languages. So, BPE level models can learn se-
mantically similar translation mappings in addi-
tion to lexically similar mappings. In this way,
BPE units enable the translation models to bal-
ance the use of lexical similarity with semantic
similarity. This further decouples the translation
quality from lexical similarity as seen from the ta-
ble. BPE units also have an additional degree
of freedom (choice of vocabulary size), which al-
lows tuning for best translation performance. This
could be important when larger parallel corpora

are available, allowing larger vocabulary sizes.

7 Conclusion & Future Work

We show that translation units learnt using BPE
can outperform all previously proposed transla-
tion units, including the best-performing ortho-
graphic syllables, for SMT between related lan-
guages when limited parallel corpus is available.
Moreover, BPE encoding is writing system inde-
pendent, hence it can be applied to any language.
Experimentation on a large number of language
pairs spanning diverse language families and writ-
ing systems lend strong support to our results.
We also show that BPE units are more robust to
change in translation domain. They perform better
for morphologically rich languages and extremely
data scarce scenarios.

BPE seems to be beneficial because it enables
discovery of translation mappings at various levels
simultaneously (syllables, suffixes, morphemes,
words, etc. ). We would like to further pursue
this line of work and investigate better translation
units. This is also a question relevant to translation
with subwords in NMT. NMT between related lan-
guages using BPE and similar encodings is also an
obvious direction to explore.

Given the improved performance of the BPE-
unit, tasks involving related languages viz. pivot
based MT, domain adaptation (Tiedemann, 2012)
and translation between a lingua franca and re-
lated languages (Wang et al., 2012) can be revis-
ited with BPE units.
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Abstract

Detecting neologisms is essential in
real-time natural language processing
applications. Not only can it enable
to follow the lexical evolution of lan-
guages, but it is also essential for up-
dating linguistic resources and parsers.
In this paper, neology detection is con-
sidered as a classification task where a
system has to assess whether a given
lexical item is an actual neologism or
not. We propose a combination of
an unsupervised data mining technique
and a supervised machine learning ap-
proach. It is inspired by current re-
searches in stylometry and on token-
level and character-level patterns. We
train and evaluate our system on a
manually designed reference dataset in
French and Russian. We show that this
approach is able to outperform state-
of-the-art neology detection systems.
Furthermore, character-level patterns
exhibit good properties for multilingual
extensions of the system.

1 Introduction

This paper deals with automatic detection of
formal neologisms in French and Russian, with
a language-agnostic objective. Formal neolo-
gisms are composed of a new form linked to a
new meaning, in opposition to semantic neol-
ogisms, composed of a new meaning with an
existing form. Whereas formal neologisms rep-
resent a tiny part of lexical items in corpora,
and thus are not yet attracting a lot of re-
search, they are part of the living lexicon of a
given language and notably the gate to under-
stand the evolution of languages.

The remainder of the paper is organized as
follows. Section 2 details related works on
computational approaches to neology. Sec-
tion 3 describes key aspects of our method and
experiments for neology detection. Section 4
presents evaluation results for French and Rus-
sian. Finally, Section 5 summarizes the exper-
iments and evokes future developments.

2 Previous work

The study of neology has not been a high level
priority within computational linguistics for
two reasons. First, large diachronic electronic
corpora were scarcely available for different
languages until recently. Second, novel lexical
units represent less than 5 percent of lexical
units in corpora, according to several studies
(Renouf, 1993, e.g.). But, from a bird-eyes
view, linguistic change is the complementary
aspect of the synchronic structure, and every
unit in every language is time-related and has
a life-cycle.

As shown by (Lardilleux et al., 2011), new
words and hapaxes are continuously appearing
in textual data. Every lexical unit is subjected
to time, form and meaning can change, due
to socio-linguistic (diastraty) and geographi-
cal (diatopy) variations. The increasing avail-
ability of electronic (long or short-term) di-
achronic corpora, advances on word-formation
theory and in machine learning techniques mo-
tivated the recent emergence of neology track-
ing systems (Cabré and De Yzaguirre, 1995;
Kerremans et al., 2012; Gérard et al., 2014;
Cartier, 2016). These tools have a two-fold ob-
jective: gaining a better overview on language
lifecyle(s), and allow lexicographers and com-
putational linguists to update lexicographic
resources, language processing tools and re-
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sources.
From a NLP point of view, the main ques-

tions are : how can we automatically track
neologisms, categorize them and follow their
evolution, from their first appearance to their
integration or disappearance? is it possible
to induce neology-formation procedures from
expert-curated examples and therefore predict
new words formation?

The standard, and rather unique, approach
to formal neology tracking consists in extract-
ing novel forms from monitor corpora using
lexicographic resources as a reference dictio-
nary to induce unknown words. This is of-
ten call the ”exclusion dictionary architecture”
(EDA). The first system designed for English
is due to Renouf (Renouf, 1993) : a monitor
corpora and a reference dictionary from which
unknown words can be derived. Further filters
are then applied to eliminate spellings errors
and proper nouns.

Four main difficulties arise from this ap-
proach. First, the design of a reference
exclusion dictionary requires large machine-
readable dictionaries: this entails specific pro-
cedures to apply this architecture to under-
resourced languages, and an up-to-date dic-
tionary for other languages. Second, the EDA
architecture is not sufficient by itself : most of
the unknown words are proper nouns, spelling
errors or other cases derived from boilerplate
removal: this entails a post-processing phase.
Third, these systems do not take into account
the sociological and diatopic aspects of neol-
ogism, as they limit their corpora to specific
domains: an ideal system should be able to ex-
tend its monitoring to new corpora and main-
tain diastratic meta-data to characterize novel
forms. Fourth, post-filtering has to be pro-
cessed carefully. For instance, excluding all
proper nouns makes it impossible to detect
antonomasia (i.e. the fact that a proper noun
is used as a common noun, for example ”Is he
a new kind of Kennedy?”).

In many cases, the EDA technique is com-
plemented by a human validation phase, in
which experts have to assign each detected
”neologism candidate” (NC) a label, either
”excluded” or ”neologism”. This phase en-
ables to complement the exclusion dictionary
and to filter candidates to achieve a 100% pre-

cision for subsequent analysis. Usually, the
guidelines for assessing the class of NCs are
as follows : a formal neologism is defined as
a word not yet pertaining to usage in the
given language at assessment time1. A non-
neologism is a word pertaining to one of the
following categories : a spelling mistake, a
boilerplate outcome, a word already in us-
age. . . With this procedure, Cartier (Cartier,
2016) evaluated on a one-year subset, that
59.87% of French NC were actual neolo-
gisms. In Russian, nevertheless, they evalu-
ated that only 30% of NC were actual neolo-
gisms, mainly due to the fact that the EDA
technique was in its early phases and that the
POS-tagger and spell-checker were not accu-
rate enough. Thus, this approach is not suit-
able for real time detection or multilingual ex-
tension.

In this paper, we advocate a new method
to overcome the drawbacks of this method. It
combines an unsupervised text mining compo-
nent to retrieve salient features of positive and
negative examples, and a supervised method
using these features to automatically detect
new neologisms from on-going texts.

3 Dataset and Methods

To the best of our knowledge, there are no
existing NLP techniques that take advantage
of text mining techniques for detecting ne-
ologisms. Intuitively and practically, formal
neologisms, as new form-meaning pairs, ap-
pear in specific contexts, such as quotation
marks(c’est une véritable ”trumperie”2) or
metalinguistic markers (ce que nous pouvons
appeler des catholibans3.The word-formation
rules at stake (Schmid, 2015) involve affixa-
tion, composition and borrowings, each im-
plying specific character-based features. From
these intuition and analysis, we propose a
novel method combining an unsupervised
technique to retrieve the salient features of ne-
ologisms (internal structure and context), and
a supervised machine learning approach to de-

1This definition is complemented by other clues like
Google Ngrams Viewer statistics or reference dictionar-
ies

2It is a pure deception, built from Trump + -erie
suffix, phonetically near the French word for deception,
tromperie.

3What we can call catholibans
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French Russian
#Documents 15559 1750
#Candidates (occ.) 4321 (21511) 807(3563)
#Positives (occ.) 1903 (6339) 245 (715)
Positive ratio (Precision) 44.04% 30.3%

Table 1: Composition of the dataset for French
and Russian

tect formal neologisms in on-going texts. In
the following, we will first present our corpora
and reference data and detail the algorithms
used.

3.1 Corpora and Reference Data

As reference data, we use the evaluation data
proposed by (Cartier, 2016). It contains a list
of NCs and a label : excluded or neologism.
In order to see the candidates in context we
queried their website4 to retrieve texts con-
taining one or more NC occurrences. The
dataset used here is then limited to NCs hav-
ing at least one context available. Table 1 ex-
hibits the statistics about this dataset5. One
can see that the lack of experts for Russian has
led to a much smaller dataset. Furthermore,
the ratio of positive candidates is smaller in
Russian due to a lower quality of the compo-
nents.

3.2 Contextual character-level
features for classification

The data mining component presented here
aims to model the context of the candidates in
order to classify them. It is an important tool
to detect salient contextual and internal fea-
tures of formal neologisms. Many Data Mining
techniques have been used to deal with textual
data (Borgelt, 2012), among them we chose
an algorithm suitable for the particular type
of patterns we wanted to compute (character-
level patterns). Character-level analysis has
received a growing attention from the scien-
tific in recent years. This approach has proved
its efficiency in various tasks (in particular in
multilingual settings), among which Author-
ship Attribution (Brixtel, 2015), Information
Extraction (Lejeune et al., 2015), Hashtags
Prediction (Dhingra et al., 2016) or Terminol-
ogy Extraction (Korenchuk, 2017). In this ex-

4http://www.neoveille.org
5The precision is even worse than on the original

data, due to the lack of contexts in the retrieval phase.

periment, we mine closed frequent token and
character sequences from the candidates con-
texts using the maximal repeated strings algo-
rithm from Ukkonen (Ukkonen, 2009). These
character level patterns (CLP ) are computed
in linear time thanks to augmented suffix ar-
rays (Kärkkäinen et al., 2006). The CLP com-
puted in this paper have two properties :

• they have a minimal frequency of 2 (in
other words they are repeated);

• they are closed: CLP cannot be expanded
to the left nor to the right without lower-
ing the frequency.

Patterns are extracted by comparing the
contexts of each occurrence of the candidates
belonging to the training set. Two kinds of
patterns are computed. First, we computed
token-level patterns (TLP ) which are words
and punctuation marks. In some extent, the
TLP method can be viewed as a variant of
the Lesk algorithm (Lesk, 1986) where in ad-
dition to words unigrams there are n-grams
mixing graphical words and punctuation. Sec-
ond, character-level patterns (CLP ) pattern
which are sequences of characters without any
filtering. With CLP , the objective is to rep-
resent different levels of linguistic description
in the same time: morphology (prefixes, suf-
fixes), lexicon (words or group of words) and
style (punctuation and combinations between
words and punctuation).

3.2.1 Patterns and contexts

For each attested neologisms found in our cor-
pus, the start and end offsets of their occur-
rences in the corpus are computed. We model
the context as a vector of CLP and TLP fre-
quencies, afterwards we are able to compare
the contexts of neologisms and compare them
to the context of non-neologisms. Four types
of contexts have been identified:

• Internal (resp. bilateral): n characters
before the start offset of the NC and n
characters after the end offset of the NC,
including (resp. excluding) the NC itself

• Left (resp. right): n characters before
(resp. after) the start offset (resp. end
offset) of the NC plus the NC itself
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Various context sizes have been experimented,
from 10 to 400 characters, in order to assess
the influence of the window size on the clas-
sification results. The context size is always
computed in characters in order to have the
same data for computing CLP and TLP .

3.2.2 Learning Framework and
Evaluation Metrics

Once the CLP are computed in all the train-
ing set, they are used as features to train clas-
sifiers. For each candidate, the value of each
feature will be the frequency of the CLP in
the given context (bilateral, internal, left or
right). The training of the classifiers has been
performed with Scikit-learn (Pedregosa et al.,
2011). Various classifiers (decision trees, sup-
port vector machines, bayesian networks). 10-
fold cross validation has been performed so
that the figures presented here after are the
mean of the results for each fold. In order to
avoid learning biases, all the occurrences of a
given candidate will be grouped in only one set
per fold : the train set or the test set. There-
fore, with TLP internal and bilateral contexts
yield the same results : the NC itself can not
be used by this method.

4 Results

Table 1 shows the results obtained with TLP
for the French dataset with a SVM classifier
(linear kernel) and C-parameter set at 1. We
will only focus on SVM since this classifier out-
performed Decision trees, random forests and
bayesian networks . The results for the inter-
nal end bilateral context are the same because
of the design of the train and test sets (see
Section 3.2.2). Two results have to be high-
lighted here. First, the left context gave by
far the best results, suggesting that there are
clues announcing neologisms. Second, if we
forget about left contexts, the results can be
improved by expanding the windows size to 50
characters6. Our hypothesis is that expanding
the context only improves the bad results and
that expanding the left context mostly yields
noise. With 72% F-measure in the best case,
the TLP method was promising but it was
quickly outperformed by the CLP method.

6More precisely, the best results for bilateral context
are obtained with a window-size of 47.

Table 1: French Data : F-measure for TLP
according to the context length (10 to 50) and
context types.

Table 2: French Data : F-measure for CLP
according to the context length (10 to 50) and
context types.

On a first approach, we managed to tune
the minimal (minlen) and maximal length
(maxlen) of the CLP in order to reduce the
search space because even in small windows
there are a huge amount of CLP .

We first observed that the optimal F1-
measure scores were obtained with minlen = 3
and maxlen = 7. This result seemed to be
consistent with what has been observed with
comparable methodology used for the Author-
ship Attribution task (see for instance (Brix-
tel, 2015)). However, subsequent experiments
with the same cross-validation method showed
that removing these length constraints lead to
similar results. Filtering patterns according
to their support (relative frequency) has been
tested as well but it gave instable results.

Finally, taking all the CLP appeared to
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Table 3: Russian Data : F-measure for CLP
according to the context length (10 to 50) and
context types.

be the best configuration. These results are
showed (Table 2). The CLP method takes
advantage of internal properties of the can-
didates (prefixes and suffixes) and it allows
us to get more clues in the immediate con-
text of the NC. With a 84.9% F-measure,
this method performs better than the 75%7

presented in (Cartier, 2016). The bilateral
context is the least efficient configuration. It
shows that CLP including the candidate it-
self are very good features. Furthermore, it
reduces the differences between the left and
right contexts. The best results are still found
in the immediate contexts but we do not find
with CLP the same shift in the results when
the context-size is modified.

In Russian we observed the same phenom-
ena with TLP . Therefore, we only present
here the results for the CLP method (Table
3). Here, the results are even better than the
results for the French dataset with more than
90% F-measure with a left context of length
50. The main difference is that there is more
instability when the size and the types of con-
texts changes. This instability may come from
the size of the dataset and the subsequent
lower number of features.

There may be room for improvement for the
bilateral and internal configurations by taking
into account the relative position of the pat-
tern (e.g. if the pattern has been found on the
left side, right side or both sides of the candi-
date) and not only its number of occurences.

760% precision and probably a recall close to 100%

Finally, among the classifiers we tested,
SVM with linear kernels offers the best results.
This is a result we expected since it is consis-
tent with state-of-the-art results in stylome-
try (Sun et al., 2012). Decision trees perform
a bit worse and, interestingly, random forests
offer very little added-value. We plan to ex-
periment Conditional Random Fields in order
to take advantage of the sequential aspect of
our input data.

According to the data we collected, the EDA
approach shows a precision around 44 % (61%
F-measure) for French and 30 % (46% F-
measure). Even if it is difficult to precisely
assess recall, we can only say that the method
presented here shows a real improvement :
82% for French (84.9% F-Measure) and 87%
for Russian (90.1% F-measure) in terms of pre-
cision.

5 Discussion and Perspectives

The preliminary study we have conducted
demonstrates that a combination of unsuper-
vised data mining and supervised Machine
learning techniques can largely outperform the
EDA approach used to detect formal neolo-
gisms. Moreover, this technique does not need
any NLP pre-processing (tokenization, lemma-
tization, POS tagging. . . ) of the textual data,
which is a great advantage for poorly endowed
languages. It reduces the marginal cost for
processing new languages.

We plan additional experiments to back the
legitimacy of the approach :

• experiment on other languages : we are
currently collecting data Chinese, Czech
and Portuguese;

• compare with other machine learning
techniques, especially CRF, which have
proved good accuracy in sequence la-
belling;

Additionally, we want to experiment the
model to detect not only neologisms as a
unique category, but categories of neologisms,
as affixation, composition and borrowing are
likely to retain specific and discriminative fea-
tures that could be exploited in the detection
process.
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Abstract

In this study we address the problem of au-
tomated word stress detection in Russian
using character level models and no part-
speech-taggers. We use a simple bidirec-
tional RNN with LSTM nodes and achieve
the accuracy of 90% or higher. We exper-
iment with two training datasets and show
that using the data from an annotated cor-
pus is much more efficient than using a
dictionary, since it allows us to take into
account word frequencies and the morpho-
logical context of the word.

1 Introduction

Character level models and character embeddings
have received a lot of attention recently. The char-
acter embeddings were used for several NLP tasks,
such as word similarity (Wieting et al., 2016), sen-
tence similarity (Wieting et al., 2016), part-of-
speech tagging (Wieting et al., 2016), NER (Klein
et al., 2003), speech recognition (Mikolov et al.,
2012), question answering (Lukovnikov et al.,
2017), language identification (Jaech et al., 2016),
etc.

In this study we concentrate on a lesser known
problem, which to our knowledge has not been
completely solved yet, namely the automatic de-
tection of word stress. For some languages, e.g.
Russian, this problem might be crucial for speech
processing and generation.

Only a few authors touch upon the problem
of automated word stress detection in Russian.
Among them, one research project in particu-
lar is worth mentioning (Hall and Sproat, 2013).
The authors restricted the task of stress detec-
tion to finding the correct order within an array
of stress assumptions where valid stress patterns
were closer to the top of the list than the invalid

ones. Then, the first stress assumption in the rear-
ranged list was considered to be correct. The au-
thors used the Maximum Entropy Ranking method
to address this problem (Collins and Koo, 2005)
and took character bi- and trigrams, suffixes and
prefixes of ranked words as features as well as
suffixes and prefixes represented in an “abstract”
form where most of the vowels and consonants
were replaced with their phonetic class labels. The
study features the results obtained using the corpus
of Russian wordforms generated on the basis of
Zaliznyaks Dictionary (approx. 2m wordforms).
Testing the model on randomly split train and test
samples showed the accuracy of 0.987. According
to the authors, they observed such a high accuracy
because splitting the sample randomly during test-
ing helped the algorithm benefit from the lexical
information i.e. different wordforms of the same
lexical item often share the same stress position.
The authors then tried to solve a more complicated
problem and tested their solution on a small num-
ber of wordforms for which the paradigms were
not included the training sample. As a result, the
accuracy of 0.839 was achieved. The evaluation
technique that the authors proposed is quite far
from real-life application which is the main dis-
advantage of their study. Usually the solutions
in the field of automated stress detection are ap-
plied to real texts where the frequency distribution
of wordforms differs drastically from the one in a
bag of words obtained from “unfolding” of all the
items in a dictionary.

In addition, another study (Reynolds and Ty-
ers, 2015) describes the rule-based method of au-
tomated stress detection without the help of ma-
chine learning. The authors proposed a system
of finite-state automata imitating the rules of Rus-
sian stress accentuation and formal grammar that
partially solved stress ambiguity by applying syn-
tactical restrictions. Thus, using all the above-
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mentioned solutions together with wordform fre-
quency information, the authors achieved the ac-
curacy of 0.962 on a relatively small hand-tagged
Russian corpus (7689 tokens) that was not found
to be generally available. We can treat the pro-
posed method as a baseline for the automated word
stress detection problem in Russian.

In many languages, such as French, Czech,
Finnish and German the rules for automated word
stress detection can be formalized quite easily.
Nevertheless there are languages where phono-
logical characteristics do not predict stress po-
sition, for instance such word prosodic systems
can be found in North-West Caucasian (Abkhaz)
and Balto-Slavic languages (Lithuanian, Serbo-
Croatian, Russian) (van der Hulst, 1999).

In Russian every word has one and only one
stressed syllable. Lexical stress is free in its po-
sitioning (any syllable can be stressed as shown
in (1)) and is movable (for many lexemes lexical
stress depends on the word form, as shown in (2)).

1. éta [This-Sg.F.Nom] neyrosét’ [network-
Gg.Nom] búdet [be-3Sg.Fut] rasstavl’át’
[put-Inf] udaréniya [stress-Pl.Acc] [in]
slováh [word-Pl.Loc] rússkogo [russian-
Sg.M.Gen] yaziká [language-Sg.Gen]

2. dérevo [tree-Sg.Nom] derévya [tree-Pl.Nom]

Lexical stress can be crucial in disambiguat-
ing between homographs, both between two
wordforms ((3)) as well as between two lex-
emes ((4)):

3. rukı́ [hand-Sg.Gen] rúki [hand-Pl.Nom]

4. béregu [river.bank-Sg.Dat] beregú [protect-
1Sg.Pres]

The position of lexical stress in Russian de-
pends on many factors including the morpholog-
ical content of the word, but also the type of word
formation, its frequency and its meaning. A com-
plex system of markers which are defined for all
morphemes has been developed in fundamental re-
search (Zaliznyak, 1985). There are rules that de-
fine the hierarchy and interaction of markers but
some of them are not strict and can be considered
more of a tendency.

For practical purposes the dictionary approach
to text accentuation can be appropriate. It is pos-
sible to imagine a system that finds an accented
form for each token using some predefined list.

However such a system would have several dis-
advantages, the most important of which would be
its inability to predict stress for unknown words.

In this paper we propose a formal approach to
the problem of automatic accentuation of Russian
text by trying to exploit neural character models
for these purposes. Furthermore, we try to avoid
using any additional or third-party tools for part
of speech tagging and try to develop a simplistic
approach that is based only on using the training
data.

2 Datasets

We considered two datasets:

1. Zaliznyak’s Russian Grammar Dictionary,
which lists over 100,000 lexemes (Zaliznyak,
1985). Each lexeme and its wordforms are
stressed. The dictionary was split into a train
and test datasets in a 2:1 ratio, so that all
forms of one lexeme belong either to the train
or to the test dataset and no lexeme belongs
to both. We’ve assigned the name Dictionary
Model (DictM) to the RNN trained on this
dataset.

2. Transcriptions from the speech subcorpus1 of
Russian National Corpus (RNC) (Grishina,
2003). The spoken corpus was collected
by recording people talking in different
situations after which it was transcripted
and annotated with word stress, also the
transcripts of the Russian movies were
included. The main difference between these
transcriptions and Zaliznyak’s Dictionary is
that the transcription usually doesnt contain
all forms of a word and, more importantly
contains word contexts, i.e. previous words.
By taking context into account we can
attempt to differentiate between cases such
as “óblaka” [cloud-Sg.Gen] and “oblaká”
[clouds-Pl.Nom], since the previous word
in most instances will reveal whether the
word is singular or plural. This dataset
was split into train and test datasets using
the same 2:1 ratio. We trained two models
on the corpus. Let us call the first RNN a
Context Dependant Model (CDM). In order

1Word stress in spoken texts database in Russian
National Corpus[Baza dannykh aktsentologicheskoy
razmetki ustnykh tekstov v sostave Natsional’nogo korpusa
russkogo yazyka], http://www.ruscorpora.ru/en/
search-spoken.html

32



to take the previous word into account we
used the following algorithm: if the previous
word has less than three letters, we remove
its word stress and concatenate it with the
current word (for example, “te oblaká”
[that-Pl.Nom cloud-Pl.Nom]). If the previ-
ous word has 3 or more letters, we use the
last three, since Russian endings are typically
2-3 letters long and derivational morphemes
are usually located on the right periphery
of the word. As such we get, for example
“ogo óblaka” [Sg.N.Gen cloud-Sg.Gen]
from “belogo óblaka” [white-Sg.N.Gen
cloud-Sg.Gen]. The second model (Context
Free Model, CFM) has the same architecture
but it doesn’t take context into account.

3 Architecture

We adopted a character level architecture from
standard tutorials on Keras framework2. Our neu-
ral network is a bidirectional recurrent neural net-
work with 64 LSTM nodes and dropout regular-
ization. Every input word is represented by a 40
by 33 matrix, where 40 stands for the maximum
observed word length in characters. Shorter words
are padded with a padding symbol. 33 is the num-
ber of letters in the Russian alphabet and every let-
ter in a word is encoded with one-hot encodings.

Stress can be considered a characteristic of a
vowel that has two possible values. A syllable in
Russian has a (C)V(C) structure, so the number
of vowels equals the number of syllables and in
every word only one vowel will be stressed. The
word stress is encoded by one-hot encoding too
and shows which of the 40 letters is annotated with
the word stress. The output layer of the RNN again
has 40 nodes and is activated by softmax. In or-
der to evaluate the quality of word stress detection
we used accuracy.

4 Results and discussion

While testing3 the presented approach on Zal-
iznyakś Dictionary we had 1,767,041 instances in
the train dataset and 878,306 instances in the test
dataset. We trained DictM for 10 epochs and re-
ceived the best results on the fourth epoch with
88.7% accuracy for the test set from the dictionary.
The score can be compared with the results of the

2https://keras.io
3Our implementation of the method can be found here:

https://github.com/MashaPo/accent_lstm.

# of
sylla-
bles

Correct detec-
tions, %

Correct detections

2 0.690 182,285 of 263,952
3 0.721 127,012 of 176,144
4 0.846 85,675 of 101,229
5 0.918 42,124 of 45,879
6 0.952 15,241 of 16,009
7 0.958 3,813 of 3,979
8 0.96 744 of 775
9 0.928 156 of 168
Micro-average 0.751

Table 1: Word length in syllables and the number
of correct detections for Dictionary Model

second experiment in (Hall and Sproat, 2013) and
proves that RNN is as efficient as Maximum En-
tropy Ranking for this problem.

The second dataset was slightly bigger and
comprised 2,306,776 unique train instances and
1,154,067 unique test instances. We used this
dataset to train CDM and CFM for 10 epochs.
CDM achieved the best results during the fifth
epoch with 97.7% accuracy on all words. CFM
showed the highest accuracy of 97.9% during the
sixth epoch.

The significant difference between those values
shows that taking the previous context into ac-
count increases the accuracy, although by using
corpus we could have ignored some complex cases
that are not widely used in actual speech but are
present in Zaliznyak’s dictionary and increase the
weight of most frequent words that do not neces-
sarily have a common type of stress placement.
Here we are referring to numerals and frequent
adverbs that have their own special type of stress
placement. Due to their frequency such cases neg-
atively influenced the accuracy of DictM.

We implemented the following method to com-
pare the RNN’s. We used those three models to
detect word stress in the test set of the corpus.
We then computed the number of correct predic-
tions for words of different length and calculated
the micro-average of accuracy for every model. It
is worth mentioning that the accuracy value for
the DictM dropped in comparison to the score ob-
tained from the dictionary test set (88.7% for the
dictionary test set and 75.1% for the corpus test
set). The results for DictM, CFM, CDM are pre-
sented in tables 1, 2 and 3 respectively.

The comparison of the results proves that train-
ing the model using the corpus gives us a visible
increase in accuracy even when the left context is
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# of
sylla-
bles

Correct detec-
tions, %

Correct detections

2 0.981 259,179 of 263,952
3 0.974 171,645 of 176,144
4 0.975 98,707 of 101,229
5 0.975 44,774 of 45,879
6 0.972 15,567 of 16,009
7 0.950 3,782 of 3,979
8 0.940 729 of 775
9 0.934 157 of 168
Micro-average 0.977

Table 2: Word length in syllables and the number
of correct detections for Context Free Model

# of
sylla-
bles

Correct detec-
tions, %

Correct detections

2 0.983 259,656 of 263,952
3 0.977 172,164 of 176,144
4 0.976 98,887 of 101,229
5 0.977 44,837 of 45,879
6 0.973 15,591 of 16,009
7 0.955 3,802 of 3,979
8 0.923 716 of 775
9 0.952 160 of 168
Micro-average 0.979

Table 3: Word length in syllables and the num-
ber of correct detections for Context Dependant
Model

# of
sylla-
bles

Correct detec-
tions, %

Correct detections

2 0.756 17,852 of 23,606
3 0.829 5,402 of 6,510
4 0.823 1,011 of 1,227
Micro-average 0.77

Table 4: CFM score on 50 homograph pairs

# of
sylla-
bles

Correct detec-
tions, %

Correct detections

2 0.810 19,143 of 23,606
3 0.844 5,498 of 6,510
4 0.847 1,040 of 1,227
Micro-average 0.819

Table 5: CDM score on 50 homograph pairs

Stressed wordform # CDM
accuracy

CFM
accuracy

slová [word-Pl.Nom] 984 0.871 0.80 1.0 0.54slóva [word-Sg.Gen] 812 0.714 0.0
delá [affair-Pl.Nom] 976 0.929 0.86 1.0 0.62déla [affair-Sg.Gen] 588 0.753 0.0
nógi [leg-Pl.Nom] 542 0.797 0.74 1.0 0.85nogı́ [leg-Sg.Gen] 92 0.44 0.0
vólny [wave-Pl.Nom] 88 0.72 0.77 1.0 0.60volný [wave-Sg.Gen] 57 0.85 0.0

Table 6: CDM and CFM detailed results for some
of the homograph pairs

not considered. For DictM there is a clear positive
correlation between the number of words and the
accuracy of predictions, DictM gets better results
then CDM on 8- and 9-syllable words, which are
rare in the corpus and can be new for CFM and
CDM, while DictM could have learned the whole
paradigm. CFM and DFM show negative correla-
tion between the accuracy and the number of syl-
lables which is expected due to lower frequency of
longer words.

Next, the results from CDM clearly present the
advantages of training the RNN while taking the
previous word into account, since it increases the
number of correctly detected word stresses includ-
ing homograph cases. The similar way of model
testing makes our results comparable with those
obtained in (Reynolds and Tyers, 2015), our Con-
text Free Model and Context Dependant Model
showed higher micro-average of accuracy than the
baseline.

In order to show CDM to be more accurate
than CFM due to the homograph disambigua-
tion we conducted additional tests to learn how
both models treat the homographs. More pre-
cisely, we extracted the tuples of words from
the dictionary that only differed in stress position
(“dorogóy” [expensive-M.Sg.Nom] “dorógoy”
[road-Sg.Instr] ). Next, we selected such homo-
graph pairs that for both words the number of oc-
currences in the corpus was above the predeter-
mined threshold. Tables 4 and 5 show the scores
after testing CFM and CDM on 50 most frequent
pairs. More detailed results for four homograph
pairs are displayed in Table 6. The data clearly
indicates that CFM simply chooses the most fre-
quent word in a homograph pair. Even though
CDM makes mistakes when analysing more fre-
quent words in the pair, it significantly increases
the accuracy for less frequent words. The over-
all accuracy for cases where the frequency of the
homographs is comparable (rows 1,2 and 4 of the
table) is notably higher for CDM than CFM.

We have also conducted error analysis. First of
all, a huge source of errors are proper names both
first names and surnames. Several typical Russian
surnames are derived from nouns or adjectives and
differ from other wordforms only in stress posi-
tion. We may address this issue by exploiting
NER algorithms and introducing special rules for
proper names. Another kind of error is related to
words with ambiguous word stress. For example,

34



in words like “musoroprovod” [garbage.chute-
Sg.Nom] two word stress positions are possible in
modern Russian: musoropróvod or musoroprovód.
Last but not the least, in Russian the letter ë is al-
ways stressed, but if this letter is written as a reg-
ular e, the RNN may erroneously ignore it.

5 Future work

There are a few directions for future work:

1. improving the way we take word context into
account. We may use more sophisticated
techniques to define the ending and morpho-
logical features of the previous word. We
may also explore how considering the next
word improves the performance.

2. introducing rules for named entities in gen-
eral and proper names in particular;

3. experimenting with reducing the number of
instances in a train dataset to both lower the
training time and to find specific important
examples for training;

4. experimenting with RNNs carefully in order
to gain more linguistic intuition on how word
stress is chosen.

6 Conclusions

In this study we conducted a few experiments on
training RNNs to detect word stress in Russian
words. Our results show that, first of all, the char-
acter level RNNs are quite suitable for the task,
since on average we achieve the accuracy around
90% or higher. Secondly, we explored two dif-
ferent sources of training data (namely, a dictio-
nary and an annotated corpus) and we can defini-
tively state that using the corpus suits the task bet-
ter, since it allows us to take frequent cases and
morphological context into account and use this
information for further disambiguation.
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Abstract

Word embedding has become a funda-
mental component to many NLP tasks
such as named entity recognition and ma-
chine translation. However, popular mod-
els that learn such embeddings are un-
aware of the morphology of words, so it
is not directly applicable to highly agglu-
tinative languages such as Korean. We
propose a syllable-based learning model
for Korean using a convolutional neural
network, in which word representation is
composed of trained syllable vectors. Our
model successfully produces morphologi-
cally meaningful representation of Korean
words compared to the original Skip-gram
embeddings. The results also show that
it is quite robust to the Out-of-Vocabulary
problem.

1 Introduction

Continuous word representation has been a fun-
damental ingredient to many NLP tasks with the
advent of simple and successful approaches such
as Word2Vec (Mikolov et al., 2013a) and GloVe
(Pennington et al., 2014). Although it has been
verified that they are effective in formulating se-
mantic and syntactic relationship between words,
there are some limitations. First, they are only
available to words in pre-defined vocabulary thus
prone to the Out-of-Vocabulary(OOV) problem.
Second, they cannot utilize subword information
at all because they regard word as a basic unit.
Those problems become more magnified when ap-
plying word-based methods to agglutinative lan-
guages such as Korean, Japanese, Turkish, and
Finnish. In this work, we propose a new model

∗ Portions of this research were done while the author
was a student at Seoul National University.

that utilizes syllables as basic components of word
representation to alleviate the problems, especially
for Korean. In our experiment, we confirm that our
model constructs representation of words which
contains a semantic and syntactic relationship be-
tween words. We also show that our model can
handle OOV problem and capture morphological
information without dedicated analysis.

2 Related Work

Recent works that utilize subword information to
construct word representation could be largely di-
vided into two families: The models that use mor-
phemes as a component and the others taking ad-
vantage of characters.

Morpheme-based representation models
A morpheme is the smallest unit of meaning in

linguistics. Therefore, there are many researches
that consider morphemes when building word rep-
resentations (Luong et al., 2013; Botha and Blun-
som, 2014; Cotterell and Schütze, 2015).

Luong et al. (2013) applies a recursive neu-
ral network over morpheme embeddings to obtain
word embeddings. Although morpheme-based
models are good at capturing semantics, one ma-
jor drawback is that most of them require manu-
ally annotated data or an explicit morphological
analyzer which could introduce unintended errors.
Our model doesn’t need such a preprocessing.

Character-based representation models
Recently, utilizing information from characters

has become one of the active NLP research topics.
One way to extract knowledge from a sequence
of characters is using character n-grams (Wieting
et al., 2016; Bojanowski et al., 2016).

Bojanowski et al. (2016) suggests an approach
based on the Skip-gram model (Mikolov et al.,
2013a), where the model sums character n-gram
vectors to represent a word. On the other hand,
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Figure 1: Overall architecture of our model. Each syllable is a d-dimensional vector. For a given word
‘안녕하세요’ (hello, annyeonghaseyo), we concatenate vectors according to syllable order in word.
After passing through the convolutional layer and max pooling layer, word representation is produced.
All parameters are jointly trained by Skip-gram scheme.

there are some approaches (Dos Santos and Gatti,
2014; Ling et al., 2015; Santos and Guimaraes,
2015; Zhang et al., 2015; Kim et al., 2016; Joze-
fowicz et al., 2016; Chung et al., 2016) in which
word representations are composed of character
embeddings via deep neural networks such as con-
volutional neural networks (CNN) or recurrent
neural networks (RNN).

Kim et al. (2016) introduces a language model
that aggregates subword information through a
character-level CNN. Models based on characters
have shown competitive results on many tasks. A
problem of character-based models is that charac-
ters themselves have no semantic meanings so that
models often concentrate on only local syntactic
features of words. To avoid the problem, we select
syllables which have fine-granularity like a char-
acter but has its own meaning in Korean as a basic
component of the representation of words.

3 Proposed Model

Characteristics of Korean Words
Morphologically, unlike many other languages,

a Korean word (Eojeol) is not just a concatenation
of characters. It is constructed by the following hi-
erarchy: a sequence of syllables (Eumjeol) forms
a word, and the composition of 2 or 3 characters
(Jaso) forms a syllable (Kang and Kim, 1994).

In linguistics, Korean language is categorized
as an agglutinative language, where each word is

made of a set of morphemes. To complete the
Korean word (Eumjeol), a root morpheme must
be combined with a bound morpheme (Josa), or
a postposition (Eomi). This derivation produces
about 60 different forms of the similar meaning,
which causes the explosion of vocabulary. For the
same reason, the number of occurrences of each
word is relatively small even with a large corpus,
which prevents the model from an efficient learn-
ing. Thus, most of the Korean word represen-
tation models use morphemes as an embedding
unit, though it requires an additional preprocess-
ing. The problem is that errors coming from an im-
mature morpheme analyzer might be propagated
to the word representation model. Moreover, a
single Korean syllable possess a semantic mean-
ing. For example, the word ‘대학’(college, dae-
hag) is a composition of ‘대’(big, or great, dae)
and ‘학’(learn, or a study, hag). Therefore, our
model regards syllables as embedding units rather
than words or morphemes. For instance, the rep-
resentations of ‘나는’(I am, naneun), ‘나의’(my,
naui), or ‘나에게’(to me, na-ege) are constructed
by leveraging the same syllable vector ‘나’(I, na).

Syllable-based Representation

Similar to (Kim et al., 2016), let S be a set
of all Korean syllables. We embed each syl-
lables into d-dimensional vector space, so that
Q ∈ Rd×|S| becomes a syllable embedding ma-
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trix. Let (s1, s2, ..., sl) denote a word t ∈ V
which consists of l syllables, t is represented by
concatenating syllable vectors as a column vec-
tor: (Qs1, Qs2, ..., Qsl) ∈ Rd×l. Then we apply
a convolution filter H ∈ Rd×w having a width w,
we get a feature map f t ∈ Rl−w+1. For filters
whose widths are more than 1, they need a zero
padding when processing words coming from only
a single syllable.

In detail, for the given filter H , the feature map
can be calculated as follows:

f t
i = tanh(〈(Qsi, ..., Qsi+w−1), H〉+ b) (1)

where 〈A, B〉 = tr(ABᵀ) denoting Frobenius in-
ner product. We then apply a max pooling yt =
maxi f

t
i to extract the most important feature. By

using multiple filters, namely H1, H2, ...,Hh, we
get a final representation yt = (yt

1, ..., y
t
h) for the

word t.
For training, we adopt Skip-gram (Mikolov

et al., 2013b) method with negative sampling so
that for a given center word yt, we maximize the
log-probability of predicting context word yc. We
jointly train syllable embedding matrix and convo-
lution filters all together. Figure 1 shows overall
architecture of our model.

4 Experiments and Results

Datasets and Baselines
The Experiments are performed on a randomly

sampled subset of Korean News corpus collected
from 2012 to 2014, containing approximately
2.7M tokens, 11k vocabulary, and 1k syllables.
We compare our model to the original skip-gram
model with negative sampling (Mikolov et al.,
2013b) as a baseline.

Implementation details
For all experiments, we use the following com-

mon parameters for both our model and baseline.
We use vector representations of dimension 320,
the size of window is 4 and the negative-sampling
parameter is 7. We train over twelve epochs. In
our model, the dimension of syllable embedding is
320. Empirically, using filters with size 1~4 was
enough since most of Korean words are composed
of 2~4 syllables1.

1About 95% of words in a training set had a length less
than 5.

Figure 2: Test result on translated WordSim353
dataset. It contains similarity and relatedness test
and measured by Pearson correlation. Our model
outperformed the baseline in similarity task.

4.1 Quantitative Evaluation

We use the WordSim353 dataset (Finkelstein et al.,
2001; Agirre et al., 2009) for the word similarity
and relatedness task. As WordSim353 dataset is
an English data, we translated it into Korean. The
quality of the word vector representation is evalu-
ated by computing Pearson correlation coefficient
between human judgment scores and the cosine
similarity between word vectors.

The graph in Figure 2 shows that our model
outperforms the baseline on WS353-Similarity
dataset. We estimated it since a lot of similar
words share the same syllable(s) in Korean. On
the other hand, on WS353-Relatedness, the per-
formance is not as good in comparison with the
similarity task. We presume that leveraging sylla-
bles on computing representations can be a noise
among related words without common syllables.

4.2 Qualitative Evaluation

Out-Of-Vocabulary Test
Since our model uses syllable vectors when

computing word representation, it is possible to
achieve representation of OOV words by combin-
ing syllables. To evaluate the representations of
OOV words, we manually chose 4 newly coined
words not appear in training data (Table 1). These
words were derived from original words. For ex-
ample, ‘구글신’(God Google, gugeulsin) is de-
rived from ‘구글’(Google, gugeul) and ‘갤노
트‘(Gal’Note, gaelnoteu) is a abbreviation form
of ‘갤럭시노트’(Galaxy Note, gaelleogsinoteu).
Morphologically, two of them concatenate addi-
tional syllables to the original word, and the other
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Original word Newly coined word

구글

(Google, gugeul)
구글신

(God google, gugeulsin)
이득

(Profit, ideug)
개이득

(Real profit, gaeideug)
퇴근

(Leave work,
toegeun)

퇴근각

(Time to leave work,
toegeungag)

갤럭시노트

(Galaxy Note,
gaelleogsinoteu)

갤노트

(Gal’Note,
gaelnoteu)

Table 1: 4 newly coined words in Korean which
did not appear in training data. Proposed model
successfully recognized stem from the original
word, and predicted it as the most similar word.

two remove some syllables.
We examined the nearest neighbor of the repre-

sentations of OOV words, and confirmed that each
original word vector is placed in the nearest dis-
tance. It is no wonder since almost every newly
coined word keeps the syllables of original word
with their positions fixed.

Morphological Representation Test
We now evaluate our model on language mor-

phology by observing how word representation
leverages morphological characteristics. As men-
tioned above, the process of forming a sentence of
Korean is totally different from many other lan-
guages. In case of Korean, a word can func-
tion in the sentence only if it is combined with
the bound morpheme. For example, ‘서울을’(of
Seoul, seoul-eul) is a combination of full mor-
pheme ‘서울’(Seoul, seoul) + bound morpheme
‘을’(of, eul).

To compare how models learn the morpholog-
ical characteristics, we randomly sampled hun-
dred words and the same words combined with
certain postposition(‘을’, eul) from the training
data. The graph in Figure 3 shows this re-
sult more clearly. We can observe that words
forming the discriminative parallel clusters against
postposition-combined-words while the baseline
doesn’t.

5 Conclusion

We present a syllable-based word representation
model experimented with Korean, which is one of
morphologically rich languages. Our model keeps

(a)

(b)

Figure 3: PCA projections of vector representation
of 100 randomly sampled pairs of word. Each pair
is composed of a word and the same word with
postposition. In (b), our model shows that words
forming the discriminative parallel clusters against
postposition-combined-words.

the characteristics of Skip-gram models, in which
word representation learns from context words. It
also takes into account the morphological charac-
teristics by sharing parameters between the words
that contain common syllables. We demonstrate
that our model is competitive on quantitative eval-
uations. Furthermore, we show that the model can
handle OOV words, and capture morphological re-
lationships. As a future work, we have a plan to
expand our model so that it can utilize overall in-
formation extracted from words, morphemes and
characters.
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Abstract

Recently, there has been increased inter-
est in utilizing characters or subwords for
natural language processing (NLP) tasks.
However, the effect of utilizing character,
subword, and word-level information si-
multaneously has not been examined so
far. In this paper, we propose a model
to leverage various levels of input fea-
tures to improve on the performance of an
supersense tagging task. Detailed analy-
sis of experimental results show that dif-
ferent levels of input representation offer
distinct characteristics that explain perfor-
mance discrepancy among different tasks.

1 Introduction

Recently, there has been increased interest in us-
ing characters or subwords, instead of words, as
the basic unit of language feature in natural lan-
guage processing tasks. Utilizing subword infor-
mation has been shown to be very effective for
named entity alignment of parallel corpus (Sen-
nrich and Haddow, 2016) and named entity recog-
nition (Lample et al., 2016; Santos and Guimaraes,
2015). Some recent advancements were achieved
using character or subword features in neural ma-
chine translation and language modeling (Sen-
nrich et al., 2015; Chung et al., 2016; Lee et al.,
2016; Kim et al., 2016).

The main benefit of utilizing features below
word-level is the ability to overcome out-of-
vocabulary (OOV) and the rare word problems.
When faced with very infrequent or OOV words
in the test data, word-level models must resort
to replacing them with “unknown word” tokens;
and in many cases, this discarded information
could be vital for understanding certain semantics
of the text, hence word-level models could per-

form poorly when said types of words appear fre-
quently.

Traditionally, words are segmented into sub-
words using carefully engineered morpheme ana-
lyzers (Smit et al., 2014). Recently, we see a rise in
popularity of data-driven methods such as employ-
ing an efficient encoding scheme of character se-
quences (e.g. byte-pair encoding (Sennrich et al.,
2016)). Words could also be split into individual
characters to capture even finer syntactic details.
Subword schemes of varying linguistic granularity
offer a trade-off between capturing semantic and
syntactic features.

Despite of the success of character or subword-
level approaches, there has been lack of studies
on ways to combine different levels of features,
namely character, subword, and word-level fea-
tures. To the best of our knowledge, utilization
of subword units have not even been applied to
supersense tagging yet. In this paper, we present
a novel neural network architecture that incorpo-
rates all three types of word-feature units (Section
3). We conduct experiments on SemCor dataset
using our model (Section 4.2). Then we analyze
the optimal combination of the word features for
each classs of the 41 supersenses in detail (Section
4.3).

2 Background

2.1 Supersense Tagset

The supersense tagset consists of a total of 41
supersenses which are top-level semantic classes
used in WordNet (Fellbaum, 1998) as shown in Ta-
ble 1. This set is generally used for evaluating the
approaches to coarse-grained word sense disam-
biguation and information extraction such as ex-
tended NER (Ciaramita and Johnson, 2003; Cia-
ramita and Altun, 2006). In this paper, we use the
SemCor dataset (Table 2) for evaluation.
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Nouns
Supersense Freq. Supersense Freq. Supersense Freq. Supersense Freq.

person 17% attribute 5% object 2% process 1%
artifact 10% time 5% possession 2% plant 1%

act 9% state 4% phenomenon 1% shape <1%
cognition 8% body 3% animal 1% motive <1%

group 7% substance 2% relation 1% Tops <1%
communication 8% quantity 2% feeling 1%

location 5% event 2% food 1%
Verbs

stative 26% social 7% perception 5% body 2%
communication 13% motion 8% creation 4% competition <1%

change 9% possession 6% emotion 2% weather <1%
cognition 9% contact 6% consumption 2%

Table 1: The 41 WordNet supersenses (26 nouns and 15 verbs) and their frequency percentages. Note
the sum of the percentages of the nouns is 100%, and that of the verbs is 100%.

Train Test Total
Documents 150 36 186
Sentences 15,462 4,676 20,138
Subwords 436,101 104,264 540,365
Words 348,987 85,787 434,774
Supersenses 109,183 25,952 135,135
Nouns 71,919 15,506 87,425
Verbs 37,264 10,446 47,710

Table 2: The statistics of the SemCor dataset.

2.2 Subword Segmentation

We use Byte Pair Encoding (BPE) (Sennrich et al.,
2016) to segment words into subwords. First,
BPE produces the most efficient character encod-
ing scheme given a corpus. The encoding scheme
consists of a fixed-size dictionary containing the
most frequent character sequences. If a word is
not frequent enough to be listed in the dictionary,
it is broken down into subwords that exist in the
dictionary and the meaning of the word is inferred
from the meanings of the subwords. For exam-
ple, an infrequent word “transition” could be split
into frequent character sequences “transi@@” and
“tion”.

Figure 1: Model architecture

3 Model Description

We define supersense tagging as a sequence la-
beling problem: given an input word sequence
W = (w1, w2, . . . , wn), it is segmented into sub-
word sequences using some encoding scheme (e.g.
BPE) X = (x1, x2, . . . , xm), and then a sequence
of supersense labels Y = (y1, y2, . . . , yn) is pre-
dicted, where y ∈ {1, . . . , k}.

We present a novel neural network model that
incorporates all of varying levels of word features:
character, subword, and word (Figure 1). This
model is similar to (Lample et al., 2016), but dif-
fers from it in that (i) our model uses subword-
level features as the basic unit of the main LSTM
architecture (Section 3.2), (ii) uses delayed pre-
diction to synchronize subword-level sequences
with word-level predictions (Section 3.2), and (iii)
takes subword-level input representations along
with characters and words (Section 3.1).

3.1 Input Representation

For each x, our model produces three types of
embeddings: (i) character-level embedding z(c),
(ii) subword embedding z(s), and (iii) word-level
embedding z(w). In order to produce character-
level representation, a bidirectional long short-
term memory cell (LSTM) BiLSTMc is utilized.
The hidden states of either directions of the cells
are concatenated into a single character-level rep-
resentation: c =

[
h(f); h(b)

]
. Producing subword

embeddings is trivial, as each x is assigned a train-
able vector z(s). Lastly, a word embedding z(w) is
produced by taking the embedding of the word in
which x belongs. Note for some experiments, we
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use Glove to initialize word embeddings 1. These
representations are concatenated to produce a sin-
gle vector z ∈ Rr for each x, where r is the sub-
word embedding dimension:

z =
[
z(c); z(s); z(w)

]
(1)

3.2 BiLSTM-CRF Architecture
We employ BiLSTM-CRF as the base architec-
ture. Unlike previous work, subword-level embed-
dings instead of word-level embeddings are fed
in at each time step. Given a subword-level em-
bedding sequence Z = (z1, z2, . . . , zm), the main
bidirectional LSTM, BiLSTMs, along with a syn-
chronization layer Ls, and a linear layer Lo, pro-
duce prediction scores O = (o1,o2, . . . ,on).

H(s) = BiLSTMs (Z) (2)

H(w) = Ls

(
H(s)

)
(3)

O = Lo

(
H(w)

)
(4)

Note that due to the difference between input
and output lengths m and n, synchronization be-
tween the two adjacent layer is required. The
synchronization layer delays the supersense pre-
diction until a word is fully formed by its sub-
words. Untrainable layer Ls is implemented by se-
lectively allowing hidden outputs, where the sub-
word aligns with the ending of the word it belongs
to, pass through the layer:

H(w) = W(s) ·H(s) (5)

Where W(s) ∈ Rn×m and each element is de-
fined as W(s)

i,j = 1 (end (xj , wi)). Then the output
layer Lo applies linear transformation on H(w) to
produce label scores O ∈ Rn×k.

As the final layer, the conditional random field
(CRF) takes time-independent label scores O and
produces a joint score of the entire sequence by
considering interdependency among labels:

s (W, Y ) =
n∑

i=0

Ayi,yi+1 +
n∑

i=1

Oi,yi (6)

Where A is the transition matrix among labels.
For all Y , we maximize

log p (Y |W ) = s (W, Y )− log
∑
Ȳ

es(W,Ȳ ) (7)

1https://nlp.stanford.edu/projects/glove/

Where Ȳ is all possible combinations. Maxi-
mizing the objective encourges the valid sequence
of labels to be produced.

4 Experiments

4.1 Experimental Setup
Dropout rate was 0.5, stochastic gradient descent
(SGD) was used as learning method, and learning
rate was 0.005. The gradient clipping is 5.0.

4.2 SemCor Evaluations2

without pre-trained vectors
Precision Recall F-score

char 51.4 48.7 50.02
sub 63.5 63.6 63.54

word 64.9 63.6 64.30
s+w 64.1 62.0 63.04
c+s 65.1 65.9 65.46
c+w 66.8 66.3 66.51

c+s+w 64.0 65.0 64.47
with pre-trained word vector

word 66.9 67.5 67.20
s+w 68.0 68.4 68.20
c+w 68.6 69.5 69.04

c+s+w 68.1 69.5 68.82
with pre-trained subword & word vectors
c+s+w 68.9 69.7 69.32

Table 3: Comparison of character, subword, and
word-level models with/without pre-trained vec-
tors.

The classification results of SemCor dataset us-
ing different combinations of input representa-
tions are shown in Table 3. We note that in uni-
representation settings the word-level model per-
forms better than the character or subword-level
model. This is presumably because supersense
tagging predicts labels for each word. We also
note that when word embeddings are pre-trained,
the performance is always improved by the ad-
dition of character or subword-level embeddings.
Overall, the best result is obtained when the sub-
word and word embeddings are pre-trained and all
embeddings are utilized.

4.3 Detailed Analysis
To investigate the effect of using character or
subword-level embeddings, we select 15 super-
senses and examine each of them individually (Ta-
ble 4). With pre-trained vectors, c+s+w performs
much better than other combinations, outperform-
ing others in many classes. However, without the

2We use shorthands c, s and w to denote character, sub-
word and word, respectively.

43



without pre-trained vectors with pre-trained vectors
c s w c+s c+w s+w c+s+w w c+w s+w c+s+w c+s+w

Named Entity Recognition supersenses
person 77.8 75.6 72.7 84.7 84.6 70.2 82.2 86.4 90.6 86.1 89.3 90.7
group 50.8 58.7 60.4 64.4 63.7 61.0 63.6 62.5 65.1 62.0 64.2 65.6

location 46.1 56.3 57.6 60.3 60.9 51.4 59.9 61.0 69.5 63.7 67.7 70.2
3 most frequent noun and verb supersenses

artifact 50.2 65.8 67.5 67.0 67.6 67.5 67.9 70.8 74.8 74.4 73.8 73.6
act 40.4 55.8 58.4 58.8 60.3 56.6 57.9 58.9 62.6 60.7 63.3 62.5

cognition 41.7 59.2 59.2 60.6 58.1 56.2 60.1 59.8 59.8 60.8 61.2 61.6
stative 72.0 76.3 75.9 77.0 77.7 75.2 75.6 76.1 77.4 77.3 78.6 78.2

communication 55.1 73.7 76.4 75.4 72.7 76.3 73.5 75.9 76.6 76.4 78.8 78.3
change 32.9 54.4 52.9 54.7 55.9 54.4 54.5 56.2 59.9 56.5 58.6 59.5

3 rarest noun and verb supersenses
shape 0.0 16.7 28.6 17.9 28.2 30.2 26.5 23.3 31.4 26.8 22.2 32.9
motive 57.6 75.0 73.9 68.8 76.3 84.2 75.9 76.9 69.1 75.0 71.8 76.6
Tops 71.4 80.0 85.7 85.7 66.7 85.7 75.0 85.7 71.4 76.9 80.0 75.0
body 8.5 43.3 49.7 40.4 45.7 43.8 44.1 50.0 49.9 49.4 47.9 51.1

competition 0.0 34.7 32.9 35.5 37.0 32.6 34.6 34.6 36.3 34.3 36.7 39.0
weather 0.0 0.0 27.3 10.5 19.1 0.0 17.4 0.0 0.0 9.5 22.2 19.1

Table 4: F-score comparison for NER, the most frequent and rarest supersense classification. Bold values
are best cases in with/without pre-trained vectors, respectively. Underlined values represent the cases that
use pre-trained embeddings.

char sub word c+s c+w s+w c+s+w
Mr. Griston Thomas Bob Dr. Pope William Mrs.

Ledford Bob Dr. Mrs. Vice Bob Dr.
Jasper Sam Alexander Sen. Mollie Dr. Bob

States Swedes states states State Paris states Angeles
Pisces cities State Moscow State places heaven
Seldes S. state Lewis Spots Manchester outside

with wither With With from With With With
With by o’clock With from on possible

within By breakin behind without On On

Table 5: Nearest neighbors analysis based on different representation vectors.

pre-trained vectors, it fails to maintain the domi-
nance.

Also, 5 out of the 7 combinations perform bet-
ter than others in at least one class. This shows
that character, subword, and word-level embed-
dings offer features of different characteristics that
could be either advantageous or disadvantageous
depending on the class.

We further conduct nearest neighbor analysis on
various embedding combinations (Table 5). We
find that, in most cases, words of the same su-
persenses are mapped closely to each other in the
word embedding space. Similar to our findings in
previous analysis, we also find that each model ex-
hibits distinct characteristics. For example, in c+s
model, the nearest neighbors of Mr. are Dr. and
Mrs.. However, in sub model, male names such
as Thomas and Bob are identified as the nearest
neighbors.

5 Conclusion

In this paper, we examine the effect of various
combinations of input representations on the per-
formance of supersense tagging task. Further-
more, a modified BiLSTM-CRF model which is
able take subword sequences and predict word la-
bels is proposed. Our experiments on supersense
tagging show that utilizing all token units (char-
acter, subword, and word-level) along with pre-
trained word vectors perform the best. Based on
detailed analysis of selective supersense classes,
we conjecture that each granlarity level of input
representations offers different semantic and syn-
tactic features that could have varying effects de-
pending on the task. As future work, we intend
to investigate the feasibility of a model that self-
learns the optimal continuous combination of dif-
ferent levels of subword information depending on
the task and data characteristics.
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Abstract

Most NLP resources that offer annotations
at the word segment level provide morpho-
logical annotation that includes features
indicating tense, aspect, modality, gender,
case, and other inflectional information.
Such information is rarely aligned to the
relevant parts of the words—i.e. the al-
lomorphs, as such annotation would be
very costly. These unaligned weak label-
ings are commonly provided by annotated
NLP corpora such as treebanks in various
languages. Although they lack alignment
information, the presence/absence of la-
bels at the word level is also consistent
with the amount of supervision assumed
to be provided to L1 and L2 learners. In
this paper, we explore several methods to
learn this latent alignment between parts
of word forms and the grammatical in-
formation provided. All the methods un-
der investigation favor hypotheses regard-
ing allomorphs of morphemes that re-use
a small inventory, i.e. implicitly mini-
mize the number of allomorphs that a mor-
pheme can be realized as. We show that
the provided information offers a signif-
icant advantage for both word segmenta-
tion and the learning of allomorphy.

1 Introduction

Many NLP resources provide weakly labeled mor-
phological resources in data sets that are primar-
ily annotated for higher-level constructs besides
morphology. Most treebanks, for example, in-
clude some morphological annotation on the word
level of varying granularity. The Penn treebank
(Marcus et al., 1993) uses a limited label set
of 45, while the Universal Dependencies (UD)

(Nivre et al., 2017) project annotates word forms
with a much larger set of morphological feature-
value pairs. Noteworthy is that such annotation
is not in any way aligned with the substrings
in the word forms themselves: if the Finnish
word kaatuisi ’would fall down’ is annotated as
kaatua,V,Cond,Pres,3,Sg, there is no in-
dication that kaatu corresponds to the stem, isi to
Cond, and that V, 3 and Sg are realized as zero
allomorphs.

In essence, such labeled resources provide an
inference problem in the realm of inflectional mor-
phology in that one can exploit statistical regulari-
ties in the data to perform a morpheme segmenta-
tion and labeling of the data. A linguistically in-
formed observation based on a simple assumption
of systematic regularity between form and mean-
ing is that it is very unlikely that a single mor-
pheme such as the Finnish conditional be realized
in more than a handful of different allomorphs.
Conversely, it is unlikely that a part of a word,
such as the affix isi carry many disparate mean-
ings, i.e. be associated with a large array of dif-
ferent labels. Still, morphemes are often realized
by more than one allomorph although the number
of allomorphs is typically small. Consider for ex-
ample English plural number which is realized by
different allomorphs in the forms dogs, churches,
oxen and children. From a data-driven perspec-
tive, the inference problem thus becomes to find a
globally good allomorph segmentation and label-
ing of all word forms given in a large resource of
inflected word forms.

Besides NLP applications, this type of input and
the related inference problem is consistent with
the assumptions of relevant inputs witnessed in L1
acquisition—a combination of stems and other af-
fixes where the learner knows from the environ-
ment some semantic signal from the immediate
discourse, e.g. plurality, tense, etc. Children tend
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to show the ability to analyze affixes before they
can use them productively. For example, three-
year-olds have been shown to be able to associate
agentive meaning to an -er morpheme in English,
but can only produce the suffix later (Clark and
Hecht, 1982; Clark and Berman, 1984).

In this paper we explore and evaluate several
methods for automatically segmenting and label-
ing each allomorph present in resources that are
labeled with morphosyntactic features at the word
level. This means that our training data consists of
plain unsegmented word forms (for example kaa-
tuisi) and morphological feature sets (for example
{V, Cond, Pres, 3, Sg}). The result is a mor-
phologically segmented corpus where each mor-
phological segment is associated with at least one
morphological feature as shown in Figure 1. In or-
der to account for fusional morphology, we allow
one segment to be associated with multiple mor-
phological features.

We treat the problem of joint segmentation and
feature assignment as a search problem in the
space of all possible segmentations and labelings
of each word form in a (weakly) annotated cor-
pus. The crucial constraint provided by the weak
labeling is that not all labels can be present in a
word form—the set of labels present for each in-
flected word must be restricted to those given by
the resource. To our knowledge, this weakly su-
pervised task has not previously been explored al-
though joint segmentation and labeling has been
explored in a fully supervised setting by Cotterell
et al. (2015).

To solve the problem, we explore global met-
rics that indirectly favor re-use of allomorphs ac-
cording to the intuition given above. We formalize
a generic objective function that scores the good-
ness of segmentations and labeling globally in a
corpus. The scoring portion of this objective func-
tion is tested with several metrics: symmetric con-
ditional probability, which favors that allomorphs
be good predictors of labels and vice versa, a per-
ceptron learner that weights allomorph-label asso-
ciation, a Rescorla-Wagner model based on clas-
sical conditioning that also learns such association
weights, and a model of Kullback-Leibler diver-
gence that favors that labels and allomorphs have
similar distributions throughout a data set.1 We
also compare the performance of the various meth-

1Our code is freely available at https://github.
com/mpsilfve/learn-allomorphs

ods to a baseline unsupervised model, Morfessor2,
augmented with the capacity to also provide labels
of allomorphs in addition to segmenting.

2 Related Work

In the realm of natural language processing, mor-
phological segmentation is a well-researched and
established problem (Goldsmith (2001), Creutz
and Lagus (2005), Poon et al. (2009), Dreyer and
Eisner (2011), Ruokolainen et al. (2016)). While
most approaches to pure segmentation are unsu-
pervised, semi-supervised work usually assumes
the availability of a limited number of gold seg-
mentations (Dasgupta and Ng, 2007; Kohonen
et al., 2010; Grönroos et al., 2014; Sirts and Gold-
water, 2013). Using vector space representations
of words to produce a weak labeling that identifies
related forms has also been investigated (Schone
and Jurafsky, 2000; Soricut and Och, 2015). Kann
et al. (2016) perform unsupervised canonicaliza-
tion of allomorphs, transforming words such as
having to have ing, a task which is somewhat re-
lated to the problem addressed in this paper. Many
methods that tackle specific morphology-related
NLP tasks implicitly learn some model of allomor-
phy. This includes semi-supervised vocabulary ex-
pansion (Faruqui et al., 2016), and morphological
inflection from examples (Cotterell et al., 2016a).

To our knowledge, the weakly supervised learn-
ing problem addressed in this paper has not been
considered in the literature. Cotterell et al. (2015)
present a closely related task. They investigate la-
beled morphological segmentation, that is, simul-
taneous segmentation and labeling of segments
with morphological features. The crucial differ-
ence between our work and the work by Cotterell
et al. (2015) is that our models are learned in a
weakly supervised manner from plain word forms
and sets of morphological features. In contrast,
Cotterell et al. (2015) learn segmentation models
in a fully supervised manner from data where each
word is morphologically segmented and the seg-
ments are annotated with morphological features.

In the cognitive literature on L1 and L2 learn-
ing, statistical learning -based approaches that at-
tempt to explain language learning through obser-
vations about statistical regularities have explored
the extent to which relatively simple generaliza-
tions based on co-occurrence observations and

2http://www.cis.hut.fi/projects/
morpho/morfessor2.shtml
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maljo i ksi

malja PL TRANS Finnish 
(agglutinative)

destroz o

destrozar IND PRS 1 SG Spanish 
(fusional)

English 

church

church SG

∅

Figure 1: Morphological feature alignments in ag-
glutinative and fusional languages; in the Finnish
word (malja ‘cup’) each allomorph has a single
feature while in the Spanish word (destrozar ‘de-
stroy’) several features are associated with a sin-
gle allomorph. In the English example, a zero
allomorph is declared to which the feature SG is
aligned.

statistical generalizations can be used to model
learning of various levels of structure in natu-
ral language, including discovery of words (Saf-
fran et al., 1996), grammatical categories (Reeder
et al., 2013), and syntactic structure (Newport,
2016).

3 Methods

Given a corpus of word forms and associated mor-
phological features, we want to find the correct
segmentation for a word such as barked into seg-
ments which correspond to morphemes bark, ed,
∅, and the correct assignment of morphological
features in a feature set {bark,V,Past} onto
the segments. In this case: bark/bark, ed/Past
and ∅/V. Note that we treat the lemma as a mor-
phological feature.

Zero morphs (∅) are required because several
languages have morphological features which are
not visible in the word form, for example singular
number of English nouns. In our gold standard
segmented test data, we align word class mark-
ers such as N and V with a zero morph because
they do not correspond to any substring of the
word form. This decision is somewhat arbitrary.
Other options include aligning them with the word
stem and simply removing them from the corpus.
In some cases, as in the case of English adverbs
with suffix -ly, one could also consider aligning

the word class marker with an affix.
We propose to accomplish segmentation and

feature assignment by learning a real-valued scor-
ing function Θ : Σ∗×Y → R, where Σ∗ is the set
possible segments and Y is the finite set of mor-
phological features.3 The scoring function Θ ex-
presses the strength of association between a seg-
ment such as ed and a morphological feature such
as Past. It is learned from a set of unsegmented
word forms and their morphological label sets. We
present several alternative formulations for Θ.

Using the scoring function Θ, we find the op-
timal segmentation xmax = x1...xn of the in-
put word form and optimal feature assignment
ymax = y1 ∪ ...∪ yn which together maximize the
value of Θ as given by Equation 1. We perform
the maximization using an exact search algorithm
over the set of segmentations and feature assign-
ments. Therefore, we are guaranteed to find the
optimal segmentation and feature assignment.

(xmax, ymax) = arg max
x1...xn=x

y1∪...∪yn=y

∑
xi

∑
y∈yi

Θ(xi, y)

(1)
We perform the maximization in Equation 1 in

the following way. Let x be an input string and
let y = {f1, ..., fk} be a set of morphological fea-
tures. We first form an exhaustive set of segmenta-
tions of x (in order to allow for tractable inference,
we only consider segmentations into maximally 5
segments). We then consider each segmentation
x1...xn = x in turn and find the feature assign-
ment y1 ∪ ...∪ yn = y which maximizes the score
Θ using a recursive algorithm presented below.

Given a partition y1, ..., yn of a possibly empty
prefix of y = {f1, ..., fk} (that is a collection of
pointwise disjoint sets y1, ..., yn where y1 ∪ ... ∪
yn = {f1, ..., fj} and j ≤ k), we can find the
optimal score M for assigning the remaining mor-
phological features yrest = y − {f1, ..., fj} into
sets in y1, ..., yn using the following recursive al-
gorithm.4 Set M := −∞ and iterate over i in
{1, ..., n}.

• If yrest is empty, then y1 ∪ ... ∪ yn =
y. If each yl 6= ∅, assign M :=
max(M,Θ((x1, ..., xn), (y1, ..., yn))).

3Y is finite because the inventory of morphological fea-
tures is derived from a finite corpus.

4A natural extension of this algorithm will recover the op-
timal feature assignment.
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• If yrest is not empty, assign yi := yi ∪
{fj+1} and find the optimal score M ′ for
y′rest = {fj+1, ..., fk} − {fj+1}. Set M :=
max(M,M ′).

Finally, return M .
By initially setting y1 = ... = yn = ∅, we can

find the optimal feature assignment for the entire
segmentation x1, ..., xn.

We limit the set of segmentations of a word to
those which have maximally one empty substring
and explore assignments where each segment is
aligned with at least one morphological feature.
One segment may, however, be aligned with sev-
eral features. This is required when a morpheme
encodes for several morphological features.

These assumptions are in line with typological
considerations—agglutinative languages such as
Finnish and Turkish largely associate allomorphs
with a single morphological feature, while fu-
sional languages, such as Swedish and Spanish,
may associate many features with a substring (see
figure 1). Allomorph overlap, where a substring
xyz in a word has xy associated with one fea-
ture and yz with another, is generally not attested
cross-linguistically which narrows down the set of
hypotheses we need to consider. However, a typo-
logically interesting case not modeled in our ap-
proach is templatic, or root-and-pattern morphol-
ogy, where a discontinuous subsequence may be
associated with a feature, such as in the classic
Arabic example kataba ‘to write’, where root rad-
icals associate with a stem (ktb = related to writ-
ing) and intervening vowels with inflectional and
derivational patterns. The objective functions we
develop may be adapted to this case, however, at
the cost of enlarging the search space since all sub-
sequences would need to be considered when as-
sociating parts of word forms and morphological
features. Moreover, even languages with templatic
morphology can be handled using the current sys-
tem, provided that templatic phenomena are not
annotated in the corpus. For example, a model of
Arabic may represent vowel changes in the stem
by declaring different stem allomorphs instead of
treating the discontinuous root radical consonants
as the stem, e.g. kataba (‘to write’ perfect indica-
tive 2p masculine) vs. taktubu (‘to write’ imper-
fective indicative 2p masculine).

Below, we present several alternative formula-
tions for the scoring function Θ. Two of the func-
tions symmetric conditional probability and KL-

divergence are statistics which can be computed in
a straightforward manner given a training data set.
The two remaining functions, the perceptron and
Rescorla-Wagner, are derived by learning multi-
class classifiers which predict the morphological
labels of a word based on its sub-strings. The pa-
rameters of these classifiers express associations
between morphological labels and substrings. We
use these associations as the scoring function Θ.

3.1 Symmetric conditional probability

Intuitively, a substring x is a good candidate al-
lomorph for a morphological feature y if x and y
frequently co-occur. Symmetric conditional prob-
ability (SCP), introduced by da Silva et al. (1999)
for mining of lexical multi-word units, is a mathe-
matical realization of this principle.

The SCP of a segment x and a feature y is given
by equation 2. The probability p(x) is the fre-
quency of words having substring x, p(y) the fre-
quency of words having morphological label y and
p(x, y) the frequency of words having both sub-
string x and label y.

SCP(x, y) = p(x|y)p(y|x) =
p(x, y)2

p(x)p(y)
(2)

By setting Θ(x, y) = SCP(x, y), we can use
the symmetric conditional probability as a scoring
function.

3.2 Perceptron

We explore a simple extension of the classical per-
ceptron learning algorithm (Rosenblatt, 1958) for
multi-label classification (Tsoumakas and Katakis,
2007). Instead of predicting a single label for each
input instance, we predict a set of outputs corre-
sponding to the morphological features related to
a word.

We start with a standard perceptron classifier
defined by a feature extraction function f : Σ∗ →
{0, 1}k, which maps word forms x into a vector,
and one parameter vector φy ∈ Rk for each mor-
phological feature y ∈ Y . Here, k is the total num-
ber of distinct substrings that occur in the data set
D.5 Intuitively, f extracts substrings of x. More
formally, it maps a word form x into a vector in
a space where each dimension corresponds to a
string in Σ∗ and f(x)[i] = 1, iff x has a substring
corresponding to the ith dimension. Inference in

5k is between 144,000 and 423,000 for all of the data sets
considered in this paper.

49



the model is defined by Equation 3 and parameter
updates are defined by Equation 4, where ygold is
the gold standard label.

ymax = arg max
y∈Y

φ>y f(x) (3)

φymax := φymax−f(x) and φygold
:= φygold

+f(x)
(4)

We modify standard perceptron updates in the fol-
lowing way: For a word x with a set of morpho-
logical labels Y , where |Y | = n, we examine the
set N consisting of the top-n labels returned by
the perceptron classifier using the current parame-
ter estimates. We then perform a negative update
for parameters corresponding to labels which were
not associated with the word form x in the gold
standard, that is labels in the set N − Y . Con-
versely, we perform a positive update for parame-
ters which were associated with word form x, that
is morphological features in the set Y −N .

Clearly, we perform no updates for a particular
word form x, iff the top-n candidates returned by
the classifier exactly correspond to the set of mor-
phological features of x.

We first train a system using the aforementioned
variant of the perceptron algorithm. As feature
templates, we us the substrings of words in D. We
then use the parameter values corresponding to as-
sociations of substrings x and features y, learned
by the perceptron algorithm, as scores Θ(x, y).

3.3 Rescorla-Wagner learning

The Rescorla-Wagner (R-W) rule (Rescorla and
Wagner, 1972) is a model of classical condition-
ing that provides an account of the association
strength between a conditioned stimulus (CS) and
an unconditioned stimulus (US); or, alternatively,
the strength between a stimulus and the expecta-
tion of reward. This type of a learning model has
been applied to acquisition of plurals (Ramscar
and Yarlett, 2007; Ramscar, 2013), number names
(Ramscar et al., 2011) word recognition (Baayen
et al., 2011), and typology of number encoding in
inflectional morphology (Ackerman et al., 2016).

In the single stimulus case, we have an expected
reward v which is calculated as a linear combina-
tion of a binary stimulus u and a learned weight
w:

v = wu (5)

As stimuli arrive possibly paired with a reward,
the weight w is updated depending on whether the
reward was present as w = w + εδu, where δ
is set in proportion to r, the ‘actual’ reward, usu-
ally set to 1 or 100 if the association is valid, else
0. The quantity δ = r − v is hence the pre-
diction error which drives association updates to-
ward 0 or toward the maximum association score
and ε is a learning rate (set to 0.01 here). In our
model, the reward is a morphological label, and
the stimuli are the substrings present in the word
forms witnessed. We extend the common single-
stimulus/single-reward R-W model to one which
learns association strengths of multiple stimuli and
multiple rewards in a standard way (Dayan and
Abbott, 2001). Each possible morphological label
is associated with a weight vector w where each
dimension corresponds to a string in Σ∗, as in the
perceptron case. As stimuli arrive, weight updates
are performed per label as:

w = w + εδu where δ = r − v (6)

Here, as before, r is 0 if the label is absent and
100 if it is present.

Learning is very similar to perceptron
learning—the conditions under which R-W
learning and perceptron training is identical is
explored in detail in Dawson (2008). The main
difference between our R-W and perceptron
implementations is that perceptron updates are
only performed if the n labels present in a word
form do not appear in the n-best scoring list, while
R-W updates are always done if the expectation
produced by summing the individual expectations
caused by the substrings in a word fails to match
the maximum label ‘reward’.

3.4 Kullback-Leibler divergence

Given a set of labeled words U ⊂ D in our data
set, we can examine the distribution of morpholog-
ical features in U defined by p(f |U) ∝ |{(x, y) ∈
U |f ∈ y}| for all f ∈ Y . We can examine dif-
ferent subsets of D defined by criteria concern-
ing (1) morphological features, or (2) existence
of a given substring in word forms. Intuitively,
a substring s is a good candidate morpheme for
a morphological feature f , if Us = {(x, y) ∈
D|s is a substring of x} and Uf = {(x, y) ∈
D|f ∈ y} define similar distributions of morpho-
logical features.

Kullback-Leibler (KL) divergence is a widely
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# train wf # test wf # lemmas feat. types

Eng 10,000 300 8591 7
Fin 12,693 300 10049 39
Swe 10,000 300 6589 23
Tur 7,645 300 2523 36

Table 1: Data set sizes for English, Finnish,
Swedish and Turkish.

used measure for the distance of two discrete prob-
ability distributions defined on the same sample
space defined by Equation 7.

KL(p||q) =
∑

x

p(x) log
p(x)
q(x)

(7)

We use the negative KL divergence of the distri-
butions over morphological features defined by a
substring x and a morphological feature f , respec-
tively, as score Θ(x, f).

3.5 Baseline
As our baseline, we use the unsupervised morpho-
logical segmentation given by the Morfessor Base-
line method (Creutz and Lagus, 2005). We use its
default settings for all parameters.

We assign labels to segments based on maxi-
mum likelihood as defined by co-occurrence of
segments and labels in the segmented data set.
When there are fewer segments than morphologi-
cal features, we assign at least one feature per seg-
ment. Otherwise, we assign at most one feature
per segment while maximizing the joint probabil-
ity of segments and morphological features.

This baseline was chosen because it is easily ac-
cessible to most researchers and very easy and fast
to apply.

4 Data

We use data from the 2016 SIGMORPHON
shared task on morphological re-inflection (Cot-
terell et al., 2016b) (Finnish and Turkish) and the
2017 CoNLL shared task on morphological re-
inflection6 (English and Swedish). Figure 2 shows
an example of the data format and Table 1 shows
details for each data set.

We use the training and test sets from subtask 1
from the SIGMORPHON shared task (Cotterell
et al., 2016a) and the task 1 high training set to-
gether with the task 1 development set from the

6https://sites.google.com/view/
conll-sigmorphon2017/

CoNLL shared task 2017 (Cotterell et al., 2017).
Figure 3 shows an example of the annotated test
data.

5 Experiments

We first train each of the scoring functions pre-
sented in Section 3 on the combined training data
and unsegmented test data. After that, we find the
optimal segmentation and label alignment for each
word in the test data using each scoring function.
We explore all segmentations consisting of maxi-
mally 5 segments and all assignments of morpho-
logical features to the segments using a dynamic
algorithm in order to speed up inference.

For perceptron and R-W learning, we run the
training algorithm for three epochs over the train
and test data. The learning rate ε for R-W learning
is fixed to 0.01 and the maximum possible associ-
ation response r is fixed to 100.

We evaluate each scoring function with regard
to three different criteria: (1) identification of mor-
pheme boundaries, (2) identification of unlabeled
morphemes, and (3) identification of labeled mor-
phemes. For each criterion, we give recall, pre-
cision and F1-score. Evaluation criteria (1) and
(2) are very similar, but we include both for easier
comparison with earlier work in the field of unsu-
pervised morphological segmentation.

To illustrate our evaluation scheme, consider the
following gold standard segmentation and align-
ment for English

ping/ping ing/V.PTCP,PRS NULL/V

The aligned form contains three morpheme
boundaries: at index 1 (start of word), at index
4 (between the stem and participle suffix) and at
index 7 (end of word). It contains two unlabeled
morphemes: ping and ing, and four labeled mor-
phemes: ping/ping, ing/V.PTCP, ing/PRS and
NULL/V. Counts for these units are used to com-
pute recall, precision and F1-score for each evalu-
ation criterion.

6 Results

Table 2 shows the results of all experiments for
each language.

In general, each of the scoring functions per-
forms substantially better than the baseline Mor-
fessor system. However, SCP delivers lower un-
labeled morpheme F-scores for Turkish and KL-
divergence gives lower performance on morpheme
boundary detection for Finnish.
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psychoanalyse V,V.PTCP,PRS psychoanalysing
aalloittaisuus pos=N,case=ON+ESS,num=PLN aalloittaisuuksilla
centralbank N,DEF,GEN,SG centralbankens
haberleşmek V,IND,3,SG,PST,PROG,POS,DECL haberleşiyordu

Figure 2: Example lines from the English, Finnish, Swedish and Turkish training data set of. The first
field contains the lemma, the second field contains additional morphological features and the last field
contains the word form.

autofocuss/autofocus ed/PST NULL/V
paali/paali n/case=ACC NULL/num=SGN,pos=N
kammarrätt/kammarrätt s/GEN NULL/N,INDF,SG
âmâ/âmâ lar/PL dan/ABL NULL/N

Figure 3: Example entries from the annotated En-
glish, Finnish, Swedish and Turkish test sets. We
align the stem with the lemma and the part-of-
speech with the zero allomorph.

R-W seems to deliver consistently competitive
performance when compared to the other systems
on morpheme boundary recovery and morpheme
identification. The performance of the perceptron
algorithm is quite similar to the R-W but, in gen-
eral, lower. The perceptron algorithm, however,
delivers the best performance for Turkish.

KL divergence seems to perform the worst of
all of the scoring functions. It delivers markedly
worse performance on the Swedish data set than
the other systems.

SCP delivers superior performance when com-
pared to R-W for Finnish on morpheme boundary
recovery and morpheme identification. However,
its performance on English and and Turkish is sub-
stantially worse than both R-W and the perceptron
algorithm.

In the case of labeled morphemes, SCP seems
to deliver consistently good performance. It out-
performs R-W even in the case of Turkish and En-
glish, where it delivers substantially worse perfor-
mance on unlabeled morpheme identification.

7 Discussion

The results show clear improvement over the base-
line approach of first applying unsupervised mor-
phological segmentation and then assigning labels
based on co-occurrence counts of segments and la-
bels. That is, including information about mor-
phological features in the segmentation process is
clearly beneficial.

The perceptron and R-W learning algorithms

have very similar performance, which can be ex-
plained by the fact that the algorithms themselves
are quite similar. However, the R-W algorithm
seems to deliver somewhat superior performance.
One possible reason for this is that the R-W will
prefer solutions where one substring in the word
explains one morphological feature, whereas the
perceptron algorithm does not have such a bias.
This can be attributed to the ‘blocking’ effect of R-
W learning: when one feature (substring) has al-
ready been weighted early during training enough
to yield a maximum response (label), no updates
are made for other features which may also co-
occur with the same label.

The fact that both R-W and the perceptron al-
gorithm seem to perform poorly for labeled mor-
pheme identification can be explained by the fact
that both algorithms are trained to predict each of
the morphological labels of the word from all sub-
strings occurring in the word. This can lead to con-
fusion of features for morphemes occurring in the
same word. For example, the R-W performs com-
paratively poorly on labeled morpheme identifi-
cation for the Finnish, Swedish and English data
sets. This happens because it assigns the part-of-
speech feature to the stem in many words but the
gold standard analysis is that the part-of-speech is
aligned with the zero morpheme. Conversely, it
also assigns the lemma to the zero morpheme in
many words, whereas the gold standard instead as-
signs lemmas to stems. Note that the decision to
align part-of-speech with the zero morpheme in-
stead of the word stem is fairly arbitrary. There-
fore, a different gold standard segmentation could
give substantially higher labeled morpheme per-
formance for R-W.

The arbitrariness of the gold standard annota-
tion as regards certain features may be avoided
by a different evaluation scheme where no gold
standard is used. One can, for example, leave a
held-out data set and first segment and label the
data on a training section, and then investigate
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Figure 4: Example activations for two inflected Finnish words (noussut ‘risen’, aerobicata ‘to do aer-
obics’) and two Turkish words (tepkime ‘reaction’, mukavemet ‘durability’) with Rescorla-Wagner
learning. The activation score at each character is calculated as a sum of the activations associated with
the substrings that the character participates in. Standard linguistic analyses have the Finnish inessive
as -ssa, the plural as -i-, and both the imperative and 3rd person fused as -koon. For Turkish, the 2P
Possessive is -niz-, the genitive is -in, the plural is -ler-, and the dative is -e.

(a)
Eng Fin Swe Tur

Kullback-Leibler Divergence

R 93.91 82.74 73.81 81.25
P 87.15 80.36 65.89 76.60
F1 90.41 81.54 69.63 78.86

Perceptron

R 98.81 80.67 86.15 86.68
P 95.06 88.05 76.54 90.54
F1 96.90 84.20 81.06 88.57

Rescorla-Wagner

R 98.93 83.74 82.58 82.88
P 97.87 86.81 82.22 91.96
F1 98.40 85.23 82.40 87.18

Symmetric Conditional Probability

R 89.02 81.56 77.38 70.65
P 95.15 91.58 94.33 90.28
F1 91.99 86.28 85.02 79.27

Morfessor baseline

R 80.79 67.36 76.19 77.26
P 61.10 65.67 72.35 93.22
F1 69.58 66.50 74.22 84.50

(b)
Eng Fin Swe Tur

Kullback-Leibler Divergence

R 69.52 45.66 15.71 44.28
P 62.02 43.82 13.35 40.97
F1 65.56 44.72 14.43 42.56

Perceptron

R 90.15 47.62 44.55 61.32
P 84.94 54.05 37.57 65.13
F1 87.47 50.63 40.76 63.16

Rescorla-Wagner

R 94.98 50.84 43.91 56.84
P 93.42 53.53 43.63 65.76
F1 94.19 52.16 43.77 60.97

Symmetric Conditional Probability

R 64.31 50.14 37.82 27.99
P 71.49 59.37 51.53 39.89
F1 67.71 54.37 43.62 32.89

Morfessor baseline

R 21.19 9.94 21.79 39.93
P 14.14 9.59 20.27 52.20
F1 16.96 9.77 21.00 45.24

(c)
Eng Fin Swe Tur

Kullback-Leibler Divergence

R 74.18 39.70 8.88 31.36
P 74.11 37.07 7.64 27.09
F1 74.15 38.34 8.22 29.07

Perceptron

R 90.06 34.77 30.30 59.91
P 90.06 33.59 27.30 54.70
F1 90.06 34.17 28.72 57.19

Rescorla-Wagner

R 43.96 29.98 24.31 43.14
P 43.96 29.98 24.96 43.58
F1 43.96 29.98 24.63 43.36

Symmetric Conditional Probability

R 66.37 56.45 62.88 52.81
P 66.37 53.90 64.07 53.35
F1 66.37 55.15 63.47 53.08

Morfessor baseline

R 1.77 9.66 20.11 8.74
P 1.76 10.97 25.09 11.21
F1 1.77 10.27 22.32 9.82

Table 2: Results for (a) morpheme boundaries; (b) unlabeled morphemes; (c) labeled morphemes. For
each language and each task, the scoring function delivering the best performance is shown in boldface.
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how many new allomorphs are implicitly detected
when the held-out data is also segmented and la-
beled. The expectation is that very few new al-
lomorphs should be found in a held-out set if a
model assigns labels to substrings in a consistent
manner. Whether a good score on such an evalua-
tion would correspond to linguistically motivated
allomorph sets is a question we intent to investi-
gate in the future. If so, a robust evaluation could
potentially be made without any gold segmenta-
tion and labeling at all.

In addition to the scoring functions presented in
Section 3, we investigated a number of other scor-
ing functions, for example pointwise mutual in-
formation (PMI)7 of segments and morphological
features, but these did not yield competitive per-
formance according to preliminary experiments.
We also experimented with IBM models (Brown
et al., 1993) for alignment of characters to mor-
phosyntactic labels, which also performed poorly.

SCP performs poorly on the English and Turk-
ish data sets. For English, a major problem is
that SCP does not find the present participle suf-
fix ing. This suffix is problematic because it is
associated with a combination of morphological
features, namely present tense and the participle
feature. Both of these co-occur more frequently
with other suffixes (ed in the case of participle
and NULL in the case of present tense), however,
when they co-occur, they always occur with the
ing suffix. This seems to be a problem for SCP
which encodes a strong preference that there be a
one-to-one mapping between morphemes and fea-
tures.

A possible explanation for the poor perfor-
mance of SCP on the Turkish data set is that this
is the smallest of all data sets, while still having a
very large number of morphological features.

In this investigation, we have not exhausted the
set of reasonable scoring functions. One objec-
tive function that is particularly interesting is to
simply try to minimize the total number of differ-
ent allomorphs discovered in the data. This ob-

7The reason for the poor performance of PMI is that it
will often align features with rare substrings and, therefore, it
can assign a great number of distinct allomorphs to the same
morphological feature. To illustrate this, let pmi(x, y) =
log p(x, y)/(p(x)p(y)) be the PMI of segment x and fea-
ture y. This quantity can never exceed log 1/p(y) because
p(x, y) ≤ p(x). Assume that x only occurs once in the train-
ing corpus and the sole occurrence is in a word with feature
y. Thus p(x, y) = p(x) and pmi(x, y) = log 1/p(y), i.e.
the maximal PMI for any segment x given feature y.

jective function is difficult to integrate in our cur-
rent approach since the function is discontinuous.
In essence, this objective function calls for an al-
gorithm that discovers a segmentation and label-
ing of the data such that the sum total of different
allomorph types is minimized. The problem ap-
pears to be computationally intractable in princi-
ple, since it bears strong similarities to other in-
tractable problems such as set covering. But good
heuristic solvers for NP-complete problems such
as Moskewicz et al. (2001) may perhaps be har-
nessed to find good solutions under this formula-
tion. A thorough analysis and evaluation of this
type of model remains future work.

8 Conclusion

We have presented a new learning problem for
natural language processing, namely weakly su-
pervised learning of allomorphy. The problem is
important from a practical point of view because
there are many morphologically annotated corpora
where the annotation is not extended to the mor-
pheme level. It is also relevant from a theoretical
point of view because it is related to L1 morphol-
ogy learning.

We explored four different learning methods:
KL divergence, perceptron learning, R-W learning
and SCP. We compared these to a baseline consist-
ing of unsupervised morphological segmentation
augmented by a straightforward labeling mecha-
nism. Our results show that weak supervision de-
livers sizable improvements when evaluated with
regard to F1-score on labeled and unlabeled seg-
mentation. According to our experiments, R-W
learning, while not only efficient, also delivers the
best results on this task.
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Abstract

We present a model for predicting word
forms based on morphological relational
reasoning with analogies. While previous
work has explored tasks such as morpho-
logical inflection and reinflection, these
models rely on an explicit enumeration
of morphological features, which may not
be available in all cases. To address the
task of predicting a word form given a
demo relation (a pair of word forms) and
a query word, we devise a character-based
recurrent neural network architecture us-
ing three separate encoders and a decoder.
We also investigate a multiclass learning
setup, where the prediction of the relation
type label is used as an auxiliary task.

Our results show that the exact form can
be predicted for English with an accuracy
of 94.7%. For Swedish, which has a more
complex morphology with more inflec-
tional patterns for nouns and verbs, the ac-
curacy is 89.3%. We also show that using
the auxiliary task of learning the relation
type speeds up convergence and improves
the prediction accuracy for the word gen-
eration task.

1 Introduction

Recently, a number of papers have been published
that use character-level neural models as a way
to address the inherent drawbacks of traditional
models that represent words as atomic symbols.
This offers a number of advantages: the vocab-
ulary in a character-based model can be much
smaller, as it only needs to represent a finite and
fairly small alphabet, and as long as the charac-
ters are in the alphabet, no words will be out-
of-vocabulary (OOV). Character-level models can

capture distributional properties, not only of fre-
quent words but also of words that occur rarely
(Luong and Manning, 2016). This type of model
needs no tokenization, freeing the system from
one source of errors. Character-level neural mod-
els have been applied in several NLP tasks, rang-
ing from relatively basic tasks such as text catego-
rization (Zhang et al., 2015) and language model-
ing (Kim et al., 2016) to complex prediction tasks
such as translation (Luong and Manning, 2016;
Sennrich et al., 2016).

In particular, character-based neural models are
attractive because they can take sub-word units,
such as the morphology, into account. Mor-
phological analysis and prediction models using
character-based recurrent neural networks have re-
cently become popular, as evidenced by their com-
plete dominance at the SIGMORPHON shared
task on morphological reinflection (Cotterell et al.,
2016). However, in these models, including the
top-performing system in the shared task (Kann
and Schütze, 2016), an explicit feature represen-
tation of the morphological inflection needs to be
provided as an input. These features represent
number, gender, case, tense, aspect, etc.

In this paper, we take a new approach to pre-
dicting word forms that bypasses the need for
an explicit representation of morphological fea-
tures. We present a model that learns morpho-
logical analogy relations between words: given a
demo relation Rdemo = (w1, w2), represented as
a pair of words w1 and w2, and a query word q,
can we apply the same relation as represented by
Rdemo to the query word, and arrive at the correct
target t? The task may be illustrated with a simple
example: see is to sees as eat is to what?

The relation in the example above is trivial on a
superficial level, as the model just needs to add
an s to the query word. However, the analogy
task is more challenging in the general case. The
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model needs to take into account that words be-
long to groups whose inflectional patterns are dif-
ferent – morphological paradigms. For instance, if
we consider the past tense instead of the present in
the example above, the relation is more complex:
see is to saw as eat is to what? The model also
needs to pick up general patterns that cut across
paradigms, including phonological processes such
as umlaut and vowel harmony, as well as ortho-
graphic quirks such as the rule in English that turns
y into ie in certain contexts.

The fact that our model does not rely on explicit
features makes it applicable in scenarios where
features are unavailable, such as when working
with under-resourced languages. However, since
the model is trained using a weaker signal than
in the traditional feature-based scenario, it needs
to learn a latent representation from the analogies
that plays the same role as the morphological fea-
tures otherwise would. This makes the task more
challenging to learn, and we compare the training
time of a purely feature-free model to one where
features are available during training as an auxil-
iary prediction task in a multi-task learning setup.

2 Recurrent neural networks

A recurrent neural network (RNN) is an artificial
neural network that can model a sequence of arbi-
trary length. The basic layout is simply a feedfor-
ward neural network with weight sharing at each
position in the sequence, making it a recursive
function on the hidden state ht. The network has
an input layer at each position t in the sequence,
and the input xt is combined with the the previ-
ous internal state ht−1. In a language setting, it is
common to model sequences of words, in which
case each input xt is the vector representation of
a word. In the basic variant (“vanilla” RNN), the
transition function is a linear transformation of the
hidden state and the input, followed by a pointwise
nonlinearity.

ht = tanh(Wxt + Uht−1 + b),

where W and U are weight matrices, and b is a
bias term.

Basic “vanilla” RNNs have some shortcomings.
One of them is that these models are unable to
capture longer dependencies in the input. Another
one is the vanishing gradient problem that affects
many neural models when many layers get stacked

after each other, making these models difficult to
train (Hochreiter, 1998; Bengio et al., 1994).

Some variants have been proposed to solve
these shortcomings. The Long Short Term Mem-
ory (LSTM) (Schmidhuber and Hochreiter, 1997)
is an RNN where the layer at each timestep is a
cell that contains three gates controlling what parts
of the internal memory will be kept (the forget
gate ft), what parts of the input that will be stored
in the internal memory (the input gate it), as well
as what will be included in the output (the output
gate ot).

The Gated Recurrent Unit (GRU) (Cho et al.,
2014a) is a simplification of this approach, hav-
ing only two gates by replacing the input and for-
get gates with an update gate ut that simply erases
memory whenever it is updating the state with new
input. The GRU is thus a network that has fewer
parameters, and has obtained similar experimental
results as the original LSTM.

Gated recurrent networks have been used
successfully for language modelling, sentiment
analysis (Tang et al., 2015), textual entail-
ment (Rocktäschel et al., 2016), and machine
translation (Sutskever et al., 2014; Cho et al.,
2014b).

3 Character RNN for morphological
word relation transfer

In this work, we present a neural approach for the
transfer of word relations. We use a deep recur-
rent neural network with GRU cells that take the
raw character-sequences as input. In the proposed
model, the demo relation Rdemo = (w1, w2) is en-
coded using one separate encoder RNN for each
of the two words w1 and w2. The outputs of
the demo encoders are fed into a fully connected
layer, “FC relation”. The query word q is en-
coded separately using a third encoder RNN. The
final output from the query encoder is concate-
nated with the output from “FC relation”, and fed
via a second fully connected layer “FC merge”
into the RNN decoder which generates the out-
put sequence. The decoder employs a standard
attention mechanism (Bahdanau et al., 2014) al-
lowing access to the outputs at all locations of the
query encoder. The whole model is similar to a
sequence-to-sequence model used for translation,
with the extra modules that encodes the demo rela-
tion. Figure 1 shows the architecture of the model.

The implementation of the model will be avail-
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... ...Deep GRU Deep GRU Deep GRU

Demo relation RNN encoder 1

... ...Deep GRU Deep GRU Deep GRU

Demo relation RNN encoder 2

... ...Deep GRU Deep GRU Deep GRU

Query RNN encoder

... ...Deep GRU Deep GRU Deep GRU

Decoder RNNFC merge

FC relation

Relation class

Attention

Figure 1: The layout of the proposed model. The demo relation is encoded using one separate encoder
RNN for each of the two words. A fully connected layer follows the demo relation pair, with a softmax
classification output layer, to guide the training. This speeds up the training drastically. The query word
is encoded separately. the output from the fully connected relation layer is concatenated with the hidden
state from the query encoder, and fed into the RNN decoder which generates the output while using an
attention pointer to the query encoder.

able online, along with instructions on how to
download the datasets.

3.1 Learning the relation type as an auxiliary
training task

Since we are interested in how hard it is for the
model to learn morphological relations without a
signal representing the relation explicitly, we in-
vestigated a multitask learning setup where the
prediction of the type of the relation is an auxil-
iary task. The purpose of this approach is that the
auxiliary task could help the model learn a use-
ful intermediate representation that facilitates the
generation of the output string. We implemented
this as a softmax classification output layer that
was attached to the “FC relation”, and trained it
to predict a label for the type of relation. We stress
that this information is not available to the model
during evaluation.

4 Experimental setup

This section explains the setup of the empirical
study of our model. How it is designed, trained,
and evaluated.

4.1 Hyperparameters

The hyperparameters relevant to the proposed
model are presented in Table 1. The hidden size
parameter decides the dimensionality of all RNN
parts of the model, as well as the character em-
bedding size. The final configuration amounted to
hidden size: 100, depth: 2, initial learning rate:
1 × 10−3, L2 weight decay parameter 5 × 10−5,
and drop probability 0.0. In the dropout experi-

ments, dropout were applied to encoder RNN out-
puts, and to the fully connected layers.

Hyperparameter Explored Selected

Hidden size 50-350 100
Depth 1-2 2
Learning rate 1× 10−3

L2 weight decay 5× 10−5

Drop probability 0.5, 0.0 0.0

Table 1: Hyperparameters in the model.

4.2 Datasets
The model was trained and evaluated on words in
English and Swedish. In both languages, a total
of seven relations, and their corresponding inverse
relations, were considered:

• singular–plural for nouns, e.g. dog–dogs
• base form–comparative for adjectives, e.g.

high–higher
• base form–superlative for adjectives, e.g.

high–highest
• comparative–superlative for adjectives, e.g.

higher–highest
• infinitive–past for verbs, e.g. sit–sat
• infinitive–present for verbs, e.g. sit–sits
• infinitive–progressive for verbs (English),

e.g. sit–sitting
• active infinitive–passive infinitive for verbs

(Swedish), e.g. äta–ätas ‘eat–be eaten’

For English, the word list with inflected froms
from the SCOWL project was downloaded1. In the

1See http://wordlist.aspell.net/.
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Figure 2: Prediction accuracy on the English vali-
dation set during training when using the auxiliary
classification loss signal and when not using it.

Figure 3: Prediction accuracy on English test set:
(a) without attention mechanism, (b) when not us-
ing the auxiliary classification loss signal, (c) us-
ing dropout, and (d) using all standard values, (see
Section 4.1).

English data, 25,052 nouns, 1,433 adjectives, and
7,806 verbs were used for training. For each class,
200 words were used for validation, and 200 for
testing. For Swedish, words were extracted from
SALDO (Borin et al., 2013). In the Swedish data,
64,460 nouns, 12,507 adjectives, and 7,764 verbs
were used for training. The same size of validation
and test sets were used.

4.3 Training

Training was done with backpropagation through
time (BPTT) and minibatch learning with the
Adam optimizer (Kingma and Ba, 2015). Training
duration was decided using early stopping (Wang
et al., 1994).

4.4 Evaluation

To evaluate the performance of the model, the
datasets were split into training, validation, and
test sets. Where nothing else is specified, reported
numbers are prediction accuracy. This is the frac-

Size English Swedish English & Swedish

350 90.3% 81.6% 82.3%
150 93.3% 84.1% 87.4%
100 94.7% 88.3% 89.9%
50 90.9% 83.1% 88.0%

Table 2: Prediction accuracy of the proposed
model using different hidden sizes. Column la-
bels denote training set: the English & Swedish
model were simultaneously trained on both lan-
guages, and has no explicit signal about the lan-
guage it is seeing, the other columns show results
for models trained on only one language.

Size English Swedish English & Swedish

350 85.3% 79.3% 82.3%
150 88.0% 86.9% 87.4%
100 90.6% 89.3% 89.9%
50 87.9% 88.1% 88.0%

Table 3: Prediction accuracy of the proposed
model trained using both English and Swedish si-
multaneously. Column labels here denotes test
dataset: English, Swedish, and combined.

tion of predictions that were exactly matching the
target words.

5 Results

This section presents the results of the experimen-
tal evaluation of the system. Table 2 shows pre-
diction accuracy on the test set for different hid-
den sizes, and for different training sets: English,
Swedish, and English & Swedish (trained simulta-
neously in the same model). These are evaluated
on the test set in the same language as the train-
ing set. Table 3 shows prediction accuracy on the
different test sets (English, Swedish, and English
& Swedish), for the same model, trained simulta-
neously on English & Swedish. The model trained
on the combined training data (both English and
Swedish) performs slightly better on the Swedish
test-data (89.3% prediction accuracy compared to
88.3%).

Figure 2 shows the prediction accuracy on
validation during the normal training procedure
with auxiliary training (Classification), without
the auxiliary training (No classification), and us-
ing dropout with drop probability 0.5 (Dropout).
The auxiliary output drastically speeds up training,
to the point where we haven’t obtained the same
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Figure 4: Results for all relations (total), and for each specific relation. One can see the difference
between English and Swedish for plural forms of nouns, where Swedish can be more complex, and
harder to learn.

performance without it. While the dropout seems
to stabilize the performance of the model some-
what during training, we obtained the best valida-
tion performance without it. The final prediction
accuracy results for the test set can be seen in Fig-
ure 3, illustrating once again, that the performance
is best using the auxiliary training task, reaching
an accuracy of 94.7% for English.

Figure 3 also includes a comparison between
the different training architectures evaluated on
the English test set. Whereas it is surprising
that dropout does not help, both the attention
mechanism and the auxiliary training objective are
clearly helping the model learn and perform well.
However, it is a positive result that the model that
does not use the auxiliary task is still able to reach
a high accuracy, as that type of supervision might
not be available in low-resource situations.

Figure 4 separates the performance for each
relation type, showing that our model obtains
100% test set accuracy for several classes, such
as the transform from comparative to superlative
for both English and Swedish, while dropping as
low as to 64% for the singular-to-plural relation
in Swedish, a relation that shows more complex
patterns: while English nouns almost exclusively
form the plural with -s, Swedish nouns are divided
into two genders, each of which has several de-
clension patterns (e.g. -er, -ar, -or, -n), and are
also affected by processes such as umlaut (e.g.
fot–fötter) and syncope (e.g. nyckel–nycklar).

6 Related work

The benefits of character based RNNs have been
demonstrated in a number of works. (Graves,
2013) demonstrated how a character-based LSTM
network could generate Wikipedia content with
the markup. (Kim et al., 2016) presented a
character-aware language model working with
characters, but computing a distribution over
words. Some work has tried to leverage the
strengts of character-based RNNs, while combat-
ting its main weakness; that character sequences
tend to get much longer than the corresponding
word sequences. (Luong and Manning, 2016) pre-
sented a neural machine translation (NMT) sys-
tem using character RNNs only for OOV words,
dropping the RNN output into a conventional
word-based NMT system. They demonstrated
that the resulting character-based word embed-
dings showed the same properties as the embed-
dings trained on word-level, having semantically
similar words close in the embedding space. (Sen-
nrich et al., 2016) proposed an NMT system that
used the Byte-Pair Encoding (BPE), initially an al-
gorithm to compress strings and represent frequent
substrings with compacter symbols, to create a
sub-word-level vocabulary. The authors mention
that this can be seen as a compressed character-
based model. (Kann and Schütze, 2016) proposed
a character-based neural model for morphological
inflection and reinflection. Both source word and
tags were encoded using a special alphabet using
one encoder RNN. The paper was the winner in the
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SIGMORPHON 2016 shared task (Cotterell et al.,
2016). This task has a similar goal to ours, but the
input is a query word along with the source and
target tags for the morphological forms. This is a
simpler task, as their system does not need to find
out the forms from examples.

7 Discussion and conclusions

In this paper, we have presented a neural model
that can learn to do morphological relational rea-
soning on a given query word q, given a demo
relation consisting of a word in the two differ-
ent forms (source form and desired target form).
Our approach uses one character based encoder
RNN for each of the three input words, and gen-
erates the output word as a character sequence.
The model is able to generalize to unseen words
as demonstrated by good prediction accuracy on
the held-out test sets in both English and Swedish.
We note that the model learns faster, and reaches
a higher prediction accuracy using an auxiliary
training task requiring the model to output a clas-
sification of the relation observed in the demo re-
lation encoder RNN (see Figure 2 and Figure 3).
When training the model on the combined train-
ing data (both English and Swedish) we obtain
slightly better prediction accuracy on the Swedish
test-data (89.3% compared to 88.3%). This may
need more investigation, but it indicates that train-
ing the model in a multi-lingual setting is benefi-
cial at least for some languages. A similar obser-
vation was made in (Firat et al., 2017): a neural
machine translation system that obtains better re-
sults on low-resource languages when trained in a
multi-lingual setting.

7.1 Future work

Our motivation for carrying out this work is that it
would be applicable in situations where linguis-
tic resources (e.g. morphological tables) might
not be available, for instance in under-resourced
and under-described languages. The current work
has been limited to English and Swedish, two lan-
guages where morphological resources are abun-
dant, but in future work we would like to evaluate
our system with languages that are less well pro-
vided in terms of resources.

Furthermore, while our model has been able to
successfully predict the correct form in the ma-
jority of cases in our experiments, our evaluation
setup is still fairly close to a traditional reinflec-

tion scenario that relies on morphological features.
A more challenging and interesting task would be
a zero-shot scenario where the test data contains
unseen relations and possibly even unseen mor-
phemes. Such a setup could not possibly be han-
dled by a feature-based model without providing
external knowledge, but it would be interesting to
investigate how successful an analogy-based ap-
proach would be in that case.

Acknowledgments

RJ was supported by the Swedish Research Coun-
cil under grant 2013–4944. OM was supported by
Swedish Foundation for Strategic Research (SSF)
under grant IIS11-0089.

62



References
Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-

gio. 2014. Neural machine translation by jointly
learning to align and translate. arXiv preprint
arXiv:1409.0473 .

Yoshua Bengio, Patrice Simard, and Paolo Frasconi.
1994. Learning long-term dependencies with gra-
dient descent is difficult. Neural Networks, IEEE
Transactions on 5(2):157–166.

Lars Borin, Markus Forsberg, and Lennart Lönngren.
2013. SALDO: a touch of yin to WordNet’s yang.
Language Resources and Evaluation 47(4):1191–
1211.

Kyunghyun Cho, Bart van Merrienboer, Dzmitry Bah-
danau, and Yoshua Bengio. 2014a. On the proper-
ties of neural machine translation: Encoder–decoder
approaches. In Proceedings of SSST-8, Eighth
Workshop on Syntax, Semantics and Structure in
Statistical Translation. Association for Computa-
tional Linguistics, Doha, Qatar, pages 103–111.
http://www.aclweb.org/anthology/W14-4012.

Kyunghyun Cho, Bart van Merrienboer, aglar Glehre,
Dzmitry Bahdanau, Fethi Bougares, Holger
Schwenk, and Yoshua Bengio. 2014b. Learning
phrase representations using rnn encoder-decoder
for statistical machine translation. In Alessandro
Moschitti, Bo Pang, and Walter Daelemans, editors,
EMNLP. ACL, pages 1724–1734. http://dblp.uni-
trier.de/db/conf/emnlp/emnlp2014.html#ChoMGBBSB14.

Ryan Cotterell, Christo Kirov, John Sylak-Glassman,
David Yarowsky, Jason Eisner, and Mans Hulden.
2016. The SIGMORPHON 2016 shared task –
morphological reinflection. In Proceedings of the
14th Annual SIGMORPHON Workshop on Com-
putational Research in Phonetics, Phonology, and
Morphology. pages 10–22.

Orhan Firat, Kyunghyun Cho, Baskaran Sankaran,
Fatos T Yarman Vural, and Yoshua Bengio. 2017.
Multi-way, multilingual neural machine translation.
Computer Speech & Language 45:236–252.

Alex Graves. 2013. Generating sequences with
recurrent neural networks. arXiv preprint
arXiv:1308.0850 .

Sepp Hochreiter. 1998. The vanishing gradient prob-
lem during learning recurrent neural nets and prob-
lem solutions. International Journal of Uncer-
tainty, Fuzziness and Knowledge-Based Systems
6(02):107–116.

Katharina Kann and Hinrich Schütze. 2016. MED: The
LMU system for the SIGMORPHON 2016 shared
task on morphological reinflection. In Proceedings
of the 14th Annual SIGMORPHON Workshop on
Computational Research in Phonetics, Phonology,
and Morphology. pages 62–70.

Yoon Kim, Yacine Jernite, David Sontag, and Alexan-
der M Rush. 2016. Character-aware neural language
models. In Thirtieth AAAI Conference on Artificial
Intelligence.

Diederik Kingma and Jimmy Ba. 2015. Adam: A
method for stochastic optimization. International
Conference on Learning Representations .

Minh-Thang Luong and Christopher D. Manning.
2016. Achieving open vocabulary neural machine
translation with hybrid word-character models. In
Proceedings of the 54th Annual Meeting of the
Association for Computational Linguistics (Volume
1: Long Papers). Association for Computational
Linguistics, Berlin, Germany, pages 1054–1063.
http://www.aclweb.org/anthology/P16-1100.
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Hermann, Tomáš Kočiský, and Phil Blunsom. 2016.
Reasoning about entailment with neural attention.
In International Conference on Learning Represen-
tations.

Jürgen Schmidhuber and Sepp Hochreiter. 1997.
Long short-term memory. Neural computation
7(8):1735–1780.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016. Neural machine translation of rare words with
subword units. In Proceedings of the 54th Annual
Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers). Association for
Computational Linguistics, Berlin, Germany, pages
1715–1725. http://www.aclweb.org/anthology/P16-
1162.

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. 2014.
Sequence to sequence learning with neural net-
works. In Advances in neural information process-
ing systems. pages 3104–3112.

Duyu Tang, Bing Qin, and Ting Liu. 2015. Document
modeling with gated recurrent neural network for
sentiment classification. In Proceedings of the 2015
Conference on Empirical Methods in Natural Lan-
guage Processing. pages 1422–1432.

C. Wang, S. S. Venkatesh, and J. S. Judd. 1994. Op-
timal stopping and effective machine complexity in
learning. In Advances in Neural Information Pro-
cessing Systems 6. Morgan Kaufmann.

Xiang Zhang, Junbo Zhao, and Yann LeCun. 2015.
Character-level convolutional networks for text clas-
sification. In Advances in Neural Information Pro-
cessing Systems. pages 649–657.

63



Proceedings of the First Workshop on Subword and Character Level Models in NLP, pages 64–69,
Copenhagen, Denmark, September 7, 2017. c©2017 Association for Computational Linguistics.

Glyph-aware Embedding of Chinese Characters

Falcon Z. Dai∗ and Zheng Cai∗
Toyota Technological Institute at Chicago

dai@ttic.edu, jontsai@ttic.edu

Abstract

Given the advantage and recent success of
English character-level and subword-unit
models in several NLP tasks, we consider
the equivalent modeling problem for Chi-
nese. Chinese script is logographic and
many Chinese logograms are composed
of common substructures that provide se-
mantic, phonetic and syntactic hints. In
this work, we propose to explicitly incor-
porate the visual appearance of a charac-
ter’s glyph in its representation, resulting
in a novel glyph-aware embedding of Chi-
nese characters. Being inspired by the suc-
cess of convolutional neural networks in
computer vision, we use them to incorpo-
rate the spatio-structural patterns of Chi-
nese glyphs as rendered in raw pixels. In
the context of two basic Chinese NLP tasks
of language modeling and word segmen-
tation, the model learns to represent each
character’s task-relevant semantic and syn-
tactic information in the character-level
embedding.

1 Introduction

Recently, in combination with deep learning,
character-level and subword-unit-level models has
achieved the state-of-the-art performance in var-
ious natural language processing (NLP) tasks in-
volving Western languages (Wu et al., 2016),
we consider the equivalent modeling problem for
solving NLP tasks in Chinese. Unlike English
script which is alphabetic with a small alphabet,
Chinese script is logographic with a large set of
characters which are meaningful individually. Ac-
cording to Table of General Standard Characters

∗These authors contributed equally and their names are
randomly ordered.

(通⽤规范汉字表) compiled by the Chinese gov-
ernment in 2013, there are 3,500 level-1 (being
the most common) characters and more than 8,105
characters in total (Wikipedia, 2017). At the same
time, it is not correct to treat Chinese characters as
equivalent to English words because the distribu-
tion of Chinese characters deviate markedly from
Zipf’s law (Zipf, 1935; Shtrikman, 1994). Further-
more, there is evidence suggesting that segmented
Chinese words, - some of them are unigrams -, dis-
tribute according to Zipf’s law (Xiao, 2008). Ar-
guably, the closest equivalent linguistic unit in En-
glish corresponding to a Chinese character is a sub-
word unit, i.e., word fragments.
Furthermore, there is a strong case for modeling

at character-level for task involving Chinese cor-
pora, since Chinese text is usually written without
word boundaries to indicate the segmentation of
characters into words. As a consequence, word-
segmented corpora is rare. Traditionally, systems
are designed to process words as input, so often,
a separately trained or hand crafted routine would
first segment the contiguous sequence of charac-
ters into words as part of the preprocessing. How-
ever, this pipeline design might unnecessarily ac-
cumulate error due to segmentation ambiguity that
can be resolved in a later stage. The trend of end-
to-end training of differentiable, neural network-
based models also enables training character-level
models jointly with the rest of the system under the
task objective. It is well-known that many Chi-
nese characters’ written form, their glyphs, share
common sub-structures and some of these sub-
structure are informative of the semantics, syntac-
tic role and phonetics of the characters. For exam-
ple, for semantics,⾬ (rain)雪 (snow)雹 (hail)雷
(thunder) all have a sub-structure⾬, which com-
monly denote meteorological phenomena.1 For

1A sub-structure such as⾬ in雪 is called a radical.
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syntactic roles,打 (hit)提 (lift)抓 (grab) all con-
tain ⺘ which is indicative of a verb. For pho-
netics, ⼄ (yǐ) 亿 (yì) 忆 (yì) all share ⼄. How-
ever, as far as we are aware of, at the time of our
work2, there is no study that explicitly exploits the
spatio-structural information of a Chinese charac-
ter’s glyph for NLP tasks.3 In this work, we ex-
plore the effect of incorporating glyphs as addi-
tional features in the context of two common Chi-
nese NLP tasks, segmentation and language mod-
eling, resulting in a novel glyph-aware embedding
of Chinese characters. This work’s major contri-
butions are

• a novel character embedding model that ex-
plicitly incorporates visual appearance of
Chinese characters.

• new state-of-the-art results on a segmentation
benchmark task.

2 Hypotheses

We hypothesize that the semantic and syntactic
information of sub-glyph structures can help im-
prove the character embeddings and thus improve
performance in Chinese NLP tasks.
Intuitively, representing each character only by

their ID’s implies that any pair of characters are
as distinct as any other pair. This ignores any
common sub-glyph structures shared by charac-
ters. Therefore incorporating the glyph’s visual in-
formation we should be able to generalize knowl-
edge learned about a character to another via their
shared sub-glyph structures.
However, this hypothesis is not trivial because

there are many Chinese characters that share strik-
ingly similar visual appearances yet not their
meanings. For example, ⼟ (soil) ↔ ⼠ (roughly
means -er as fighter translates to⽃ (fight)⼠), and
⼈ (person) ↔ ⼊ (enter). By identifying a char-
acter with only its visual appearance, we are vul-
nerable to this new source of ambiguity which can
harm performance. Due to this concern, we also
include a mixed embedding in our experiments
which combine both ID and glyph representation.

2Since then, we discovered two independent, concurrent
studies with approaches similar to ours by Liu et al. (2017)
and Costa-jussà et al. (2017).

3A character’s visual appearance is essential in solving
hand-writing recognition tasks which are challenges in com-
puter vision.

3 Method

In keepingwith the common neural networkmodel
architectures, we decided to feed the glyph as
an input to a feed-forward neural network (FNN)
model, an embedder, that outputs an embedding
vector which, in both the segmentation task and
the language modeling task, is then consumed by
a recurrent neural network to make predictions. In
order to compare the proposed glyph-aware em-
beddings with the glyph-unaware embeddings, we
shall keep the recurrent neural network (RNN) ar-
chitecture fixed and only change the embedder in
our experiments.
Considering that there are many different lay-

outs for sub-glyph structures4, and the same radi-
cal can appear at different positions5, we think the
most promising representation that preserves both
the identities and the spatial arrangement of sub-
structures is to use the raw pixels of a glyph.
Being inspired by the success of convolutional

neural networks (CNN) (LeCun et al., 1995) in
learning feature representation in computer vi-
sion (Krizhevsky et al., 2012), we used CNN to im-
plement the embedder (see Figure 1). We believe
that the spatial translational invariance induced
by CNN’s filter structure is particularly suited for
modeling radicals that can appear at different lo-
cations of a glyph. After the CNN, a fully con-
nected layer outputs an embedding vector of some
dimension k. To apply our method, we first render
the glyph for a character using a font file6 and then
feed the glyph as a gray-scale image into the CNN
embedder.
We implemented our models and experiments

efficiently with Tensorflow (Abadi et al., 2016). In
particular, we cached rendered glyphs to reduce re-
peated render calls of the same character by 1,000
times. We open-source our implementation7 for
replicability

4 Results

Chinese language modeling
Following the common approach in languagemod-
eling (LM), we model the likelihood of a sentence

4昌 has a vertical layout, 明, horizontal, and 晶, com-
pound.

5the radical⼝ (mouth) can appear on the left喊, top员,
bottom含, inner向.

6We used Google’s free Noto font (Google Inc.) through-
out this work including the Chinese characters rendered in this
paper.

7http://github.com/falcondai/chinese-char-lm
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Figure 1: Left: our proposed glyph-aware CNN
embedder. Right: the commonly used embedding
model (we refer to this as ID embedder). The train-
able parameters are labeled in orange.

as

p(c1, · · · , cn) = p(c1)
n∏

i=2

p(ci|c1, · · · , ci−1)

where ci is the i-th character in a sentence of
n characters. The conditional distribution of
p(ci|c1, · · · , ci−1) is modeled as a gated recurrent
unit (GRU) (Chung et al., 2014) together with an
embedder. In all the experiments, we used a GRU
with a 128-dimensional hidden state, and 300-
dimensional embedding vectors for all embedders.
For the CNN embedder, we use a two layer CNN:
32 (7, 7) filters with (2, 2) stride in the first layer,
16 (5, 5) filters (2, 2) stride in the second layer, and
a fully-connected layer at the end. For all the lay-
ers, we use ReLU non-linearity throughout (Nair
and Hinton, 2010). For the linear embedder, we
used only one fully-connected layer. For the last
row “ID + CNN embedder” in Table. 1, we com-
bine the embedding vectors output by ID and CNN
embedders via vector addition. In all the runs, we
limited the vocabulary size to 4000 with one un-
known class.
We experimented with language modeling on

the Microsoft Research dataset (MSR) from the
Second International Chinese Word Segmentation
Bakeoff (Emerson, 2005). First, we should note
that the CNN embedder outperformed the linear
embedder by a largemargin (see the second and the
third row in Table. 1. This is expected as the CNN
is more suitable for modeling image data. Second,

embedders test perplexity
ID embedder 47.53

linear embedder 71.51
CNN embedder 55.51

ID + CNN embedder 47.75

Table 1: LM performance of different embedders
on the test split of MSR.

the ID embedder (see the first row in Table. 1) re-
mains a very strong baseline and themixed embed-
der is only as good as the ID embedder by itself
(see the fourth row in Table. 1). It seems that CNN
embedder did not provide extra information useful
for the task.

Chinese word segmentation

We use Peking University dataset (PKU) and Mi-
crosoft Research dataset (MSR) from the Second
International Chinese Word Segmentation Bake-
off (Emerson, 2005) to compare the proposedCNN
embedder with the ID embedder. We formu-
lated the segmentation task as a structured pre-
diction problem of predicting whether to insert
word boundary behind a character for each char-
acter given the whole input sentence. An example
would be:

这 是 ⼀句 话 。
1 1 0 1 1 1

We experimented with both single-directional
GRU and bidirectional long short-term memory
(LSTM) recurrent networks (Graves and Schmid-
huber, 2005; Hochreiter and Schmidhuber, 1997;
Schuster and Paliwal, 1997) as the sequence pre-
diction models in our experiments (RNN segmen-
tor). (see Table. 2 and Table. 3). RNN segmen-
tor takes sequence of embeddings from embed-
der. For the CNN embedder, we used a single
layer ReLU-gated CNN: 16 (5,5) filters with (2,2)
stride and a fully-connected layer to output a 100-
dimensional embedding vector at the end. For the
RNN segmentor, the hidden unit is set to be 100
dimensional with a fully-connected layer mapping
the output hidden state to a binary prediction at
each character. Overall, on both PKU and MSR,
the proposed mixed embedder and bidirectional
LSTM achieved the best performance outperform-
ing the previous state-of-the-art on by a signifi-
cant margin. Similar to the LM experiments, we
use a vocabulary of 4000 and one unknown class.
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RNN
segmentors embedder precision recall F1

GRU
ID 87.41 84.14 85.75

CNN 90.03 89.54 89.78
ID + CNN 90.46 88.80 89.62

Bidirectional
LSTM

ID 96.06 94.66 95.36
CNN 94.73 94.88 94.81

ID + CNN 96.91 95.41 96.15
NWS (Cai and Zhao, 2016) 95.5 94.9 95.16

Table 2: segmentation results on PKU dataset

RNN
segmentors embedder precision recall F1

GRU
ID 86.97 85.25 86.10

CNN 89.93 86.79 88.33
ID + CNN 88.81 87.19 88.00

Bidirectional
LSTM

ID 97.34 97.25 97.29
CNN 97.07 96.98 97.03

ID + CNN 97.82 97.04 97.43
NWS (Cai and Zhao, 2016) 96.1 96.7 96.4

Table 3: segmentation results on MSR dataset

We use Adam (Kingma and Ba, 2014) optimizer
throughout all our experiments.

5 Analysis

Due to the lack of improvement of the proposed
mixed embedder over the ID embedder in the lan-
guage modeling task, we suspect that the CNN
embedder is under-trained. Unlike a digit class
in MNIST (LeCun et al., 2010) which has 6,000
training examples, given one font, a character
only has one glyph and every sub-glyph structure
appears on average in only about 40 characters.
Thus we suspect that the variability in input to
the CNN is too limited. Modeling after common
image augmentation technique (Krizhevsky et al.,
2012), we applied random jitters, i.e., 2D transla-
tion with ∆x, ∆y ∈ {−2,−1, 0, +1, +2}, to the
input glyphs at training time. This increases the
input variations by 25-fold but the perplexity de-
grades slightly to 49.66.
Since we mix the ID embedding and CNN em-

bedding by summation in the proposed mixed em-
bedder, the norm of each component embedding
determines the relative importance of that repre-
sentation in the resulting embedding. In Figure. 2,
we observe that the CNN embeddings distribute
differently in the trained segmentation model and
the trained language modeling model. In the case
of language modeling, the norm of CNN embed-
dings is squashed suggesting that CNN embedding
is largely ignored.

Figure 2: The distribution of the Frobenius norm
of ID embeddings (id norm) and CNN embeddings
(glyph norm) from the mixed embedder. Top: the
segmentation task. Bottom: the language model-
ing task.

6 Discussion

It should be noted that the number of parameters of
the proposed CNN embedder is different than that
of the ID embedder. Suppose the dimensionality
of the embedding vectors is K, and the vocabu-
lary size is N , the CNN embedder has O(N + K)
many parameters: O(K) many trainable parame-
ters and O(N) glyphs rendered from a font file. In
contrast, the ID embedder has O(N K) many pa-
rameters, all of which are trainable. This means
that the CNN embedder is a more compact repre-
sentation with competitive performance as the ID
embedder.

Related work

Shi et al. (2015) represented a character by its rad-
icals based on Wubi input method but this ignores
the scales and spatial arrangement of each radical
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which are present in our rendered glyphs.
It came to our late attention that independently,

Liu et al. (2017) considered the same character-
level modeling problem and experimented with
vanilla CNNmodels almost identical to ours. They
evaluated their method on a new document classi-
fication task instead of the commonly considered
tasks or benchmarks we considered in this work.
Consistent with their findings, we also observed
similar effects of CNN embedder, ID embedder
and mixed embedder in our tasks. Our mixed em-
bedded corresponds roughly to their early fusion
model. Costa-jussà et al. (2017) also considered
incorporating Chinese glyphs as additional fea-
tures in their Chinese-Spanish machine translation
system and their modeling approach corresponds
roughly to our linear embedder.

Future work

We hope to delve deeper into the cause of the CNN
embedder’s low performance in the LM task. In
particular, we want to experiment with using bag-
of-stroke prediction in a multi-task loss to provide
CNN with extra supervision during training. Fur-
thermore, we have only explored two NLP tasks
that emphasize semantic and syntactic information
in this work. In the future, we hope to explore tasks
that requires more phonetic information to do well,
such as phoneme prediction.

7 Conclusion

Our experiments show that glyph-aware embed-
ding can improve performance in some Chinese
NLP tasks, in particular, the word segmentation
task. Further studies are needed to understand the
usefulness of glyph features in a more comprehen-
sive way. However, given the visual ambiguity
inherent in Chinese characters and the difficulty
to interpret neural network models, any further re-
search that uses glyph features and deep learning
methods should exercise caution when measuring
and verifying the contribution of the glyph fea-
tures.
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Abstract

Multi-task training is an effective method
to mitigate the data sparsity problem.
It has recently been applied for cross-
lingual transfer learning for paradigm
completion—the task of producing in-
flected forms of lemmata—with sequence-
to-sequence networks. However, it is still
vague how the model transfers knowledge
across languages, as well as if and which
information is shared. To investigate this,
we propose a set of data-dependent exper-
iments using an existing encoder-decoder
recurrent neural network for the task. Our
results show that indeed the performance
gains surpass a pure regularization effect
and that knowledge about language and
morphology can be transferred.

1 Introduction

Neural sequence-to-sequence models define the
state of the art for paradigm completion (Cotterell
et al., 2016, 2017; Kann and Schütze, 2016), the
task of generating inflected forms of a lemma’s
paradigm, e.g., filling the empty fields in Table 1
using one of the non-empty fields.

However, those models are in general very data-
hungry, and do not reach good performances in
low-resource settings. Therefore, Kann et al.
(2017) propose to leverage morphological knowl-
edge from a high-resource language (source lan-
guage) to improve paradigm completion in a
closely related language with insufficient re-
sources (target language). This is achieved by
a form of multi-task learning – they train an
encoder-decoder model simultaneously on train-
ing examples for both languages. While closer
related languages seem to help more than distant
ones, the mechanisms how this transfer works still

Present Past
Singular Plural Singular Plural

1 sueño soñamos soñé soñamos
2 sueñas ??? soñaste soñasteis
3 sueña sueñan soñó ???

Table 1: Partial inflection table for indicative
forms of the Spanish verb soñar.

remain largely obscure. Several possibilities exist:
(i) learning of target tag specific word transforma-
tions from the high-resource language (trans); (ii)
training of the character language model of the de-
coder (LM); (iii) learning a bias to copy a large
part of the input (copy), since members of the
same paradigm mostly share the same stem; (iv)
a general regularization effect obtained by multi-
task training (reg).

In this work, we intend to shed light on the way
cross-lingual transfer learning for paradigm com-
pletion with an encoder-decoder model works, and
will especially focus on the role of the character
and tag embeddings. In particular we aim at an-
swering the following questions: (i) What does
the neural model learn from the tags of a high-
resource language for the tags of a low-resource
language? (ii) Is sharing an alphabet important
for the transfer? (iii) How much of the transfer
learning can be reduced to a regularization effect
achieved by multi-task learning?

For our analysis, we present a set of detailed
experiments for the target language Spanish [ES].
Source languages are either members of the Ro-
mance language family (Catalan [CA], French
[FR], Italian [IT], Portuguese [PT]) of different lev-
els of similarity to Spanish, cf. Table 2, or an un-
related language (Arabic [AR]). We show which
parts of the information are learned from the char-
acters or tags and discuss where sequences of let-
ters or tags from a second language contribute to
or restrain performance on the paradigm comple-
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PT CA IT FR

similarity to ES 89% 85% 82% 75%

Table 2: Lexical similarities of Spanish and the
Romance languages used for our experiments
(Lewis, 2009).

tion task in the low-resource language.

2 Transfer Learning for Paradigm
Completion

In this section, we describe cross-lingual transfer
learning for morphology and the model used for it.

Cross-lingual transfer. Transfer learning for
paradigm completion is much more language-
specific than most semantic natural language pro-
cessing tasks, like entity typing or machine trans-
lation. An extreme example is the infeasible task
of transferring morphological knowledge from
Chinese to Portuguese as Chinese does not make
use of inflection at all. Even between two morpho-
logically rich languages transfer is difficult if they
are unrelated, since inflections often mark dissimi-
lar subcategories and word forms do not share sim-
ilarities.

However, Kann et al. (2017) show that trans-
ferring morphological knowledge from Spanish to
Portuguese, two languages with similar morphol-
ogy and 89% lexical similarity, works well and,
more surprisingly, even supposedly very differ-
ent languages like Arabic and Spanish can bene-
fit from each other. They make this possible by
training an encoder-decoder model and appending
a special tag (i.e., embedding) for each language to
the input of the system, similar to (Johnson et al.,
2016). It is currently unclear, though, what the na-
ture of this transfer is, motivating our work which
explores this in more detail.

Model description. The model Kann et al.
(2017) use and we explore in more detail here is an
encoder-decoder recurrent neural network (RNN)
with attention (Bahdanau et al., 2015). It is trained
on maximizing the following log-likelihood:

L(θ) =
∑

(k,w`t
)∈Dt

log pθ (fk [w`t ]|`t ,w`t , tk )

+
∑

(k,w`s )∈Ds

log pθ (fk [w`s ]|`s ,w`s , tk )
(1)

We denote the source training examples as Ds and
the target training examples as Ds. w`s represents

s1 s2 s3 sN

y1 = s y2 = u y3 = e

−→
hi

←−
hi

−−→
hi+1

←−−
hi+1

−−→
hi+2

←−−
hi+2

−→
hN

←−
hN

−→
h1

←−
h1

⊕

s o ñ ... r...LANG=ES

Figure 1: Overview of an encoder-decoder RNN,
mapping the Spanish lemma soñar to the target
form sueña. The thickness of the arrows towards
the circled plus symbol corresponds to each atten-
tion weight. All tags in the input are omitted.

a lemma in a high-resource source language `s
and w`t represents a lemma in a low-resource tar-
get language `t. k represents a given slot in the
paradigm and fk[w`] is the inflected form of w`

corresponding to the morphological tag tk. The
parameters θ of the model are tied for both the
high-resource language and the low-resource lan-
guage to enable transfer learning.

In detail, a bidirectional gated RNN is used to
encode the input sequence, which consists of a
language tag, morphological tags and characters
of the input language. The decoder generates the
output sequence from the characters of the same
language, and consists of a unidirectional RNN
with an attention mechanism over the encoder hid-
den states. Notably, the elements of the input and
the output are represented by embeddings living in
separate spaces.

Hyperparameters. Encoder and decoder RNNs
have 100 hidden units and we use 300-
dimensional embeddings. We train using
ADADELTA (Zeiler, 2012) with minibatch size 20.
All models for all experiments are trained for a
maximum of 150 epochs. The best model is ap-
plied at test time.

3 Exploration of Transfer Learning

In order to answer the questions raised in the in-
troduction, we conduct the following experiments.

3.1 Data
We use the Romance and Arabic language data
from Kann et al. (2017). In particular, each train-
ing file contains 12, 000 high-resource examples
mixed with 50 or 200 fixed Spanish instances. We
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trans LM copy reg
l-ciph X X
t-ciph X
l-emb X X X
t-emb X

Table 3: Expected effect of different modifications
of the high-resource training data. Learning of the
marked fields is likely to be influenced, descrip-
tions in the text, cf. §1.

use the same development and test files for all ex-
periments. Arabic is transcribed into Latin charac-
ters.

3.2 Experiments

Letter cipher (l-ciph). Let C = Clow ∪ Chigh

be the union of the sets of all characters in the
alphabets of the low-resource language and the
high-resource language, respectively.1 We define
a bijective cipher function fciph : C 7→ C, map-
ping each character to a different character, cho-
sen at random. Then, we apply this function to
the elements of the input and output words in the
high-resource language and train the model on this
modified data. The low-resource samples in train,
dev and test remain unchanged.

We expect this to have the following effects: (i)
languages do not share affixes anymore; (ii) as we
use the same embeddings for the changed and un-
changed characters, the model might learn wrong
affixes for tags; (iii) an incorrect character lan-
guage model could be learned; and (iv) a general
bias to copy should remain unchanged.
Tag cipher (t-ciph). We further consider the
union of the sets of all morphological tags ex-
isting in the low- and high-resource languages:
T = Tlow ∪ Thigh. We define a bijective cipher
function fciph : T 7→ T . We then apply this func-
tion to all tags in the high-resource language input
and train a new model. The low-resource exam-
ples in train, dev and test are not changed.

We expect this to: (i) disturb the learning of cor-
respondences between target tags and output char-
acters; (ii) not influence anything else.
Language-dependent letter embeddings (l-
emb). We now use different embeddings for the
characters of the two languages. This corresponds
to a setting where the source and target languages
do not share the same vocabulary.

1Note that for the languages considered in our experi-
ments we have Clow ≈ Chigh.

This should result in: (i) making it impossible
for the model to learn which affixes have to be
produced for which tag, maybe resulting in bene-
fits for more distant and worse performance for ex-
tremely close languages; and (ii) transfer of the de-
coder’s character language model getting impossi-
ble.
Language-dependent tag embedding (t-emb).
Additionally, we also experiment with different
embeddings for the morphological tags in differ-
ent languages.

We expect the following to happen: (i) the
model can learn a character language model in
the output, which might be good for related and
bad for more distant languages; (ii) it should not
be possible for the model to learn a correspon-
dence between tags and characters in the output
sequence; and (iii) the model cannot get informa-
tion about tags in the low-resource language from
the high-resource language’s examples.

We additionally perform two last experiments:
Language-dependent letter embeddings with
separation symbol (l-emb-sep). This is the same
as l-emb, but we introduce a new separation sym-
bol SEP between the tags and the characters, solv-
ing the problem that it is not clear where the tag
ends and the word starts. We expect equal or bet-
ter performance than for l-emb.
Language-dependent tag embedding with sepa-
ration symbol (t-emb-sep). This is equivalent to
t-emb, but we again insert a new separation sym-
bol SEP between the tags and the input word’s
characters. We expect equal or better performance
than for t-emb.

3.3 Intuition

In Table 3 we display an overview of which of
the working mechanisms of cross-lingual trans-
fer learning we expect to be effected by which
changes to the high-resource training data. De-
pending on the relationship between the source
and the target language, e.g., whether they use the
same affixes to express the same morphosyntac-
tic properties, we anticipate stronger or weaker ef-
fects. The regularization effect should not be in-
fluenced by our changes to the data.

3.4 Results and Analysis

For the low-resource training set of size 50, the
models with the original setup and without trans-
fer perform best and worst, respectively. However,

72



50 200
ES (+0) AR FR IT CA PT ES (+0) AR FR IT CA PT

original .0075(.00) .1496(.01) .4277(.02) .5161(.01) .6216(.02) .4755(.01) .5012(.03) .6596(.01) .7080(.01) .7713(.01) .8142(.01) .6885(.01)
l-ciph - .1209(.01) .1837(.03) .3207(.02) .2937(.02) .1005(.06) - .6626(.01) .6491(.02) .7032(.02) .7151(.00) .6155(.03)
t-ciph - .1208(.02) .3491(.01) .4823(.01) .4963(.02) .3623(.02) - .6405(.01) .7058(.01) .7768(.01) .8040(.01) .6317(.01)
l-emb - .1353(.06) .2905(.01) .2842(.09) .4327(.03) .2723(.06) - .7109(.02) .7048(.01) .7412(.01) .7655(.02) .7323(.01)
t-emb - .1363(.03) .3941(.02) .5012(.02) .5610(.02) .4300(.02) - .6464(.00) .7364(.01) .7760(.01) .8142(.01) .6690(.01)
l-emb-sep - .1312(.03) .3240(.03) .3554(.04) .4282(.03) .2883(.06) - .6464(.00) .7180(.02) .7522(.01) .7757(.01) .7250(.02)
t-emb-sep - .1672(.02) .4516(.01) .5138(.01) .5944(.02) .4608(.02) - .6668(.01) .7434(.00) .7946(.01) .8305(.01) .6824(.01)

Table 4: Results for all experiments and all high-resource source languages. ES denotes experiments
without transfer. 50 and 200 are the numbers of low-resource training examples. All results are averaged
over 5 training runs, standard deviation in parenthesis.
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Figure 2: Results for all experiments, averaged
over all languages. only-ES denotes a model
trained exclusively on 50 or 200 Spanish exam-
ples.

for low-resource training size 200, t-emb-sep per-
forms best in most case, and without transfer still
performs worst. The order of the accuracies av-
eraged over all languages can be seen in Figure
2: original > t-emb-sep > t-emb > t-ciph > l-
emb-sep > l-emb > l-ciph for 50 and t-emb-sep
> l-emb-sep> l-emb> t-emb> original> t-ciph
> l-ciph for 200 low-resource examples. The de-
tailed results of each language can be found in Ta-
ble 4.

First, this shows clearly that the character em-
beddings are more important for the task than the
tag embeddings. Second, l-emb (resp. t-emb) and
l-ciph (resp. t-ciph) correspond to a setting with
no additional information vs. a setting with po-
tentially wrong information. Generally higher ac-
curacies for separate embedding spaces indicate
that the model can learn incorrect information via
transfer. Thus, the choice of the source language
seems to be very important. The differences in
performance between original and l-emb represent
the influence of shared vs. separate embedding

spaces, i.e., vocabularies in the case of the letters.
Sharing a vocabulary seems to influence the final
accuracy a lot, and more positively for 50 low-
resource examples. We can explain this with the
model learning to copy – it has no intrinsic way of
knowing which input character equals which out-
put character in the vocabulary unless it has seen
it at least once. However, for 200 Spanish exam-
ples, we can expect all characters to appear in the
Spanish training data, such that the character lan-
guage model and tag-output correspondence get
more important. This explains the unexpected re-
sult that l-emb performs best for Arabic (200) and
Portuguese (200): both source languages poten-
tially confuse the language model; in Portuguese
we contribute this to a big overlap of lemmata in
the two languages with Portuguese often inflecting
in a different way (Kann et al., 2017). Further, the
differences in performance between original and
t-emb show that the model indeed learns informa-
tion from the tags, supposedly which output se-
quence is more likely to appear with which tag.

The l-emb-sep and t-emb-sep results show that
a separation symbol clearly improves the model’s
performance.

4 Related Work

Transfer learning with encoder-decoder net-
works. Encoder-decoder RNNs were introduced
by Cho et al. (2014) and Sutskever et al. (2014)
and extended by an attention mechanism by Bah-
danau et al. (2015). Lately, much work was done
on multi-task learning and transfer learning with
encoder-decoder RNNs. Luong et al. (2015) inves-
tigated multi-task setups for sequence-to-sequence
learning, combining multiple encoders and de-
coders. In contrast, in our experiments, we use
only one encoder and one decoder. There exists
much work on multi-task learning with encoder-
decoder RNNs for machine translation (Johnson
et al., 2016; Dong et al., 2015; Firat et al., 2016;
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Ha et al., 2016). Alonso and Plank (2016) ex-
plored multi-task learning empirically, analyzing
when it improves performance. Here, we focus on
how transfer via multi-task learning works.

Paradigm completion. SIGMORPHON
hosted two shared tasks on paradigm completion
(Cotterell et al., 2016, 2017), in order to encour-
age the development of systems for the task. One
approach is to treat it as a string transduction
problem by applying an alignment model with a
semi-Markov model (Durrett and DeNero, 2013;
Nicolai et al., 2015). Recently, neural sequence-
to-sequence models are also widely used (Faruqui
et al., 2016; Kann and Schütze, 2016; Aharoni
and Goldberg, 2017; Zhou and Neubig, 2017). All
the above mentioned work were designed for one
single language.

5 Conclusion

We conducted a set of experiments to explore the
mechanisms behind cross-lingual transfer learning
for morphological reinflection. Our findings in-
dicate that knowledge about a language’s typical
character sequences and outputs for certain mor-
phological tags can be transferred. In particular,
this means that the effect cannot be reduced to sole
regularization.
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Yarowsky, Jason Eisner, and Mans Hulden. 2017.

The CoNLL-SIGMORPHON 2017 shared task:
Universal morphological reinflection in 52 lan-
guages. In CoNLL-SIGMORPHON.

Ryan Cotterell, Christo Kirov, John Sylak-Glassman,
David Yarowsky, Jason Eisner, and Mans Hulden.
2016. The SIGMORPHON 2016 shared task—
morphological reinflection. In SIGMORPHON.

Daxiang Dong, Hua Wu, Wei He, Dianhai Yu, and
Haifeng Wang. 2015. Multi-task learning for mul-
tiple language translation. In ACL.

Greg Durrett and John DeNero. 2013. Supervised
learning of complete morphological paradigms. In
HLT-NAACL.

Manaal Faruqui, Yulia Tsvetkov, Graham Neubig, and
Chris Dyer. 2016. Morphological inflection genera-
tion using character sequence to sequence learning.
In NAACL-HLT .

Orhan Firat, Kyunghyun Cho, and Yoshua Ben-
gio. 2016. Multi-way, multilingual neural ma-
chine translation with a shared attention mechanism.
arXiv preprint arXiv:1601.01073 .

Thanh-Le Ha, Jan Niehues, and Alexander Waibel.
2016. Toward multilingual neural machine trans-
lation with universal encoder and decoder. arXiv
preprint arXiv:1611.04798 .

Melvin Johnson, Mike Schuster, Quoc V. Le, Maxim
Krikun, Yonghui Wu, Zhifeng Chen, Nikhil Tho-
rat, Fernanda Vigas, Martin Wattenberg, Greg Cor-
rado, Macduff Hughes, and Jeffrey Dean. 2016.
Google’s multilingual neural machine translation
system: Enabling zero-shot translation. arXiv
preprint arXiv:1611.04558 .

Katharina Kann, Ryan Cotterell, and Hinrich Schütze.
2017. One-shot neural cross-lingual transfer for
paradigm completion. In ACL.

Katharina Kann and Hinrich Schütze. 2016. Single-
model encoder-decoder with explicit morphological
representation for reinflection. In ACL.

M Paul Lewis, editor. 2009. Ethnologue: Languages
of the World. SIL International, Dallas, Texas, 16
edition.

Minh-Thang Luong, Quoc V Le, Ilya Sutskever, Oriol
Vinyals, and Lukasz Kaiser. 2015. Multi-task
sequence to sequence learning. arXiv preprint
arXiv:1511.06114 .

Garrett Nicolai, Colin Cherry, and Grzegorz Kondrak.
2015. Inflection generation as discriminative string
transduction. In HLT-NAACL.

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. 2014.
Sequence to sequence learning with neural net-
works. In NIPS.

Matthew D Zeiler. 2012. ADADELTA: an adaptive
learning rate method. CoRR abs/1212.5701.

74



Chunting Zhou and Graham Neubig. 2017. Multi-
space variational encoder-decoders for semi-
supervised labeled sequence transduction. In
ACL.

75



Proceedings of the First Workshop on Subword and Character Level Models in NLP, pages 76–81,
Copenhagen, Denmark, September 7, 2017. c©2017 Association for Computational Linguistics.

Unlabeled Data for Morphological Generation With Character-Based
Sequence-to-Sequence Models

Katharina Kann and Hinrich Schütze
LMU Munich, Germany

kann@cis.lmu.de

Abstract

We present a semi-supervised way of
training a character-based encoder-
decoder recurrent neural network for
morphological reinflection, the task
of generating one inflected word form
from another. This is achieved by using
unlabeled tokens or random strings as
training data for an autoencoding task,
adapting a network for morphological
reinflection, and performing multi-task
training. We thus use limited labeled
data more effectively, obtaining up to
9.9% improvement over state-of-the-art
baselines for 8 different languages.

1 Introduction

Morphologically rich languages use inflection—
the adaptation of a surface form to its syntactic
context—to mark the properties of a word, e.g.,
gender or number of nouns or tense of verbs.
This drastically increases the type-token ratio, and
thus negatively effects natural language process-
ing (NLP), making morphological analysis and
generation an important field of research.

In this work, we focus on morphological rein-
flection (MRI), the task of mapping one inflected
form of a lemma to another, given the morpholog-
ical properties of the target, e.g., (smiling, Past-
Part) → smiled. The lemma does not have to
be known. Recently, there have been some ad-
vances on the topic, motivated by the SIGMOR-
PHON 2016 shared task on morphological rein-
flection (Cotterell et al., 2016) and the CoNLL-
SIGMORPHON 2017 shared task on universal
morphological reinflection (Cotterell et al., 2017).
In 2016, neural sequence-to-sequence models,
specifically attention-based encoder-decoder mod-
els, outperformed all other approaches by a wide

Figure 1: Examples for labeled and unlabeled input. The
content of the red boxes (very left in both rows) signalizes if
the sample belongs to the MRI task or the autoencoding task.

margin (Faruqui et al., 2016; Kann and Schütze,
2016). However, those models require a lot of
training data, while in contrast many morpholog-
ically rich languages are low-resource, and little
work has been done so far on neural models for
morphology in settings with limited training data.
This makes sequence-to-sequence models not ap-
plicable to morphological generation in most lan-
guages.

An abundance of unlabeled data, in contrast,
can be assumed available for each language in
the focus of NLP. Thus, we propose a semi-
supervised training method for a state-of-the-art
encoder-decoder network for MRI using both la-
beled and unlabeled data, mitigating the need for
time-expensive annotations. We achieve this by
treating unlabeled words as training examples for
an autoencoding (Vincent et al., 2010) task and
multi-task training (cf. Figure 1). We intuit the
following reasons why this should be beneficial:
(i) The decoder’s character language model can
be trained using unlabeled data. (ii) Training on
a second task reduces the problem of overfitting.
(iii) By forcing the model to additionally learn au-
toencoding, we give it a strong prior to copy the
input string. This might be advantageous as often
many forms of a paradigm share the same stem,
e.g., smiling and smiled. In order to investigate
the importance of the latter, we further experiment
with autoencoding of random strings and find that
for our experimental settings and non-templatic
languages the performance gain is comparable to
using corpus words.
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2 Model Description

The log-likelihood for joint training on the tasks
of MRI and autoencoding is:

L(θ)=
∑

(fs,ft,t)∈T
log pθ (ft | e(fs, t)) (1)

+
∑
w∈W

log pθ(w | e(w)),

T is the MRI training data, with each example
consisting of a source form fs, a target form ft

and a target tag t. W denotes a set of words in the
language of the system. The encoding function e
depends on θ. The parameters θ are shared across
the two tasks, resulting in a share of information.
We obtain this by giving our model data from both
sets at the same time, and marking each example
with a task-specific input symbol, cf. Figure 1.
Following (Kann and Schütze, 2016), we employ
a neural encoder-decoder model.

Encoder. For the input of the encoder, we adapt
the format by Kann and Schütze (2016), but mod-
ify it to be able to handle unlabeled data: Given
the set of morphological subtags M each target tag
is composed of (e.g., the tag 1SgPresInd contains
the subtags 1, Sg, Pres and Ind), and the alphabet
Σ of the language of application, our input is of the
form B[A/M∗]Σ∗E, i.e., it consists of either a se-
quence of subtags or the symbol A signaling that
the input is not annotated and should be autoen-
coded, and (in both cases) the character sequence
of the input word. B and E are start and end sym-
bols. Each part of the input is represented by an
embedding.

We then encode the input x = x1, x2, . . . , xTx

using a bidirectional gated recurrent neural net-
work (GRU) (Cho et al., 2014b), i.e.,

−→
h i =

f
(−→

h i−1, xi

)
and
←−
h i = f

(←−
h i+1, xi

)
, with f

being the update function of the hidden layer. For-
ward and backward hidden states are concatenated
to obtain the input hi for the decoder.

Decoder. The decoder is an attention-based
GRU, defining a probability distribution over
strings in Σ∗:

p(y | x) =
Ty∏
t=1

p(yt | y1, . . . , yt−1, st, ct),

with st being the decoder hidden state for time
t and ct being a context vector, calculated using

the encoder hidden states together with attention
weights. A detailed description of the model can
be found in Bahdanau et al. (2015).

3 Experiments

Dataset. We experiment on the task 3 dataset
of the SIGMORPHON 2016 shared task on MRI
(Cotterell et al., 2016) and all standard languages
provided: Arabic, Finnish, Georgian, German,
Navajo, Russian, Spanish and Turkish. German,
Spanish and Russian are suffixing and exhibit stem
changes. Russian differs from the other two in
that those stem changes are consonantal and not
vocalic. Finnish and Turkish are agglutinating,
almost exclusively suffixing and have vowel har-
mony systems. Georgian uses both prefixiation
and suffixiation. In contrast, Navajo mainly makes
use of prefixes with consonant harmony among
its sibilants. Finally, Arabic is a templatic, non-
concatenative language.

For each language, we further add randomly
sampled words from the respective Wikipedia
dumps. We exclude tokens that are not exclu-
sively composed from characters of the language’s
alphabet, e.g., digits, or do not appear at least 2
times in the corpus. The exact amount of unla-
baled data added is treated as a hyperparameter
depending on the number of available annotated
examples and optimized on the development set,
cf. Section 4.1. Evaluation is done on the official
shared task test set.

Training, hyperparameters and evaluation.
We mainly adopt the hyperparameters of (Kann
and Schütze, 2016). Embeddings are 300-
dimensional, the size of all hidden layers is 100
and for training we use ADADELTA (Zeiler, 2012)
with a batch size of 20. We train all models which
use 1

8 or more of the labeled data for 200 epochs,
and models that see 1

16 and 1
32 of the original data

for 400 and 800 epochs, respectively. In all cases,
we apply the last model for testing.

We evaluate using two metrics: accuracy and
edit distance. Accuracy reports the percentage of
completely correct solutions, while the edit dis-
tance between the system’s guess and the gold so-
lution gives credit to systems that produce forms
that are close to the right form.

Baselines. We compare our system to three
baselines: The first one is MED1, the winning sys-

1http://cistern.cis.lmu.de/med/
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acc .188 .094 .716 .722 .293 .325 .809 .854 .814 .831 .910 .912 .721 .687 .882 .888 .317 .403 .706 .711 .641 .638 .825 .824 .558 .539 .939 .942 .181 .129 .904 .910
ED 2.26 3.06 0.94 0.92 1.90 1.47 0.47 0.35 0.42 0.38 0.28 0.30 0.47 0.54 0.33 0.31 2.04 1.95 1.01 0.97 0.69 0.65 0.43 0.43 0.96 0.97 0.15 0.15 2.92 3.33 0.27 0.23

1
8

acc .104 .063 .600 .640 .207 .227 .687 .732 .798 .791 .883 .894 .618 .593 .851 .873 .247 .350 .516 .619 .516 .523 .766 .772 .441 .409 .896 .916 .120 .080 .846 .832
ED 2.76 3.32 1.37 1.20 2.32 1.91 0.85 0.77 0.47 0.44 0.45 0.42 0.67 0.73 0.42 0.35 2.40 2.23 1.75 1.40 0.95 0.92 0.60 0.60 1.36 1.35 0.26 0.22 3.42 3.80 0.47 0.54

1
16

acc .052 .043 .470 .533 .126 .149 .543 .620 .709 .751 .860 .875 .504 .495 .791 .839 .204 .329 .350 .473 .384 .422 .645 .695 .317 .308 .807 .862 .070 .049 .717 .739
ED 3.36 3.53 1.80 1.59 2.84 2.34 1.33 1.16 0.62 0.50 0.58 0.52 0.90 0.94 0.60 0.45 2.71 2.41 2.63 2.05 1.23 1.17 0.94 0.82 1.80 1.70 0.47 0.36 3.81 4.09 0.99 0.94

1
32

acc .028 .027 .263 .381 .073 .088 .314 .402 .595 .648 .818 .852 .384 .386 .661 .722 .174 .303 .174 .369 .249 .293 .406 .502 .196 .245 .657 .756 .044 .028 .524 .571
ED 3.73 3.73 2.79 2.22 3.18 2.76 2.48 2.00 0.87 0.70 0.76 0.65 1.15 1.18 1.01 0.90 2.94 2.65 3.85 2.73 1.61 1.45 1.71 1.38 2.22 2.06 0.97 0.62 4.19 4.27 1.98 1.80

Table 1: Accuracy (the higher the better) and edit distance (the lower the better) for our system and the three baselines on
the official test set of task 3 of the SIGMORPHON 2016 shared task. Only the indicated amount (row labels) of the original
training data is used, emulating a low-resource setting. Best results for each language in bold.

tem of the 2016 shared task. The network architec-
ture is the same as in our system, but it is trained
exclusively on labeled data. Thus, we expect it to
suffer stronger from a lack of resources.

The second baseline is the official SIGMOR-
PHON 2016 shared task baseline (SIG16) (Cot-
terell et al., 2016), which is similar in spirit to the
system described by Nicolai et al. (2015). The
system treats the prediction of edit operations to
be performed on the input string as a sequential
decision-making problem, greedily choosing each
edit action given the previously chosen actions.
The selection of operations is made by an averaged
perceptron, using the binary features described in
(Cotterell et al., 2016).2

Third, we compare to the baseline system of the
CoNLL-SIGMORPHON 2017 shared task on uni-
versal morphological reinflection (SIG17) (Cot-
terell et al., 2017), which is extremely suitable for
low-resource settings. It splits all source and tar-
get forms in the training set into prefix, middle
part and suffix, and uses those to find prefix or suf-
fix substitution rules. Every evaluation example is
searched for the longest contained prefix or suffix
and the rule belonging to the affix and given target
tag is applied to obtain the output.

Results and discussion. As shown in Table 1,
additionally training on unlabeled examples im-
proves the performance of the encoder-decoder
network for nearly all settings and languages, es-
pecially for the very low-resource scenarios with
1
16 and 1

32 of the training data. The biggest
increase in accuracy can be seen for Russian
and Spanish, both in the 1

32 setting, with 0.0963
(0.5023− 0.4060) and 0.0992 (0.7564− 0.6572),
respectively. For the settings with bigger amounts

2Note that our use of the system differs from the offi-
cial baseline in that we perform a direct form-to-form map-
ping. The shared task system predicts first form-to-lemma
and then lemma-to-form. However, we assume no lemmata
to be given, and thus are unable to train such a system.

of training data available, the unlabeled data does
not change performance a lot. This was ex-
pected, as the model already gets enough infor-
mation from the annotated data. However, semi-
supervised training never hurts performance, and
can thus always be employed. Overall, our semi-
supervised training method shows to be a useful
extension of the original system.

Furthermore, there are only two cases—
Georgian, 1

16 , and Navajo, 1
32—where any of the

SIGMORPHON baselines outperforms the neural
methods. This clearly shows the superiority of
neural networks for the task and emphasizes the
need to reduce the amount of labeled training data
required for their training.

4 Analyses

4.1 Amount of Unlabeled Data

We now consider the amount of unlabeled exam-
ples as a function of the number of annotated ex-
amples. Data and training regime are the same as
in Section 3. This analysis is performed on the de-
velopment set and we report the highest accuracy
obtained during training.

The resulting accuracies for Arabic and Ger-
man can be seen in Figure 2. The other languages
behave similarly to German. The loss of perfor-
mance for reducing the training data varies a lot
between languages, depending on how regular and
thus ”easy to learn” those are. Concerning the
amount of unlabeled examples, it seems that even
though in single cases other ratios are slightly bet-
ter, using 4 times more unlabeled examples mostly
obtains highest accuracy. Thus, a general rule
could be that the more additional examples are
used the better. The only exception is Arabic in
the 1

32 setting, where using half as many unlabeled
as labeled examples obtains much better results.
We explain this with the Semitic language being
templatic. Since words in Arabic paradigms do
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Figure 2: Comparison of different amounts of unlabeled data,
sorted by the amount of labeled training examples in portions
of the original data. Evaluated on the development set.

not share a connected stem, we expect that giving
the model too much bias to copy might be harm-
ing performance in low-resource settings. How-
ever, even for low-resource Arabic, using a ratio
of 1:4 of labeled to unlabeled examples still yields
a better performance than not using unlabeled ex-
amples at all. Thus, we can conclude that if aiming
for a language-independent setup, this is a good
ratio.

4.2 Autoencoding of Random Strings
We expect the network to benefit from a bias to
copy strings. This suggests that any random com-
bination of characters from the language’s alpha-
bet could be autoencoded in order to improve the
performance in low-resource settings. To verify
this, we train models on new datasets with 1

32 of
the labeled examples from task 3 of the SIGMOR-
PHON 2016 shared task and the optimal number
of unlabeled examples for each language, cf. §4.1.
However, the unlabeled examples are now random
strings of a length between 3 and 20. All mod-
els are trained as before. Accuracies on the offi-
cial test sets are shown in Table 2, and compared
to (i) training without unlabeled examples and (ii)
the data being enhanced by corpus words. Sev-
eral aspects of the results are eye-catching. First,
for Arabic, the gap to the performance with cor-

ar fi ka de nv ru es tu
MED .2628 .3144 .8184 .6608 .1738 .4060 .6572 .5238
MED+corpus .3811 .4015 .8523 .7221 .3688 .5023 .7564 .5713
MED+random .3064 .3793 .8531 .7313 .3250 .4958 .7676 .5706

Table 2: Accuracies for MED (Kann and Schütze (2016)),
MED+corpus and MED+random. Descriptions in the text.

pus words is the biggest, showing that indeed the
tendency of languages to copy the stem when in-
flecting is playing an important role. Second, for
some languages the performance gains for corpus
words and random words are comparable. Third,
the performance of random strings is closer to the
performance of corpus words the higher the over-
all accuracy is. The additional unlabeled examples
might be acting as regularizers in this case.

Overall, this experiment shows clearly that giv-
ing the model a bias to copy strings helps for in-
flection in non-templatic languages, and that ran-
dom strings can improve a network for MRI.

5 Related Work

For the SIGMORPHON 2016 and the CoNLL-
SIGMORPHON 2017 shared tasks (Cotterell
et al., 2016, 2017), multiple MRI systems were
developed, e.g., (Nicolai et al., 2016; Taji et al.,
2016; Kann and Schütze, 2016; Aharoni et al.,
2016; Östling, 2016; Makarov et al., 2017).
Encoder-decoder neural networks (Cho et al.,
2014a; Sutskever et al., 2014; Bahdanau et al.,
2015) performed best, such that we extend them
in this work. Earlier work on paradigm comple-
tion included (Faruqui et al., 2016; Nicolai et al.,
2015; Durrett and DeNero, 2013). Work directly
tackling MRI was more rare, e.g., (Dreyer and Eis-
ner, 2009). Our work relates to the line of re-
search on minimally supervised and unsupervised
methods for morphology, e.g., Creutz and Lagus
(2007) and Goldsmith (2001) presenting the un-
supervised morphological segmentation systems
Morfessor and Linguistica, or (Dreyer and Eis-
ner, 2011; Poon et al., 2009; Snyder and Barzilay,
2008). However, none of those focused directly on
MRI or on training neural networks for morphol-
ogy. The only case we know of where this was
done was work by Kann et al. (2017). They lever-
aged morphologically annotated data in a closely
related high-resource language to reduce the need
for labeled data in the target language. This works
well for similar languages, but has the shortcom-
ing to require annotations in such a language to
be at hand. A similar approach was presented
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by Ha et al. (2016) for machine translation (MT).
Unlabeled corpora were used for semi-supervised
training of models for MT, e.g., by Cheng et al.
(2016); Vincent et al. (2010); Socher et al. (2011);
Ramachandran et al. (2016). Those approaches
differ from ours, due to a fundamental difference
between the two tasks: For MRI, the source vo-
cabulary and the target vocabulary are mostly the
same. This makes it intuitive for MRI to train the
final model jointly on MRI and autoencoding.

6 Conclusion

We presented a way of semi-supervised training
of a state-of-the-art model for low-resource MRI,
using words from an unlabeled corpus. We found
that the best ratio of labeled to unlabeled data de-
pends of the morphological typology of the lan-
guage. Finally, we showed that autoencoding ran-
dom strings also increases performance, for some
languages as much as using corpus words.
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Abstract

We consider two related problems in this
paper. Given an undeciphered alphabetic
writing system or mono-alphabetic cipher,
determine: (1) which of its letters are vow-
els and which are consonants; and (2)
whether the writing system is a vocalic
alphabet or an abjad. We are able to
show that a very simple spectral decompo-
sition based on character co-occurrences
provides nearly perfect performance with
respect to answering both question types.

1 Introduction

Most of the world’s writing systems are based
upon alphabets, in which each of the basic units
of speech, called phones, receives its own rep-
resentational unit or letter. The vast majority of
phones are consonants or vowels, the former be-
ing produced through a partial or full obstruction
of the vocal tract, the latter, through a stable inter-
val of resonance at several characteristic frequen-
cies called formants. In the course of deciphering
an alphabet, one of the first important questions to
answer is which of the letters correspond to vow-
els, and which to consonants, a problem that has
been studied as far back as Ohaver (1933). Indeed,
if there is disagreement as to whether a phonetic
script is an alphabet or not, a near-perfect separa-
tion of its graphemes into consonants and vowels
would be very important evidence for confirming
the proposition that it was.

A well-publicized, recent attempt at classify-
ing the letters of an undeciphered alphabet as ei-
ther vowels or consonants was by Kim and Sny-
der (2013), who used a Bayesian approach to esti-
mating an unobserved set of parameters that cause
phonetic regularities among the distributions of
letters in the alphabets of known/deciphered writ-
ing systems. By contrast, the method proposed

in this paper is based on a very simple spectral
analysis of letter distributions within only the writ-
ing system under investigation, and it requires no
training or parameter tuning. It is furthermore
based on a newly confirmed empirical universal
over alphabetic writing systems that is interesting
in its own right, is crucial to our method’s numer-
ical stability.

Spectral analysis of vowels and consonants
dates back to at least Moler and Morrison (1983),
which performs very poorly. Our method can be
regarded as both a simplification and improvement
to Moler and Morrison (1983). On average, our
method correctly classifies 97.45% of characters
in any alphabetic writing system.

Another notable antecedent is Goldsmith and
Xanthos (2009), who discovered essentially the
same method for vowel-consonant separation in
the context of spectrally analyzing phonemic tran-
scriptions. While the premise that someone
would have phonemically transcribed a text with-
out knowing by the end which phones were vowels
or consonants may seem far-fetched, Goldsmith
and Xanthos (2009) draw some important conclu-
sions for a subsequent analysis of vowel-harmonic
processes that we shall not investigate further here.
Goldsmith and Xanthos (2009) also cite Sukhotin
(1962), whose method we evaluate below, as a
precedent for their own study, possibly influenced
by Guy’s (1991) English gloss of Sukhotin’s work,
which misrepresents Sukhotin’s (1962) intention
as seeking to classify letters in a substitution ci-
pher as vowels or consonants. Sukhotin’s (1962)
study, which was originally written in Russian, is
in fact about the written form (bukv) of plaintext
letters, not of ciphers nor of the sounds of speech.
Sukhotin begins his study by posing the research
question of whether, given the well-known sep-
aration of the sounds of speech into vowels and
consonants, there are similar classes for letters
(podobnyh klassah k’bukvam). The distinction be-
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*h t*e h* *a f*t a* c*t
t 1 0 0 0 0 1 0
h 0 1 0 0 0 0 0
e 0 0 1 0 0 0 0
f 0 0 0 1 0 0 0
c 0 0 0 1 0 0 0
a 0 0 0 0 1 0 1

Table 1: The binary matrix, A, for the string ‘the
fat cat’. Viewed as an adjacency matrix, it repre-
sents a bipartite graph.

tween written letters and phones is particularly
salient in Russian, which, unlike English, has writ-
ten letters that simply cannot be classified as vow-
els or consonants in any context or in isolation.1

Sukhotin (1962) made an earlier attempt at our
study of writing systems, not at Goldsmith and
Xanthos’s (2009) study of phoneme clustering. In
the present paper, we consider two applications of
our method to the problem of classifying an alpha-
betic writing system as either an abjad (one with
letters only for consonants) or a vocalic alphabet
(one with letters for vowels as well).

2 A Spectral Universal over Alphabets

A p-frame (Stubbs and Barth, 2003) is a bit like
a trigram context, except it considers one preced-
ing and one succeeding element of context, rather
than two preceding elements. The string ‘the fat
cat’, for example, contains these, among other p-
frames at the character level: ‘ *h’, ‘t*e’, ‘h* ’,
‘ *a’, where ‘ ’ represents a space.

Given a sufficiently long corpus, C, in the al-
phabet, Ω, let A be the binary matrix of dimen-
sion m × n, where n is the number of different
letter types in Ω and m is the number of different
p-frames that occur in C (see Table 1), in which
Aij = 1 iff letter i occurs in p-frame j in C.

Every m by n matrix A has a singular-value de-
composition into A = UΣV T . Usually, we are in-
terested in Σ, a diagonal matrix containing the sin-
gular values of A, but we will be more concerned
here with the n by n matrix V , the columns of
which, the right singular vectors of A, are eigen-
vectors of AT A. V is also orthonormal, which

1These are the front and back “yer” that respectively mark
the presence or absence of palatalization. Sukhotin (1962)
knew about the special status of these letters, too; when his
method classifies the “front yer” as a vowel, he expresses
some satisfaction because the “front yer” did represent a
vowel at an earlier stage in Russian writing.

means that the inner product of any two right sin-
gular vectors, vi · vj , is 0 unless i = j, in which
case the inner product is 1 (Strang, 2005).

If the rows and columns of U, Σ and V are per-
muted so that the singular values of Σ appear in
decreasing order, then the first two right singular
vectors are the most important, in the sense that
they provide the most information about A. Let x
and y be these two vectors; they are columns of
V , and so they are rows of V T , as shown in Fig-
ure 1. Empirically, each xi is proportional to both
the frequency of the ith letter in C and the frequen-
cies of the p-frame contexts in which the ith letter
occurs. Again empirically, each yi ends up being
proportional to the number of contexts that the ith

letter shares with other letters.

Because V is orthonormal,
∑

i xiyi = 0. Since
their sum centres around zero, for some of the let-
ters i ∈ Ω+, xiyi is positive, and for other i ∈ Ω−,
xiyi is negative. The spectral universal we have
empirically determined is that these two subsets of
Ω almost perfectly separate the vowels and con-
sonants of the writing system utilized by C. A
moment’s reflection will confirm that the p-frame
distributions of vowels are probably very differ-
ent from the p-frame distributions of consonants
(Sukhotin, 1962), but the best thing about this uni-
versal is its inherent numerical stability. Table 2
shows the sums over these two sets for 15 al-
phabetic writing systems, expanded to 12 decimal
places.

This calculation presumes a foreknowledge of
what the vowels and consonants are, but if we
were to order all of the letters in Ω by their
value yi, define a separator y = b, and then
vary the parameter b so as to maximize the sum
|∑i:yi>b xiyi| + |

∑
i:yi≤b xiyi|, b = 0 attains the

maximum value. This is again trivial to prove in
theory, but because the differences between vowel
and consonant p-frames are the most important
differences among all of the possible separators,
empirically we may observe that y = 0 separates
the vowels from the consonants. In other words,
the actual values that the yi attain are irrelevant;
all that matters is their signs.

None of this provides any guidance as to which
subset/sign contains the vowels and which, the
consonants. Borrowing from the general idea be-
hind Sukhotin’s algorithm (Guy, 1991), we will
assume that the most frequent letter of any alpha-

83



A = UΣV > =



. . . . . .

. . . . . .

. . . . . .

. . . . . .

. . . . . .

. . . . . .





. . . . . .

. . . . . .

. . . . . .

. . . . . .

. . . . . .

. . . . . .





x1 x2 x3 x4 x5 x6

y1 y2 y3 y4 y5 y6

. . . . . .

. . . . . .

. . . . . .

. . . . . .



Figure 1: Singular Value Decomposition of A.

Language |∑xvowels · yvowels| |
∑

xconsonants · yconsonants|
Danish 0.461778253515 0.461778253515
Dutch 0.478014338904 0.478014338904

English 0.484420669972 0.484420669972
Finnish 0.471723103373 0.471723103373
French 0.482759327181 0.482759327181
German 0.440663056154 0.440663056154
Greek 0.447065776857 0.447065776857

Hawaiian 0.432782088536 0.432782088536
Italian 0.467317672843 0.467317672843
Latin 0.4656326487 0.4656326487

Maltese 0.496082609138 0.496082609138
Portuguese 0.463359992637 0.463359992637

Russian 0.491165538014 0.491165538014
Spanish 0.478974310472 0.478974310472
Swedish 0.430570626024 0.430570626024

Table 2: Inner products of x and y (Figure 1) for 15 different writing systems, accurate to 12 places.

bet is a vowel,2 (Vietnamese is the singular excep-
tion that we have found to this rule) and thus label
the subset that contains it as the vowel container3.
This yields Algorithm 1, which we evaluate in
Table 3.4 5

3 Evaluating the Vowel Identification
Algorithm

Kim and Snyder (2013) report token-level accu-

2Note that we treat ò,ó,ô, and o, for example, as four dis-
tinct vowels.

3Out of the 26 alphabets we examine, this assumption
only fails for Vietnamese, whose most frequent letter is n.
This is mainly due to the large number of diacriticized vow-
els in Vietnamese that we treat discretely.

4In this and the subsequent experiments, the following
writing systems were withheld as an evaluation set to pre-
vent overfitting: Aramaic, Farsi, Hungarian, Serbian, Urdu,
and Vietnamese.

5Each corpus was sampled from a combination of
Wikipedia, Project Gutenberg and BBC World Service web
pages, and consists of between 14316 and 706422 characters
(median=164757). All punctuation was removed, and all let-
ters were downcased.

racies with a macro-average of 98.85% across
503 alphabets, with a standard deviation of about
2%. Token-level accuracies are somewhat mis-
leading, as the hyperbolic distribution of letters
in all naturally occurring alphabets makes it very
easy to inflate accuracies even when the class of
many (rare) letters cannot be determined. Fur-
thermore, if the classified or readable portions of
corpora were at issue, then these token accura-
cies should have been micro-averaged, not macro-
averaged, and, more importantly, they should have
been smoothed by an n-gram character model to
produce a more meaningful estimate.

Vowel/consonant classification is better viewed
as a letter-type, not letter-instance, classification
problem, in which progress is evaluated accord-
ing to the percentage of letter types that are cor-
rectly classified. Semivowels or whatever ambigu-
ous classes one wishes to define should ideally be
distinguished as extra classes, or at the very least
disregarded. For a level comparison with our base-
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Algorithm 1 Vowel and consonant classification algorithm
1: numwords ← 0
2: numletters ← length(letters)
3: contexts← list of numletters empty lists
4: frameskeys ← [ ]
5: framesvalues ← [ ]
6: letterscount ← list of zeros of size numletters

7: A← [ ]
8: Aweighted ← [ ]
9: function VOWELCONSONANTCLASSIFICATION(V , most freq letter)

10: coordinates← zip(V [0], V [1], letters)
11: cluster1 ← triples where V [1] value > 0
12: cluster2 ← triples where V [1] value < 0
13: vowels← cluster that has most freq letter
14: consonants← cluster that does not have most freq letter
15: return vowels, consonants
16: end function
17: function ALGORITHM1(corpus, max)
18: for all word ∈ corpus do
19: word← [′ ′] + list(word) + [′ ′]
20: numwords + = 1
21: if numwords > max then
22: break
23: end if
24: MakePFrames(word) # Calculates A and Aweighted

25: end for
26: indexmost freq letter ← index of max(letterscount)
27: most freq letter ← letters[indexmost freq letter]
28: U, s, V ← SV D(A)
29: vowels, consonants← V owelConsonantClassification(V,most freq letter)
30: return vowels, consonants
31: end function
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Language (Moler and Morrison, 1983) Sukhotin’s Algorithm Algorithm 1
NC P R A P R A P R A

Abkhaz 4 1.00 0.67 0.94 1.00 1.00 1.00 1.00 1.00 1.00
Afrikaans 18 0.71 0.36 0.31 0.93 0.81 0.88 1 0.81 0.91
Czech 23 1.00 0.63 0.68 1.00 0.94 0.98 1.00 0.94 0.98
Dutch 11 1.00 1.00 1.00 0.83 1.00 0.96 1.00 1.00 1.00
Danish 26 0.67 0.67 0.56 0.88 0.93 0.91 1.00 0.93 0.97
English (Middle) 4 1.00 1.00 1.00 1 0.90 0.96 1 0.90 0.96
English (Modern) 5 1.00 1.00 1.00 0.71 1.00 0.92 1.00 1.00 1.00
English (Old) 19 0.86 0.67 0.64 1.00 1.00 1.00 1.00 1.00 1.00
Finnish 3 1.00 0.89 0.96 0.89 1.00 0.96 0.89 1.00 0.96
French (Modern) 29 0.43 1.00 0.60 1.00 0.79 0.89 1.00 0.79 0.89
Inuktitut 6 1.00 1.00 1.00 0.95 0.95 0.95 1.00 0.95 0.97
Italian 17 0.90 0.90 0.86 0.91 0.67 0.82 1.00 0.93 0.97
German 13 1.00 0.88 0.93 0.73 1.00 0.89 0.88 1.00 0.96
Greek (Ancient) 3 0.83 1.00 0.95 1.00 1.00 1.00 1.00 1.00 1.00
Greek (Modern) 3 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Hawaiian 5 0.90 0.90 0.92 0.83 0.91 0.90 1.00 1.00 1.00
Hungarian 14 0.44 0.80 0.71 0.94 0.94 0.94 1.00 1.00 1.00
Latin 3 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Maltese 2 1.00 1.00 1.00 0.83 1.00 0.96 1.00 1.00 1.00
Portuguese 24 0.88 1.00 0.92 1.00 0.88 0.94 1.00 0.88 0.94
Russian 5 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Serbian 25 0.89 0.89 0.85 0.90 0.69 0.88 1.00 0.82 0.95
Spanish 16 0.86 0.86 0.86 0.91 1.00 0.97 1.00 1.00 1.00
Swedish 6 1.00 1.00 1.00 0.89 1.00 0.96 0.80 1.00 0.93
Tagalog 4 1.00 0.94 0.97 0.95 1.00 0.97 1.00 0.89 0.95
Vietnamese 40 0.04 0.07 0.02 0.71 0.67 0.87 0.94 1.00 0.99

Table 3: Algorithm 1 evaluated with type-level accuracies. Corpora were sampled from the same sources
as in Table 2, but with between 25738 and 968298 characters (median = 177529). The best accuracies
are highlighted. Algorithm 1 incorrectly classifies several infrequent vowels (ë,ı̈,œ and ù) as consonants
in Modern French. P, R, and A stand for Precision, Recall, and Accuracy, respectively. NC is the number
of letters not classified by Moler and Morrison’s (1983) algorithm; they are not necessarily semivowels.
Unclassified letters are not included in the calculation of their method’s precision, recall, and accuracy,
however; their results are even worse when NC letters are treated as false negatives.

lines (most are interested in vowel vs. non-vowel;
Kim and Snyder (2013) experimented with distin-
guishing nasals as well), ambiguous letters such
as English ‘y’ have been manually identified and
discarded altogether in Table 3.

It is impossible to determine the type accuracy
of Kim and Snyder’s (2013) method, because they
only made the raw counts of words in their corpus
available6 (not the code, nor the resulting classifi-
cations). It is also impossible to reproduce their
evaluation, since they did not provide their pa-

6http://pages.cs.wisc.edu/˜ybkim/data/
consonant_vowel_acl2013.tgz.

rameter settings. In addition, their ground truth
classification of graphemes into vowels and con-
sonants was remarkably ambitious. They treated
all semivowels as consonants, for example — even
tokens where they act as vowels. The “front
yer” palatalization marker in Russian Cyrillic was
called a consonant, for example, and yet the “back
yer” that blocks palatalization is called a vowel.
With such arbitrary labellings of graphemes that
simply should have been left out of the classi-
fication, a controlled comparison of even token
accuracy is perhaps beside the point. For what
it is worth, however, we could use the correct
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grapheme classifications in the 20 writing systems
that constitute the overlap between the 503 that
they sampled and the 26 that we did, and Algo-
rithm 1’s macro-averaged token-accuracy on these
is 99.93%, whereas Sukhotin’s is 96.05%.

An even greater cause for concern with this cor-
pus is the sampling method that created it. Kim
and Snyder’s (2013) use of a leave-one-out proto-
col to evaluate their method on each of their 503
writing systems at first seems reasonable — ev-
ery known writing system should be pressed into
the service of analyzing an unknown one. But all
of these samples are Biblical, and many of them
(the English, Portuguese, Italian and Spanish sam-
ples, for example, or the French and German sam-
ples) are the same verses translated into different
languages. It is not reasonable in general to ex-
pect that a sample of unknown writing would nec-
essarily be a translation of a text from a known
writing system. The overlap in character contexts
between transliterated proper names and cognates
makes for a very charitable transfer of knowledge
between writing systems.

Across the 26 writing systems that we have
evaluated, our samples are all different texts from
several genres. Our method requires no train-
ing, so all of the samples can be used for eval-
uation, but it also cannot avail itself of transfer
across writing systems. On these samples, Algo-
rithm 1 achieves a macro-averaged type accuracy
of 97.45% and a macro-averaged token accuracy
of 99.39% with a standard deviation of 1.67%.
Performance is very robust in the realistic context
of low transfer. On the same samples, Sukhotin’s
algorithm has a macro-averaged type accuracy of
94.34%.

Moler and Morrison (1983)’s algorithm is less
accurate than Algorithm 1. Moler and Morri-
son (1983) claim that their method is intended
for “vowel-follows-consonant” (vfc) texts, where
the proportion of vowels following consonants is
greater than the proportion of vowels following
vowels. Yet every writing system in our corpus
is vfc, and still it performs poorly. Instead of us-
ing a binary adjacency matrix representing which
letters occur within which p-frames, they calculate
the number of times every possible letter pair oc-
curs. They run SVD on the resulting matrix and
use the second right and left singular vectors to
plot the letters. The plot is divided into four quad-
rants, where letters in the fourth quadrant are clas-

sified as vowels, those in the second quadrant as
consonants, and those in the first or third quad-
rants as “neuter,” [sic] meaning unclassified (see
NC on Table 3). Our plots, on the other hand,
are split into half planes with a crisp, numerically
stable separation at the x-axis between the puta-
tive vowels and putative consonants, leaving no
letter unclassified unless it falls on y = 0, which
would only occur with completely unattested let-
ters. Given the computational power and the num-
ber of electronic multilingual sources available at
the time, Moler and Morrison (1983) had no work-
able means of thoroughly evaluating their method.

Another important concern is stability as a func-
tion of length — many undeciphered writing sys-
tems are not well attested in terms of the number
or length of their surviving samples. Our spectral
method performs robustly at the 97.45% level for
sparse samples down to a minimum of about 500
word types or 4000 word tokens. It is possible that
below this threshold Sukhotin’s algorithm would
still be preferable.

Goldsmith and Xanthos (2009) only evaluate
their method on one collection of written words,
sampled from Finnish,7 and they obtain the same
result as we do below, with our algorithm only
misclassifying the grapheme ‘q’.8 This should
come as no surprise, because their method is an
algebraically very close variant of ours — they
compute eigenvectors on the Gram closure of our
grapheme/context matrix (which they call F ) in-
stead of a singular value decomposition directly.

It may nevertheless come as a surprise that their
method is so similar to ours. Their motivation con-
sists of a lengthy discussion of graph cuts, along
with a reference to Fiedler vectors, the name of
the second eigenvector (the correlate to our ~y) of a
graph’s Laplacian matrix, which is known to re-
late to the graph’s algebraic connectivity. Nei-
ther Goldsmith and Xanthos (2009) nor we ex-
plicitly calculate the Laplacian matrix of a graph,
and if this would-be graph happened to have more
than one connected component, the Fiedler vector
would not be uniquely well-defined on its Lapla-

7This is offered with the apology that Finnish is ortho-
graphically transparent, thus almost qualifying as a phonemic
transcription.

8Goldsmith and Xanthos’s (2009) explanation for this is
a “problem of threshold,” but our study has found that the
numerical stability of the threshold is extremely accurate. In-
stead, the problem is the relative disconnectedness of ’q’ from
other graphemes owing to its sparsity, as the discussion in this
paragraph will elaborate upon.
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cian matrix in general.9 Vowels and consonants
rarely if ever separate into perfectly disjoint con-
texts; among our corpora the most disjoint is Viet-
namese, in which vowels and consonants share ex-
actly 100/645 p-frames. Out of curiosity, we eval-
uated our algorithm on the matrices from all 26
writing systems with their inter-CV/VC links re-
moved. Performance degrades (macro-averaged
accuracy: 89.08%) — which implies that this
method is not merely computing an overall min-
imum graph cut — but not so badly that partitions
could merely be ignoring either all of the vowels
or all of the consonants. The explanation found in
Goldsmith and Xanthos (2009) therefore does not
account for the robustness or generality of our col-
lective approach. Our own determination of this
method, along with this universal, was entirely ex-
perimental.

A final difference to our approach is that Gold-
smith and Xanthos (2009) use bigram contexts in-
stead of p-frames, although they are aware that this
choice is arbitrary. Empirically, p-frames work
better than bigrams (macro-averaged type accu-
racy: 89.06%) as well as trigrams with two pre-
ceding elements (96.24%).

Figure 2 shows example classifications by Al-
gorithm 1 of six different writing systems. Each
letter is plotted at its (xi, yi) coordinate, but the
classification is made using only yi. It is worth
noting that semivowels and other trouble-makers
consistently fall very close to the y = 0 thresh-
old. Maltese is particularly important, as it uses a
vocalic alphabet with a Semitic language. Our cor-
rect handling of this case, and converse cases such
as Farsi, demonstrates that we are responding to
properties of alphabetic writing systems, and not
of linguistic phylogeny.

4 Distinguishing Abjads from Vocalic
Alphabets

Some writing systems assign syllabic or larger
phonetic values to individual graphemes. Those
that do not are sometimes called alphabetic writ-
ing systems, which is confusing because not all
of them are true alphabets. There is another
kind of alphabetic writing system called an abjad,
which expresses only consonants. Arabic writ-
ing and writing systems based upon Arabic writ-

9Unless all of the connected components fortuitously had
first and second eigenvalues of exactly the same magnitudes,
the overall second non-zero eigenvector would not cross all
of the components.

ing (whether or not the underlying language is re-
lated to the Arabic language) are the prototypical
abjads; the rest (e.g., Hebrew, Aramaic) express
Hatto-Semitic languages. Abjads express words in
languages that have vowels, but the vowels must
be inferred from context, unless, in anomalous
genres, they are expressed through optional dia-
critics (Daniels and Bright, 1996).

We can use the spectral method presented in
Section 2 to classify an alphabetic writing sys-
tem as either an abjad or a true, vocalic alphabet.
This is a different kind of classification problem
than that of Section 3, as we are attempting here
to classify the structure of entire writing systems
rather than the phonetic values assigned to individ-
ual graphemes. We will consider two algorithms
for distinguishing abjads from vocalic alphabets:

4.1 Algorithm 2: Divergence

This variant begins by provisionally assuming that
the writing system under investigation is a vocalic
alphabet, and applying Algorithm 1 to it, which in-
volves the calculation of the aforementioned ma-
trix, A, and the classification of every letter as a
consonant or vowel. There is a related matrix W ,
for which Wij is the number of times letter i oc-
curs in the context of p-frame j. W is not binary.
We will label the rows of W as v̂i or ĉj according
to whether i and j are labelled as vowels or conso-
nants by Algorithm 1. Algorithm 1 still uses A in
assigning the labels, not W .

We can view each row of W as a discrete dis-
tribution over p-frame contexts. In recognition of
this, Algorithm 2 calculates:

N =
∑
v̂i,v̂j

|D|(v̂i||v̂j)−
∑
v̂i,ĉj

|D|(v̂i||ĉj),

where D(p||q) is the Kullback-Leibler divergence
of p and q. We use |D| to represent the
absolute-value of each element-wise calculation of
v̂i log v̂i

v̂jorĉj
. The distributions of putative vowels

tend to be more dissimilar to one another in ab-
jads than in true alphabets. The distributions of
putative vowels are more similar to that of puta-
tive consonants in abjads than in true alphabets.
Values of N are shown for 30 writing systems in
Table 4.

N separates the abjads from the vocalic alpha-
bets at about N = −100.
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Latin Maltese

Swedish Hawaiian

Modern Greek Russian

Figure 2: x and y for several writing systems.
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Language N
Hungarian 773.7

Tagalog 531.43
Inuktitut 424.12

Vietnamese 359.53
Finnish 240.26

Old English 234.52
Czech 223.96

Spanish 147.44
Russian 135.88
Swedish 121.77
Maltese 104.63
Latin 83.88

Ancient Greek 65.88
Hawaiian 57.29

Middle English 48.21
Serbian 28.07

Modern Greek 20.6
German 20.33
French 16.01

Modern English -31.05
Portuguese -53.19

Dutch -57.18
Afrikaans -73.52

Italian -89.94
NVME -167.63
Farsi -185.7

Aramaic -191.23
Hebrew -207.32

Urdu -220.01
Arabic -225.36

Table 4: Values of N for Algorithm 2, calculated
over corpora of roughly 5000 words each (min
character tokens = 13681, max = 39936, median
= 20361). NVME is the Modern English corpus
with vowels removed. Abkhaz (N = −70.94) is
not included because of its small size.

4.2 Algorithm 3: Vowelless words

For writing systems that conventionally use in-
terword whitespace, we can alternatively apply
vowel identification to the task of discriminat-
ing abjads from vocalic alphabets by examining
the percentage of word tokens with no vowel
graphemes.10 This method, Algorithm 3, is im-
plicit to Reddy and Knight’s (2011) 2-state HMM

10In vocalic writing systems, vowelless words include ty-
pographical errors, abbreviations and, in some writing sys-
tems, words with semivowels that can occupy a syllabic
mora, such as ’y’ in English.

Language V C
Arabic 3.75 0.92
Hebrew 3.63 0.2

Urdu 2.58 0.22
Farsi 2.35 0.13

Aramaic 1.97 0.18
NVME 0.19 0.69
Abkhaz 0.63 0.44
Russian 0.37 0.29
Maltese 0.36 0.06

Vietnamese 0.25 0.27
Modern Greek 0.14 0.06

Dutch 0.13 0.04
Old English 0.12 0.11
Hawaiian 0.12 0.4

Middle English 0 0.12
Spanish 0.11 0.08
German 0.09 0.04
Tagalog 0.07 0.06

Inuktitut 0.07 0.05
Italian 0.07 0.04

Serbian 0.07 0.02
Portuguese 0.05 0.05
Afrikaans 0.05 0.04

Czech 0.05 0.01
Modern English 0.05 0.01

Latin 0.04 0.03
Finnish 0.03 0.03
Swedish 0.03 0.03
French 0.03 0.02

Hungarian 0.02 0.01

Table 5: Percentages of word tokens with no puta-
tive vowels (V) or consonants (C), as determined
by Algorithm 3.

analysis of part of the Voynich manuscript, in
which they observed that every word was rec-
ognized as an instance of the regular language
a∗b. They believed the most likely explanation is
that every word was written with several conso-
nants followed by a vowel, and that the Voynich
manuscript therefore uses an abjad.

From this percentage, a decision boundary also
emerges at about 1%, as shown in Table 5. NVME
is not correctly classified unless one uses the
greater of the percentage of words without a vowel
or consonant, but this (Modern English with the
Once again, putative vowels and consonants have
been determined by Algorithm 1.
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5 Conclusion and Future Work

We have shown that a very simple spectral decom-
position based on character co-occurrences pro-
vides nearly perfect performance with respect to
classifying both a letter as vowel or consonant and
a writing system as an abjad or alphabet. Algo-
rithm 1 does not resolve other pertinent questions,
e.g., distinguishing numbers from letters, or deter-
mining which capital letters correspond to which
lowercase letters. Our method of vowel/consonant
classification is meant to inform existing meth-
ods of finding graphemes’ corresponding sounds.
An additional source for associating sound values
to graphemes is comparing letter frequencies be-
tween two related languages.

Future research on associating sound values to
graphemes could include extending a method sim-
ilar to Algorithm 1 to other types of writing sys-
tems, such as syllabaries.
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Abstract

Language models for agglutinative lan-
guages have always been hindered in past
due to myriad of agglutinations possible
to any given word through various af-
fixes. We propose a method to diminish the
problem of out-of-vocabulary words by in-
troducing an embedding derived from syl-
lables and morphemes which leverages the
agglutinative property. Our model outper-
forms character-level embedding in per-
plexity by 16.87 with 9.50M parameters.
Proposed method achieves state of the art
performance over existing input prediction
methods in terms of Key Stroke Saving
and has been commercialized.

1 Introduction

Recurrent neural networks (RNNs) exhibit dy-
namic temporal behavior which makes them ideal
architectures to model sequential data. In recent
times, RNNs have shown state of the art perfor-
mance on tasks of language modeling (RNN-LM),
beating the statistical modeling techniques by a
huge margin (Mikolov et al., 2010; Lin et al.,
2015; Kim et al., 2016; Miyamoto and Cho, 2016).
RNN-LMs model the probability distribution over
the words in vocabulary conditioned on a given in-
put context. The sizes of these networks are pri-
marily dependent on their vocabulary size.

Since agglutinative languages, such as Korean,
Japanese, and Turkish, have a huge number of
words in the vocabulary, it is considerably hard
to train word-level RNN-LM. Korean is aggluti-
native in its morphology; words mainly contain
different morphemes to determine the meaning of
the word hence increasing the vocabulary size for
language model training. A given word in Korean

∗ Equal contribution

could have similar meaning with more than 10
variations in the suffix as shown in Table 1.

Various language modeling methods that rely
on character or morpheme like segmentation of
words have been developed (Ciloglu et al., 2004;
Cui et al., 2014; Kim et al., 2016; Mikolov et al.,
2012; Zheng et al., 2013; Ling et al., 2015). (Chen
et al., 2015b) explored the idea of joint train-
ing for character and word embedding. Morpheme
based segmentation has been explored in both
Large Vocabulary Continuous Speech Recognition
(LVCSR) tasks for Egyptian Arabic (Mousa et al.,
2013) and German newspaper corpus (Cotterell
and Schütze, 2015). (Sennrich et al., 2015) used
subword units to perform machine translation for
rare words.

Morpheme distribution has a relatively smaller
frequency tail as compared to the word distribu-
tion from vocabulary, hence avoids over-fitting for
tail units. However, even with morpheme segmen-
tation the percentage of out-of-vocabulary (OOV)
words is significantly high in Korean. Character
embedding in Korean is unfeasible as the con-
text of the word is not sufficiently captured by
the long sequence which composes the word. We
select as features syllable-level embedding which
has shorter sequence length and morpheme-level
embedding to capture the semantics of the word.

We deploy our model for input word predic-
tion on mobile devices. To achieve desirable per-
formance we are required to create a model that
has as small as possible memory and CPU foot-
print without compromising its performance. We
use differentiated softmax (Chen et al., 2015a) for
the output layer. This method uses more param-
eters for the words that are frequent and less for
the ones that occur rarely. We achieve better per-
formance than existing approaches in terms of Key
Stroke Savings (KSS) (Fowler et al., 2015) and our
approach has been commercialized.
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Word Morpheme English
그가 그 +가 he
그는 그 +는 he
그에게 그 +에게 to him
그도 그 +도 him(he) also
그를 그 +를 him
그의 그 +의 his

Table 1: Example of variation of a base word ‘그
(He)’. It can have more than 10 variation forms
according to its postposition.

2 Proposed Method

Following sections propose a model for agglutina-
tive language. In Section 2.1 we discuss the ba-
sic architecture of the model as detailed in Fig-
ure 1, followed by Section 2.2 that describes our
embeddings. In Section 2.3 we propose an adapta-
tion of differentiated softmax to reduce the num-
ber of model parameters and improve computation
speed.

2.1 Language Model
Overall architecture of our language model con-
sists of a) embedding layer, b) hidden layer, c)
softmax layer. Embedding comprises of syllable-
level and morpheme-level embedding as described
in Section 2.2. We combine both embedding fea-
tures and pass them through a highway network
(Srivastava et al., 2015) which act as an input to
the hidden layers. We use a single layer of LSTM
as hidden units with architecture similar to the
non-regularized LSTM model by (Zaremba et al.,
2014). The hidden state of the LSTM unit is affine-
transformed by the softmax function, which is a
probability distribution over all the words in the
output vocabulary.

2.2 Syllable & Morphological Embedding
We propose syllable-level embedding that attenu-
ates OOV problem. (Santos and Zadrozny, 2014;
Kim et al., 2016) proposed character aware neural
networks using convolution filters to create char-
acter embedding for words. We use convolution
neural network (CNN) based embedding method
to get syllable-level embedding for words. We
use 150 filters that consider uni, bi, tri and quad
syllable-grams to create a feature representation
for the word. This is followed by max-pooling to
concatenate the features from each class of filters
resulting in a syllable embedding representation

Highway Network

Syllable + Morpheme Embedding

Embedding layer

Softmax Layer

Di!erenciated Softmax

Hidden Layer

Figure 1: Overview of the proposed method. T and
C are the transform gate and carry gate of the high-
way network respectively

for the word. Figure 2 in the left half shows an ex-
ample sentence embedded using the syllable-level
embedding.

Figure 3 highlights the difference between vari-
ous embedding and the features they capture. The
syllable embedding is used along with a morpho-
logical embedding to provide richer features for
the word. The majority of words (95%) in Korean
has at most three morphological units. Each word
can be broken into start, middle, and end unit. We
embed each morphological unit by concatenating
to create a joint embedding for the word. Advan-
tage of morphological embedding over syllable is
all the sub-units have an abstract value in the lan-
guage and this creates representation for words re-
lying on the usage of these morphemes. Both mor-
phological and syllable embeddings are concate-
nated and fed through a highway network (Srivas-
tava et al., 2015) to get a refined representation for
the word as shown in the embedding layer for Fig-
ure 1.

2.3 Differentiated Softmax

The output layer models a probability distribution
over words in vocabulary conditioned on the given
context. There is a trade-off between required
memory and computational cost which determines
the level of prediction. To generate a complete
word, using morpheme-level predictions requires
beam search which is expensive as compared to
word-level predictions. Using beam search to pre-
dict the word greedily does not adhere to the com-
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max

Morpheme Level

그 / 는   학생 / 이다 
Pronoun / Postposition   Noun / Verb

<

학생 <0> 이다

<Start> <Middle> <End>

Syllable Level

[geu] / [neun]   [hak] / [saeng] / [i] / [da]

그 / 는   학 / 생 / 이 / 다 

학 생 이 다

<

<w> </w>

max

Figure 2: Proposed embedding method for agglu-
tinative languages. We take an input word as syl-
lable and morpheme level, embed them separately
and concatenate them to make an entire embed-
ding.

putational requirements set forth for mobile de-
vices. Thus, we have to choose word-level outputs
although it requires having a vocabulary of over
0.2M words to cover 95% of the functional word
forms. Computing a probability distribution func-
tion for 0.2M classes is computational intensive
and overshoots the required run-time and the al-
located memory to store the model parameters.

Therefore, the softmax weight matrix,
Wsoftmax, needs to be compressed as it is
contributing to huge model parameters. We
initially propose to choose an appropriate rank
for the Wsoftmax in the following approximation
problem; Wsoftmax = WA ×WB , where WA and
WB have ranks less than r. We extend the idea of
low rank matrix factorization in (Sainath et al.,
2013) by further clustering words into groups and
allowing a different low rank r′ for each cluster.
The words with high frequency are given a rank,
r1, such that r1 ≥ r2 where r2 is the low rank
for the words with low frequency. The core idea
being, words with higher frequency have much
richer representation in higher dimensional space,
whereas words with low frequency cannot utilize
the higher dimensional space well.

We observe that 87% of the words appear in the
tail of the distribution by the frequency of occur-
rence. We provide a higher rank to the top 2.5%
words and much lower rank to the bottom 87%.
This different treatment reduces the number of pa-

Word

Character

Syllable

Morpheme

“그는 학생이다.”

그는  학생이다 <

<

그 / 는   학 / 생 / 이 / 다 
[geu] / [neun]   [hak] / [saeng] / [i] / [da]

<

그 / 는   학생 / 이다 
Pronoun / Postposition   Noun / Verb

<

“He is a student”

He is  a student< < <

H / e   i / s   a   s / t / u / d / e / n / t< < <

He   is   a   stu / dent
[hi]   [Iz]   [ ]   [stu:] / [dnt]

e

< < <

He   is   a   student
Pronoun   Verb   Indefinite article   Noun

< < <

Figure 3: Comparison of various embedding lev-
els. In case of Korean, syllable can be used as a
basic unit of sequence to solve OOV with shorter
sequence length compare to character level. Also,
morpheme level is effective to make the size of vo-
cabulary smaller.

rameters and leads to better modeling.

3 Experiment Results

3.1 Setup

We apply our method to web crawled dataset con-
sisting on news, blogs, QA. Our dataset consists
of over 100M words and over 10M sentences. For
morpheme-level segmentation, we use lexical an-
alyzer and for syallable-level we just syllabify the
dataset. We empirically test our model and its in-
put vocabulary size is around 20K morphemes and
3K syllables. The embedding size for morpheme is
52 and that for syllable is 15. We use one highway
layer to combine the embeddings from syllable
and morpheme. Our hidden layer consists of 500
LSTM units. The differentiated softmax outputs
the model’s distribution over the 0.2M words in
the output vocabulary with top 5K (by frequency)
getting a representation dimension (low rank in
Wsoftmax) of 152, next 20K use a representation
dimension of 52 and the rest 175K get a repre-
sentation dimension of 12. All the compared mod-
els have word level outputs and use differentiated
softmax.

3.2 Comparison of embedding methods

We randomly select 10% of our crawled data
(10M words, 1M sentences) to compare embed-
ding methods as shown in Table 2. We test char-
acter, syllable, morpheme and word-level embed-
dings. The word-level embedding has the highest
number of parameters but has the worst perfor-
mance. As expected breaking words into their sub-
forms improves the language model. However, our
experiment reaches its peak performance when we
use syllable level embeddings. To improve the per-
formance even further we propose using syllable
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Embedding Param. Perplexity Vocab.
Word 15.72M 327.17 200K
Morph 6.61M 283.54 20K
Character 8.66M 235.52 40
Syl 8.71M 231.30 3K
Syl + Morph 9.50M 218.65 23K

Table 2: Results of different embedding meth-
ods. Param. : Total model paramerters, Vocab: In-
put vocabulary size, Syl : Syllable, Morph: Mor-
pheme.

and morpheme which outperforms all the other ap-
proaches in terms of perplexity.

3.3 Performance evaluation

Proposed method shows the best performance
compared to other solutions in terms of Key Stroke
Savings (KSS) as shown in Table 3. KSS is a per-
centage of key strokes not pressed compared to a
vanilla keyboard which does not have any predic-
tion or completion capabilities. Every user typed
characters using the predictions of the language
model counts as key stroke saving. The dataset1

used to evaluate KSS was manually curated to
mimic user keyboard usage patterns.

The results in Table 3 for other commercialized
solutions are manually evaluated due to lack of ac-
cess to their language model. We use three evalu-
ators from inspection group to cross-validate the
results and remove human errors. Each evaluator
performed the test independently for all the other
solutions to reach a consensus. We try to minimize
user personalization in predictions by creating a
new user profile while evaluating KSS.

The proposed method shows 37.62% in terms
of KSS and outperforms compared solutions. We
have achieved more than 13% improvement over
the best score among existing solutions which is
33.20% in KSS. If the user inputs a word with
our solution, we require on an average 62.38% of
the word prefix to recommend the intended word,
while other solutions need 66.80% of the same.
Figure 4 shows an example of word prediction
across different solutions. In this example, the pre-
dictions from other solutions are same irrespective

1The dataset consists of 67 sentences (825 words,
7,531 characters) which are collection of formal
and informal utterances from various sources. It is
available at https://github.com/meinwerk/
SyllableLevelLanguageModel

Developer KSS(%)
Proposed 37.62
Swiftkey 33.20
Apple 31.90
Samsung 31.40

Table 3: Performance comparison of proposed
method and other commercialized keyboard solu-
tions by various developers.

Context A

Proposed

Apple

SwiftKey

Samsung

Context B

Proposed

Apple

SwiftKey

Samsung

(rain heavily)

(too much rice)

Figure 4: Example of comparison with other com-
mercialized solutions. Predicted words for the
Context A (rain heavily) and Context B (too much
rice). Other solutions make same prediction re-
gardless of the context (only consider the last two
words of context).

of the context, while the proposed method treats
them differently with appropriate predictions.

4 Conclusion

We have proposed a practical method for modeling
agglutinative languages, in this case Korean. We
use syllable and morpheme embeddings to tackle
large portion of OOV problem owing to practical
limit of vocabulary size and word-level prediction
with differentiated softmax to compress size of
model to a form factor making it amenable to run-
ning smoothly on mobile device. Our model has
9.50M parameters and achieves better perplexity
than character-level embedding by 16.87. Our pro-
posed method outperforms the existing commer-
cialized keyboards in terms of key stroke savings
and has been commercialized. Our commercial-
ized solution combines above model with n-gram
statistics to model user behavior thus supporting
personalization.
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Abstract

Recently, neural models have shown supe-
rior performance over conventional mod-
els in NER tasks. These models use CNN
to extract sub-word information along
with RNN to predict a tag for each word.
However, these models have been tested
almost entirely on English texts. It re-
mains unclear whether they perform sim-
ilarly in other languages. We worked on
Japanese NER using neural models and
discovered two obstacles of the state-of-
the-art model. First, CNN is unsuitable for
extracting Japanese sub-word information.
Secondly, a model predicting a tag for
each word cannot extract an entity when
a part of a word composes an entity. The
contributions of this work are (i) verify-
ing the effectiveness of the state-of-the-
art NER model for Japanese, (ii) propos-
ing a neural model for predicting a tag for
each character using word and character
information. Experimentally obtained re-
sults demonstrate that our model outper-
forms the state-of-the-art neural English
NER model in Japanese.

1 Introduction

Named Entity Recognition (NER) is designed to
extract entities such as location and product from
texts. The results are used in sophisticated tasks
including summarizations and recommendations.
In the past several years, sequential neural mod-
els such as long-short term memory (LSTM) have
been applied to NER. They have outperformed
the conventional models (Huang et al., 2015).
Recently, Convolutional Neural Network (CNN)
was introduced into many models for extracting
sub-word information from a word (Santos and

Guimaraes, 2015; Ma and Hovy, 2016). The mod-
els achieved higher performance because CNN
can capture capitalization, suffixes, and prefixes
(Chiu and Nichols, 2015). These models predict
a tag for each word assuming that words can be
separated clearly by explicit word separators (e.g.
blank spaces). We refer to such model as a “word-
based model”, even if inputs include characters.

When Japanese NER employs a recent neu-
ral model, two obstacles arise. First, extract-
ing sub-word information by CNN is unsuitable
for Japanese language. The reasons are that
Japanese words tend to be shorter than English and
Japanese characters have no capitalization. Sec-
ondly, the word-based model cannot extract en-
tities when a part of a word composes an entity.
Japanese language has no explicit word separators.
Word boundaries occasionally become ambigu-
ous. Therefore, the possibility exists that entity
boundary does not match word boundaries. We
define such phenomena as “boundary conflict”. To
avoid this obstacle, NER using finer-grained com-
pose units than words are preferred in Japanese
NERs (Asahara and Matsumoto, 2003; Sassano
and Utsuro, 2000). We follow these approaches
and expand the state-of-the-art neural NER model
to predict a tag for each character: a “character-
based model”.

The contributions of our study are: (i) applica-
tion of a state-of-the-art NER model to Japanese
NER and verification of its effectiveness, and (ii)
proposition of a “character-based” neural model
with concatenating words and characters. Exper-
imental results show that our model outperforms
the state-of-the-art neural NER model in Japanese.

2 Related Work

Conventional Models: Conventional NER sys-
tems employ machine learning algorithms that use
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inputs which are hand-crafted features such as
POS tags. Support Vector Machine (Isozaki and
Kazawa, 2002), maximum entropy models (Ben-
der et al., 2003), Hidden Markov Models (Zhou
and Su, 2002) and CRF (Klinger, 2011; Chen
et al., 2006; Marcinczuk, 2015) were applied.
Word-based Neural Models: A neural model
was applied to sequence labeling tasks also in
NER (Collobert et al., 2011). Modified models
using Bi-directional LSTM (BLSTM) or Stacked
LSTM were proposed (Huang et al., 2015; Lam-
ple et al., 2016). Recently, new approaches
introducing CNN or LSTM for extracting sub-
word information from character inputs have been
found to outperform other models (Lample et al.,
2016). Rei et al. (2016) proposed the model
using an attention mechanism whose inputs are
words and characters. Above all, BLSTM-CNNs-
CRF (Ma and Hovy, 2016) achieved state-of-the-
art performance on the standard English corpus:
CoNLL2003 (Tjong Kim Sang and De Meulder,
2003).
Character-based Neural Models: Kuru et al.
(2016) proposed a character-based neural model.
This model, which inputs only characters, exhibits
good performance on the condition that no exter-
nal knowledge is used. This model predicts a tag
for each character and forces that predicted tags in
a word are the same. Therefore, it is unsuitable for
languages in which boundary conflicts occur.
Japanese NER: For Japanese NER, many models
using conventional algorithms have been proposed
(Iwakura, 2011; Sasano and Kurohashi, 2008).
Most such models are character-based models to
deal with boundary conflicts.

Tomori et al. (2016) applied a neural model
to Japanese NER. This study uses non-sequential
neural networks with inputs that are hand-crafted
features. This model uses no recent advanced ap-
proaches for NER, such as word embedding or
CNN to extract sub-word information. There-
fore, the effectiveness of recent neural models for
Japanese NER has not been evaluated.

3 Japanese NER and Characteristics

One common definition of entity categories for
Japanese NER is Sekine’s extended named entity
hierarchy (Sekine et al., 2002). This definition in-
cludes 30 entity categories. This study used the
corpus annotated in Mainichi newspaper articles
(Hashimoto et al., 2008).
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Figure 1: Structure of BLSTM-CNNs-CRF. The
superscripts on Japanese show pronunciations.
The subscripts on Japanese words are translations.

Japanese language is written without blank
spaces. Therefore, word segmentations that are
made using morphological analysis are needed to
use word information. However, some word seg-
mentations cause boundary conflicts. As an exam-
ple, one can consider the extraction of the correct
entity “Tokyoto” (Tokyo prefecture) from “Toky-
otonai” (in Tokyo prefecture).

Tokyo/tonai (Tokyo / in pref.): word boundary

Tokyoto/nai (Tokyo pref. / in): entity boundary

These slashes show word and entity boundaries.
The entity boundary does not match the word
boundary. Therefore, the entity candidates by
word-based models are “Tokyo” and “Tokyotonai.”
It is impossible to extract the entity “Tokyoto”.

Word lengths of Japanese language tend to be
shorter than those of English. The average word
length in entities in CoNLL 2003 (Reuters news
service) is 6.43 characters. That in the Mainichi
newspaper corpus is 1.95. Therefore, it is difficult
to extract sub-word information in Japanese in a
manner that is suitable for English.

4 NER Models

4.1 Word-based neural model

In this study, we specifically examine BLSTM-
CNNs-CRF (Ma and Hovy, 2016) because
it achieves state-of-the-art performance in the
CoNLL 2003 corpus. Figure 1 presents the ar-
chitecture of this model. This word-based model
combines CNN, BLSTM, and CRF layers. We de-
scribe each layer of this model as the following.
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CNN Layer: This layer is aimed at extracting sub-
word information. The inputs are character em-
beddings of a word. This layer consists of convo-
lution and pooling layers. The convolution layer
produces a matrix for a word with consideration
of the sub-word. The pooling layer compresses
the matrix for each dimension of character embed-
ding.
BLSTM Layer: BLSTM (Graves and Schmidhu-
ber, 2005) is an approach to treat sequential data.
The output of CNN and word embedding are con-
catenated as an input of BLSTM.
CRF Layer: This layer was designed to select the
best tag sequence from all possible tag sequences
with consideration of outputs from BLSTM and
correlations between adjacent tags. This layer in-
troduces a transition score for each transition pat-
tern between adjacent tags. The objective function
is calculated using the sum of the outputs from
BLSTM and the transition scores for a sequence.

4.2 Character-based neural model

To resolve the obstacles when applying a re-
cent neural model, we propose character-based
BLSTM-CRF model (Char-BLSTM-CRF). This
model, which consists of BLSTM and CRF layers,
predicts a tag for every character independently.
Figure 2 presents the model structure.

This model gives an input for each character to
predict a tag for a character independently. Addi-
tionally, we introduce word information with char-
acter information as inputs of this model. Charac-
ter information is a character embedding and word
information is the embedding of the word contain-
ing the character. That is, the same word embed-
ding will be used as inputs of characters construct-
ing a word. This enables us to utilize pre-training
of word embeddings with the effectiveness shown
in English (Ma and Hovy, 2016).

We assume that it is difficult for the CNN
layer to extract the Japanese sub-word informa-
tion. Moreover, we assume that sufficient informa-
tion can be extracted from a simple character in-
put. Consequently, the model uses no CNN layer.

5 Experiments

5.1 Experiment Conditions

We evaluate our models using the Mainichi news-
paper corpus. We specifically examine the four
categories of the highest frequency: Product, Lo-
cation, Organization, Time. Table 1 presents
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Figure 2: Structure of Char-BLSTM-CRF.
Train Dev. Test

Articles 5,424 678 682
Sentences 62,373 8,032 7,689

Words 1,591,781 200,843 197,649
Product (NE) 39,734 5,087 5,120
Location (NE) 24,981 3,238 3,251

Organization (NE) 19,119 2,535 2,690
Time (NE) 17,252 2,216 2,148

Table 1: Statistics of the corpus.

statistics related to this corpus. We prepared pre-
trained word embeddings using skip-gram model
(Mikolov et al., 2013). Seven years (1995–1996
and 1998–2002) of Mainichi newspaper articles
which include almost 500 million words are used
for pre-training. We conduct parameter tuning us-
ing the development dataset. We choose the unit
number of LSTM as 300, the size of word embed-
ding as 500, that of character embedding as 50,
the maximum epoch as 20, and the batch size as
60. We use Adam (Kingma and Ba, 2014), with
the learning rate of 0.001 for optimization. We
use MeCab (Kudo, 2005) for word segmentation.
Other conditions are the same as those reported for
an earlier study (Ma and Hovy, 2016).

5.2 Results
Table 2 presents F1 scores of models. We com-
pare BLSTM-CNNs-CRF, Char-BLSTM-CRF,
and character-based conventional CRF. To verify
the effectiveness of the CNN layer and the CRF
layer in BLSTM-CNNs-CRF, we use additional
word-based models of two types with a compo-
nent changed from BLSTM-CNNs-CRF. BLSTM-
CRF is a model with eliminated the CNN layer
and character inputs. BLSTM-CNNs is a model
with the CRF layer replaced by a softmax layer.
To evaluate the performance improvement of char-
acter inputs, word inputs and pre-training, we
prepared additional three configurations of Char-
BLSTM-CRF: without word, without character,
without pre-training.
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BLSTM
-CRF

BLSTM
-CNNs

BLSTM
-CNNs
-CRF

CRF
Char-BLSTM

-CRF
w/o word

Char-BLSTM
-CRF

w/o char

Char-BLSTM
-CRF

w/o pretraining

Char-
BLSTM

-CRF
input word word+character character word word+character
output word character

Product †83.89 80.83 83.82 80.72 78.12 84.28 80.13 84.46
Location †88.57 87.52 88.46 87.54 86.77 91.30 87.63 91.47

Organization 85.87 82.07 †85.99 79.62 77.72 85.26 80.79 85.56
Time †94.39 92.50 93.51 93.00 93.35 94.03 93.55 94.44

Average †87.16 84.59 86.98 84.25 82.81 87.80 84.33 88.06

Table 2: F1 score of each models. Average is a weighted average. † expresses the best result in the
word-based models for each entity category. Bold means the best result in all models for each entity
category. “output” means the unit of prediction; “input” shows information used as inputs.

Entity Category Pro. Loc. Org. Time
Word Length in Entity 1.99 2.07 2.51 1.20

Table 3: Averaged word length in entity.

Word-based Neural Models: Among word-
based models, BLSTM-CNNs-CRF is the best
model for Organization. Also, BLSTM-CRF
is the best model for Product, Location, and
Time. We confirm that cutting-edge neural models
are suitable for Japanese language because each
model outperforms CRF.

When comparing BLSTM-CNNs and BLSTM-
CNNs-CRF, the CRF layer contributes to improve-
ment by 2.39 pt. When comparing BLSTM-CRF
and BLSTM-CNNs-CRF, the CNN layer is worse
by 0.18 pt. Here, the CNN layer and the CRF layer
improve by 2.36 pt and 1.75 pt in English (Ma and
Hovy, 2016). Therefore, the CRF layer performs
similarly but the CNN layer performs differently.
The CNN layer enhances the model flexibility.
Nevertheless, this layer can scarcely extract infor-
mation from characters because Japanese words
are shorter than English, according to Section 3.

Table 3 shows the averaged word length after
splitting an entity into words for each entity cate-
gory. Words composing Time entities is the short-
est. Therefore, information is scarce, especially in
Time. In contrast, the words composing Organi-
zation is long. Therefore, CNN can extract infor-
mation from characters in a word in Organization.
This is the reason why BLSTM-CNNs-CRF per-
forms better than BLSTM-CRF in Organization.

Character-based Neural Models: The results of
averaged F1 scores show that Char-BLSTM-CRF
is more suitable for Japanese than word-based
models. When comparing four configurations of
Char-BLSTM-CRF, pre-training is critically im-
portant for performance. Character input also con-

Pro. Loc. Org. Time
Total Conflicts 66 75 23 7

Extracted Entities 25 68 8 3

Table 4: Number of entities with boundary con-
flicts and that of entities extracted by Char-
BLSTM-CRF.

tributes to the performance improvement in Char-
BLSTM-CRF, although the input degrades the per-
formance in a word-based model.

Total Conflicts in the table 4 is the total num-
ber of entities with boundary conflicts in the test
data. Extracted Entities in the table is the number
of entities that Char-BLSTM-CRF extracts among
the entities with boundary conflicts. Results show
that the model extracts entities with boundary con-
flicts which cannot be extracted by word-based
models. The number of entities with boundary
conflicts extracted by Char-BLSTM-CRF is the
largest in Location. When comparing the perfor-
mance of Char-BLSTM-CRF and BLSTM-CRF
for each entity category, the largest performance
improvement of 2.90 pt is achieved in Location.
By extracting 68 entities with boundary conflicts
in Location, Char-BLSTM-CRF achieves about 2
pt improvement out of total 2.90 pt. It can be said
that almost all improvements of Char-BLSTM-
CRF are from extracting these entities.

In contrast, Char-BLSTM-CRF is inappropriate
for Organization. The averaged word length of en-
tities that are not extracted accurately by BLSTM-
CNNs-CRF is 4.07; that by Char-BLSTM-CRF is
4.87. It can be said that Char-BLSTM-CRF is un-
suitable for extracting long words. We infer that
the inputs of LSTM become redundant and that
LSTM does not work efficiently. Especially, the
averaged word length of Organization is long ac-
cording to Table 3. For that reason, the character-
based model is inappropriate in Organization.
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6 Conclusions

As described in this paper, we verified the effec-
tiveness of the state-of-the-art neural NER model
for Japanese. The experimentally obtained results
show that the model outperforms conventional
CRF in Japanese. Results show that the CNN layer
works improperly for Japanese because words of
the Japanese language are short.

We proposed a character-based neural model in-
corporating words and characters: Char-BLSTM-
CRF. This model outperforms a state-of-the-art
neural NER model in Japanese, especially for the
entity category consisting of short words. Our fu-
ture work will examine reduction of redundancy
in character-based model by preparing and com-
bining different LSTMs for word and character in-
puts. Also to examine the effects of pre-training
of characters in Char-BLSTM-CRF is our future
work.
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Abstract

Out-of-vocabulary words present a great
challenge for Machine Translation. Re-
cently various character-level composi-
tional models were proposed to address
this issue. In current research we in-
corporate two most popular neural archi-
tectures, namely LSTM and CNN, into
hard- and soft-attentional models of trans-
lation for character-level representation
of the source. We propose semantic
and morphological intrinsic evaluation of
encoder-level representations. Our analy-
sis of the learned representations reveals
that character-based LSTM seems to be
better at capturing morphological aspects
compared to character-based CNN. We
also show that a hard-attentional model
provides better character-level representa-
tions compared to standard ‘soft’ atten-
tion.

1 Introduction

Models of end-to-end machine translation based
on neural networks can produce excellent transla-
tions, rivalling or surpassing traditional statistical
machine translation systems (Kalchbrenner and
Blunsom, 2013; Sutskever et al., 2014; Bahdanau
et al., 2015). A central challenge in neural MT
is handling rare and uncommon words. Conven-
tional neural MT models use a fixed modest-size
vocabulary, such that the identity of rare words
are lost, which makes their translation exceedingly
difficult. Accordingly, sentences containing rare
words tend to be translated much more poorly than

those containing only common words (Sutskever
et al., 2014; Bahdanau et al., 2015). The rare
word problem is exacerbated when translating
from morphologically rich languages, where the
several morphological variants of words result in a
huge vocabulary with a heavy tail. For example in
Russian, there are at least 70 word forms for dog,
encoding case, gender, age, number, sentiment and
other semantic connotations. Many of them share
a common lemma, and contain regular morpholog-
ical affixation; consequently much of the informa-
tion required for translation is present, but not in
an accessible form for models of neural MT.

In many cases the OOV problem is addressed by
incorporating character-level word representations
largely belonging to one of two classes, namely
convolutional neural networks (CNNs) and recur-
rent neural networks based on long-short term
memory (LSTM) units (Hochreiter and Schmid-
huber, 1997). But there was no investigation of
what each of the models captures and how well
they can model morphology in particular. In this
paper, we fill this gap by evaluating of encoder-
level representations of OOV words. To get the
representations, we incorporate LSTM and CNN
word representation models into two types of at-
tentional machine translation models. Our eval-
uation includes both intrinsic and extrinsic met-
rics, where we compare these approaches based on
their translation performance as well as their abil-
ity to recover synonyms for the rare words. Intrin-
sic analysis shows that there is only minor differ-
ences in end translation performance, although de-
tailed analysis shows that character-based LSTM
is overally best at capturing morphological regu-
larities.
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2 Related Work

Most neural models for NLP rely on words as their
basic units, and consequently face the problem of
how to handle tokens in the test set that are out-
of-vocabulary (OOV). Often these words are as-
signed a special UNK token, which comes at the
expense of modelling accuracy. One solution to
OOV problem is modelling sub-word units, us-
ing a model of a word from its composite mor-
phemes. Luong et al. (2013) proposed a recur-
sive combination of morphs using affine transfor-
mation, however this is unable to differentiate be-
tween the compositional and non-compositional
cases. Botha and Blunsom (2014) tackle this prob-
lem by forming word representations from adding
a sum of each word’s morpheme embeddings to its
word embedding. Morpheme based methods rely
on good morphological analysers, however these
are only available for a limited set of languages.
Unsupervised analysers (Creutz and Lagus, 2007)
are prone to segmentation errors, particularly on
fusional or polysynthetic languages. In these set-
tings, character-level word representations may be
more appropriate.

Several authors have proposed convolutional
neural networks over character sequences, as part
of models of part of speech tagging (Santos and
Zadrozny, 2014), named entity recognition (Ma
and Hovy, 2016; Chiu and Nichols, 2015), lan-
guage (Kim et al., 2015) and machine translation
(Costa-jussà and Fonollosa, 2016; Belinkov et al.,
2017). The latter one presents an in-depth analysis
of representations learned by neural MT models.
Another strand of research has looked at recurrent
architectures, using long-short term memory units
(Ling et al., 2015; Ballesteros et al., 2015) which
can capture long orthographic patterns in the char-
acter sequence, as well as non-compositionality.
(Lample et al., 2016) shows that incorporating
biLSTM character-level word representations im-
proves accuracy in named entity recognition task.

All of the aforementioned models were shown
to either perform similar or even outperform stan-
dard word-embedding approaches. With a few no-
table exceptions (Vania and Lopez, 2017; Heigold
et al., 2017), there was no systematic investiga-
tion of the various modelling architectures. In our
work we address the question of what linguistic
lexical aspects are best encoded in each type of ar-
chitecture, and their efficacy as part of a machine
translation model when translating from morpho-

Figure 1: Model architecture for the several approaches to
learning word representations, showing from left: BiLSTM
over characters and the character convolution.

logically rich languages.

3 Models

Now we turn to the problem of learning word rep-
resentations. We consider character level encoding
methods which we compare to the baseline word
embedding approach. We test two types of char-
acter representations: LSTM recurrent neural net-
works (RNN) and convolutional neural network
(CNN).

For each type of character encoder we learn
two word representations: one estimated from the
characters and the word embedding.1 Then we
run max pooling over both embeddings to obtain
the word representation, rw = mw � ew, where
mw is the embedding of word w and ew is the
sub-word encoding. The max pooling operation
� captures non-compositionality in the semantic
meaning of a word relative to its sub-parts. We as-
sume that the model would favour unit-based em-
beddings for rare words and word-based for more
common ones.

Each word is expressed with its constituent
units as follows. Let U be the vocabulary of sub-
word units, i.e., characters, Eu be the dimensional-
ity of unit embeddings, and M ∈ REu×|U| be the
matrix of unit embeddings. Suppose that a word
w from the source dictionary is made up of a se-
quence of units Uw := [u1, . . . , u|w|], where |w|
stands for the number of constituent units in the
word. The resulting word representations are then
fed to both attentional models as the source word
embeddings.

1We only include word embeddings for common words;
rare words share a UNK embedding.
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3.1 Bidirectional LSTM Encoder
The encoding of the word is formulated using a
pair of LSTMs (denoted biLSTM) one operating
left-to-right over the input sequence and another
operating right-to-left, h→j = LSTM(h→j−1, muj )
and h←j = LSTM(h←j+1, muj ) where h→j and h←j
are the LSTM hidden states.2 These are fed into
perceptron with a single hidden layer and a tanh
activation function to form the word representa-
tion, ew = MLP

(
h→|Uw|, h

←
1

)
.

3.2 Convolutional Encoder
Another word encoder we consider is a convolu-
tional neural network, inspired by a similar ap-
proach in language modelling (Kim et al., 2016).
Let Uw ∈ REu×|U|w denote the unit-level repre-
sentation of w, where the jth column corresponds
to the unit embedding of uj . The idea of unit-
level CNN is to apply a kernel Ql ∈ REu×kl

with the width kl to Uw to obtain a feature map
fl ∈ R|U|w−kl+1. More formally, for the jth ele-
ment of the feature map the convolutional repre-
sentation is

fl(j) = tanh(〈Uw,j ,Ql〉+ b)

where Uw,j ∈ REu×kl is a slice from Uw which
spans the representations of the jth unit and its
preceding kl − 1 units, and

〈A, B〉 =
∑
i,j

AijBij = Tr
(
ABT

)
denotes the Frobenius inner product. For example,
suppose that the input has size [4×9], and a kernel
has size [4 × 3] with a sliding step being 1. Then,
we obtain a [1× 7] feature map. This process im-
plements a character n-gram, where n is equal to
the width of the filter. The word representation is
then derived by max pooling the feature maps of
the kernels:

∀l : rw(l) = max
j

fl(j)

In order to capture interactions between the char-
acter n-grams obtained by the filters, a highway
network (Srivastava et al., 2015) is applied after
the max pooling layer,

ew = t�MLP(rw) + (1− t)� rw,

where t = MLPσ(rw) is a sigmoid gating func-
tion which modulates between a tanh MLP trans-
formation of the input (left component) and pre-
serving the input as is (right component).

2The memory cells are computed as part of the recurrence,
suppressed here for clarity.

Language Ru-En Et-En
Phrase-based Baseline 15.02 24.40
AM BILSTMchar 16.01 26.34
OSM BILSTMchar 15.81 26.14
AM CNNchar 15.90 26.14
OSM CNNchar 15.94 25.97
AM BILSTMword 15.93 26.33
OSM BILSTMword 15.70 26.03

Table 2: BLEU scores for re-ranking the test sets.

4 Experiments

Datasets. We use parallel bilingual data from
Europarl for Estonian-English (Koehn, 2005), and
web-crawled parallel data for Russian-English
(Antonova and Misyurev, 2011). For preprocess-
ing, we tokenize, lower-case, and filter out sen-
tences longer than 30 words. We apply a fre-
quency threshold of 5, replacing low-frequency
words with a special UNK token. Table 1 presents
the corpus statistics.

4.1 Extrinsic Evaluation: MT
We apply the character level models in the en-
coder of the neural attentional (Bahdanau et al.,
2015) (AM, soft-attentional) and neural operation
sequence (Vylomova et al., 2016) (OSM, hard-
attentional) models, replacing the source word em-
bedding component with a BiLSTM or CNN over
characters. To evaluate translations, we re-ranked
moses3 100-best output translations using the at-
tentional models. The re-ranker includes standard
features from moses plus an extra feature(s) for
each of the models. For the AM we supply the
log probability of the candidate translation, and for
the OSM we add two extra features correspond-
ing to the generated alignment and the translation
probabilities. The weights of the re-ranker are then
trained using MERT (Och, 2003) with 100 restarts
to optimise BLEU.

Table 2 presents BLEU score results. As seen,
re-ranking based on neural models’ scores outper-
forms the phrase-based baseline. However, the
translation quality of the neural models are not
significantly different. We assume that this is due
to re-ranking of moses translations rather than de-
coding. Also note that here we do not address the
problem of OOV on the decoding side.

4.2 Intrinsic Evaluation
We now take a closer look at the embeddings
learned by the models, based on how well they

3https://github.com/moses-smt.
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Set Train Development Test
tokens types tokens types tokens types OOV rate

Ru-En 1,639K-1,809K 145K-65K 150K-168K 35K-18K 150K-167K 35K-18K 45%
Et-En 1,411K-1,857K 90K-25K 141K-188K 21K-9K 142K-189K 21K-8K 45%

Table 1: Corpus statistics for parallel data between Russian/Estonian and English. The OOV rate are the fraction of word types
in the source language that are in the test set but are below the frequency cut-off or unseen in training.

capture the semantic and morphological informa-
tion in the nearest neighbour words. Learning
representations for low frequency words is harder
than that for high-frequency words, since low fre-
quency words cannot capitalise as reliably on their
contexts. Therefore, we split the test lexicon into
6 parts according to their frequency in the train-
ing set. Since we set out word frequency thresh-
old to 5 for the training set, all words appearing in
the lowest frequency band [0,4] are OOVs for the
test set. For each word of the test set, we take its
top-20 nearest neighbours from the whole training
lexicon using cosine similarity.

Semantic Evaluation. We investigate how well
the nearest neighbours are interchangable with a
query word in the translation process. So we for-
malise the notion of semantics of the source words
based on their translations in the target language.
We use pivoting to define the probability of a can-
didate word e′ to be the synonym of the query
word e, p(e′|e) =

∑
f p(f |e)p(e′|f), where f is

a target language word, and the translation prob-
abilities inside the summation are estimated using
a word-based translation model trained on the en-
tire initial bilingual corpora. We then take the top-
5 most probable words as the gold synonyms for
each query word of the test set.4

We measure the quality of predicted near-
est neighbours using the multi-label accuracy5,
1
|S|
∑

w∈S 1[G(w)∩N(w) 6=∅] where G(w) and N(w)
are the sets of gold standard synonyms and near-
est neighbors for w respectively; the function 1[C]

is one if the condition C is true, and zero other-
wise. In other words, it is the fraction of words
in S whose nearest neighbours and gold standard
synonyms have non-empty overlap.

Table 3 presents the semantic evaluation results.
As seen, for the vanilla (soft) attentional model
word- and character-level representations perform

4We remove query words whose frequency is less than a
threshold in the initial bilingual corpora, since pivoting may
not result in high quality synonyms for such words.

5We evaluated using mean reciprocal rank (MRR) mea-
sure as well, and obtained results consistent with the multi-
label accuracy (omitted due to space constraints).

Model Freq. 0-4 5-9 10-14 15-19 20-50 50+
Russian

AM BILSTMword - 0.32 0.52 0.65 0.81 0.95
OSM BILSTMword - 0.36 0.49 0.61 0.76 0.91
AM BILSTMchar 0.21 0.33 0.49 0.58 0.71 0.85
OSM BILSTMchar 0.16 0.34 0.48 0.59 0.71 0.85
AM CNNchar 0.13 0.23 0.38 0.47 0.61 0.84
OSM CNNchar 0.43 0.71 0.77 0.77 0.81 0.81

Estonian
AM BILSTMword - 0.39 0.53 0.63 0.72 0.88
OSM BILSTMword - 0.48 0.62 0.70 0.79 0.90
AM BILSTMchar 0.12 0.30 0.37 0.45 0.52 0.70
OSM BILSTMchar 0.13 0.39 0.48 0.55 0.63 0.78
AM CNNchar 0.12 0.25 0.33 0.42 0.52 0.75
OSM CNNchar 0.48 0.70 0.75 0.76 0.78 0.78

Table 3: Semantic evaluation of nearest neighbours using
multi-label accuracy on words in different frequency bands.

quite similar. In case of the hard attentional model
we OSM CNNchar outperforms other representa-
tions by a large margin.

Morphological Evaluation. We now turn to
evaluating the morphological component. We only
focus on Russian since it has a notoriously hard
morphology. We run another morphological anal-
yser, mystem (Segalovich, 2003), to generate lin-
guistically tagged morphological analyses for a
word, e.g. POS tags, case, person, plurality, etc.
We represent each morphological analysis with a
bit vector, where each 1 bit indicates the pres-
ence of a specific grammatical feature. Each word
is then assigned a set of bit vectors correspond-
ing to the set of its morphological analyses. As
the morphology similarity between two words, we
take the minimum of Hamming similarity6 be-
tween the corresponding two sets of bit vectors.
Table 4(a) shows the average morphology similar-
ity between the words and their nearest neighbours
across the frequency bands. Likewise, we repre-
sent the words based on their lemma features; Ta-
ble 4(b) shows the average lemma similarity.

Table 5 lists top five nearest neighbours for
OOV words produced by the OSM models. BiL-
STMs better capture morphological similarities
expressed in suffixes and prefixes. We assume this

6The Hamming similarity is the number of bits having the
same value in two given bit vectors.
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Ras+po+lag+a+ušč+ej
Disposing (inpraes,dat,sg,partcp,plen,f,ipf,intr)

OSM CNNchar OSM BILSTMchar
ras+po+lag+a+ušč+iy
disposing (inpraes,nom,sg,partcp,plen,m,ipf,inan,intr)

ras+slab+l+ja+ušč+ej
relaxing (inpraes,dat,sg,partcp,plen,f,ipf)

ras+po+lag+a+ušč+im
disposing (inpraes,ins,sg,partcp,plen,m,ipf,intrn)

so+pro+voj+d+a+ušč+ej
accompanying (inpraes,dat,sg,partcp,plen,f,ipf,tran)

ras+po+lag+a+ušč+ie
disposing (inpraes,nom,pl,partcp,plen,ipf,intr)

ras+slab+l+ja+ušč+uju
relaxing (inpraes,acc,sg,partcp,plen,f,ipf)

ras+po+lag+a+ušč+ih
disposing (inpraes,gen,pl,partcp,plen,ipf,intr)

ras+po+lag+a+ušč+iy
disposing (inpraes,nom,sg,partcp,plen,m,ipf,inan,intr)

ras+po+lag+a+ušč+i+e+sja
disposing (inpraes,nom,pl,partcp,plen,ipf,act)

pro+dvig+a+ušč+ej
promoting (inpraes,dat,sg,partcp,plen,f,ipf,act)

S+konfigur+ir+ova+t́
Configure (v,pf,tran,inf)

OSM CNNchar OSM BILSTMchar
s+konfigur+ir+ui+te
configure (v,pf,tran,pl,imper,2p)

konfigur+ir+ova+t́
configure (v,ipf,tran,inf)

s+konfigur+ova+li
configured (v,pf,tran,praet,pl,indic)

s+korrekt+ir+ova+t́
adjust (v,pf,tran,inf)

s+konfigur+ova+n
configured (v,pf,tran,praet,sg,partcp,brev,m,pass)

s+koordin+ir+ova+t́
coordinate (v,pf,tran,inf)

s+konstru+ir+ova+t́
construct (v,pf,tran,inf)

s+fokus+ir+ova+t́
focus (v,pf,tran,in)

s+kompil+ir+ova+t́
compile (v,pf,tran,inf)

s+kompil+ir+ova+t́
compile (v,pf,tran,inf)

Table 5: Analysis of the five most similar Russian words (initial word is OOV), under the OSM CNNchar and OSM BILSTMchar
word encodings based on cosine similarity. The diacritic ´ indicates softness. POS tags: s-noun, a-adjective, v-verb; Gender:
m-masculine, f -feminine, n-neuter; Number: sg-singular, pl-plural; Case: nom-nominative, gen-genitive, dat-dative, acc-
accusative, ins-instrumental, abl-prepositional, loc-locative; Tense: praes-present, inpraes-continuous, praet-past, pf -perfect,
ipf -imperfect; indic-indicative; Transitivity: trans-transitive, intr-intransitive; Adjective form: br-brevity, plen-full form,
poss-possessive; Comparative: supr-superlative, comp-comparative; Noun person: 1p-first, 2p-second, 3p-third;

Model \ Freq. 0-4 5-9 10-14 15-19 20-50 50+
AM BILSTMword - 0.70 0.73 075 0.78 0.82
OSM BILSTMword - 0.74 0.77 0.78 0.81 0.84
AM BILSTMchar 0.90 0.82 0.83 0.83 0.84 0.82
OSM BILSTMchar 0.91 0.84 0.85 0.85 0.86 0.86
AM CNNchar 0.82 0.76 0.77 0.78 0.79 0.81
OSM CNNchar 0.79 0.80 0.79 0.79 0.79 0.79

(a)
Model \ Freq. 0-4 5-9 10-14 15-19 20-50 50+
AM BILSTMword - 0.02 0.04 0.07 0.11 0.18
OSM BILSTMword - 0.03 0.05 0.06 0.09 0.15
AM BILSTMchar 0.08 0.06 0.10 0.11 0.12 0.21
OSM BILSTMchar 0.05 0.05 0.08 0.10 0.13 0.18
AM CNNchar 0.04 0.02 0.05 0.06 0.1 0.15
OSM CNNchar 0.20 0.37 0.41 0.42 0.44 0.41

(b)

Table 4: Morphology analysis for nearest neighbours based
on (a) Grammar tag features, and (b) Lemma features, evalu-
ated on Russian.

is due to the fact that they are naturally biased
towards most recent inputs. CNNs, on the other
hand, are more invariant of character positions and
provide whole-word similarity.

5 Conclusion

We studied two types of attentional models aug-
mented by CNN and LSTM encodings. Our exper-
iments demonstrate that representation of out-of-
vocabulary words with their sub-word units on the

source side did not lead to a significant improve-
ment in overall quality of machine translation;
however LSTMs applied to character sequences
are more capable at learning morphological pat-
terns. Moreover, a hard attention mechanism leads
to better capturing of semantic and morphological
regularities.
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Abstract

There are several native languages in Peru
which are mostly agglutinative. These lan-
guages are transmitted from generation to
generation mainly in oral form, causing
different forms of writing across different
communities. For this reason, there are re-
cent efforts to standardize the spelling in
the written texts, and it would be benefi-
cial to support these tasks with an auto-
matic tool such as a spell-checker. In this
way, this spelling corrector is being de-
veloped based on two steps: an automatic
rule-based syllabification method and a
character-level graph to detect the degree
of error in a misspelled word. The experi-
ments were realized on Shipibo-konibo, a
highly agglutinative and Amazonian lan-
guage, and the results obtained have been
promising in a dataset built for the pur-
pose.

1 Introduction

In Peru, there are several native languages through
the diverse native communities in the Amazonian
region, such as Asháninka, Kakataibo, Shipibo-
konibo, among others (Rivera, 2001). These lan-
guages, in spite of being very different from each
other (47 languages in 21 linguistic families),
share some features related to their morphology
and the context in which they are used.

Regarding the morphology of the Amazonian
languages, they are highly agglutinative, where
suffixes predominates over prefixes. This charac-
teristic distances them a lot from Spanish, the main
official language in the country, and even the struc-
tural order is also different.

On the other side, these languages are used and
transmitted mainly in an oral way, such as story-

telling, poetry and in everyday life in the native
communities. This causes differences in the way
of writing between communities, and even among
people in the same community (Aikman, 1999).
For this reason, the texts that were written in these
languages did not have an orthographic standard
to guide them.

Thus, it is a must to support the educational pro-
cess of this languages for this communities, and
from the computational side, the main way to help
them would be through the development of auto-
matic tools or functions that process the specific
language, in order to assist tasks related to gener-
ate written material such as educational books.

In that way, this project aims to develop a spell-
checker focused on Shipibo-konibo, an amazonian
language that is one of the most studied by lin-
guists (Valenzuela, 2003) and also there are efforts
from the computer science field to develop a basic
toolkit for it (Pereira et al., 2017).

As this kind of language possess a rich mor-
phology, the spelling corrector would focus on
process sub words parts, such as syllables and
characters, developing data structures and func-
tions that could help in the process of identifying
a misspelled word and suggesting potential cor-
rected alternatives.

This study is organize as follows: In the next
section, there will be described some studies re-
lated to the implementation of spelling correctors
focusing on low-resource languages or language-
independent models. Then, the sub word approach
for the resources used (data structures and func-
tions) will be detailed. After that, Section 4 de-
scribes the proposed spelling corrector, while Sec-
tion 5 presents the experimentation and results ob-
tained. Finally, the conclusions and future work
are discussed in Section 6.
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2 Related work

The related works focus on studies regarding the
development of spell-checkers in a low-resource
scenario or with a language independent approach.

Firstly, Barari and QasemiZadeh presented a
tool called ”CloniZER Spell Checker Adaptive”.
It consists of an adaptive method that uses inter-
nal error pattern recognition based on a ternary
search tree. Thanks to this approach, the spell-
checker was independent of the language because
it was not based on specific rules from a specific
language or corpus (this could be replaced). An
interesting part in this approach resides is the sup-
port of the tree with variable weighted edges. The
weights modifications are made through the inter-
action with a user, since the method learns from a
mean of error patterns and thus the suggestion of
solutions keeps improving.

Another source found is Abdullah and Rahman,
who performed a generic spelling correction en-
gine for South Asian languages, which uses cir-
cular lists where words are grouped by phonetic
similarity and with an algorithm adapted from the
Recursive Simulation (Lee, 1997) is constructed
the possibly correct word that has similar to the
misspelled word. However an interesting help
they used was an additional dictionary of words,
where they kept the misspelled words that the
users wrote. This method is favorable for lan-
guages that have similarity with other phoneti-
cally, such as the group of languages of the Pano
family in which the shipibo-konibo is.

Aduriz et al., who presented a corrector based
on morphologies, in which a morphological anal-
ysis is used to perform morphological decomposi-
tions at two levels for spelling errors and for typo-
graphical errors uses a recognition of morphemes
in the generation of correct words. This approach
is interesting since they additionally use a lexicon
that they are improving and a set of rules that help
to map the lexical level and the surface level due
to the morphological transformation (phonologi-
cal representation of the morphemes).

Finally, Wasala et al. presented a proofreader
for an African language. In this it was used a
statistical model based on n-grams, this approach
is based on assigning probabilities to a sequence
of words where the sequence is determined by n-
gram. An example of a 2-gram or bigram is: ”try
this”. The chosen approach offers relative ease
of construction and avoids the problem of hav-

Vowels
a
e
i
o

Consonants
b
k
ch
j
m
n
p
r
s
sh
x
ts
w
y

Table 1: Vowels and consonants in shipibo-
konibo.

ing few linguistic resources. The algorithm that
is proposed for the orthographic correction uses 4
modules. These are: pre-processing, generation
of permutations, selection of best suggestions, and
post-processing. The interesting thing about this
algorithm is that after preprocessing it performs
a word search with similar sounds or phonemes,
thus generating possible solutions, which are then
improved based on the statistics of n-grams apply-
ing from unigramas to trigrams.

3 Subword Resources

As a first step, it is necessary to specify what type
of resources, such as data structures, were used for
the development of the spell checker.

3.1 Character-level Graph

The first structure that is needed is a graph as is
shown in Figure 1. The nodes represent the char-
acters that are used in the Shipibo-konibo (SHP)
vocabulary, while the vertexes are the (weighted)
relationships between each pair of them (this in-
formation is extracted from a corpus). Specifi-
cally, the alphabet of SHP contains 4 vowels and
15 consonants, as it can be seen in Table1. It is im-
portant to note that all the nodes will not be used
in the whole process, due to the proposed n-gram
based approach.

3.2 Syllable-level Graph

Another structure, needed to improve the possible
algorithm solution, is a syllable-level graph. The
nodes are the syllables that could be formed in the
SHP grammar, and the vertexes represent the po-
tential proximity relationship between 2 syllables
(that is extracted from a corpus also). The number
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Figure 1: Character-level Graph Structure

Attack Core Coda
Vowel

Consonant Vowel
Vowel Consonant

Consonant Vowel Consonant

Table 2: Syllabic pattern

of grammatically correct syllables in SHP is 576,
and with these syllables, all the word entries of a
SHP dictionary could be generated.

3.2.1 Syllabification function
There are 4 syllabic patterns in the SHP language,
and these are represented in Table 2. There are 3
positions named Attack, Core and Coda.

The syllabification function helps in the im-
provement of the solutions selection of the correc-
tion algorithm. It has been developed based on the
existing rules in the Shipibo-konibo grammar, and
it helped the process because it allowed to separate
each word of the dictionary in syllables to create
the syllables graph. In addition, the use of the syl-
labification functions is a filter that is used to iden-
tify whether a word is well written or not.

3.3 Dictionary for previous corrections

As another needed resource, there is an own built
dictionary structure that saves the previous mis-
spelled word that has already been corrected, in
order to avoid the same error correction again.
The key is the misspelled word, and this is asso-
ciated with a list of words corrected previously as
is shown in Figure 2.

4 Proposed Spelling Corrector

First, the text is tokenized. After that, there is a
verification process for each word to know if the
term have been corrected before, or belongs to the

Figure 2: Sample of a misspelled-corrected dictio-
nary

Spanish language, or exceeds a modified language
model. In those cases the suggestion is sent di-
rectly as it can be appreciated in Figure 3. In other
case, the word goes to the correction process, in
which a graph is traversed in order to be able to
identify possible correct words. Also, a filter is
used where the word must be syllabified and fi-
nally a score is applied while traversing a graph
of syllables and other score with the edit-distance.
The results are ranked by score and assigned as
suggestions to each corrected word.

4.1 Spell-checking algorithm

4.1.1 Identifying a misspelled word
First, the text is tokenized, and the numbers and
punctuation are removed. The position of these fil-
tered characters are saved, in order to replace them
after the correction process is complete. Besides,
the text is transformed to lowercase letters and the
accent marks are removed.

As there is a dictionary structure that stores pre-
vious corrections, a search of the misspelled word
is performed.

If the terms are not found in the previous dic-
tionary structure, it is necessary to identify if
they belong to the Spanish language using a cor-
pus(Davies, 2002), a feature shared with other na-
tive languages in Perú.

Words that are not found in this Spanish corpus,
are evaluated by the syllable language model. This
model sum-up the weights assigned by each sylla-
ble found in the word, if this value can’t surpass
an empirical calculated threshold, is marked as a
misspelled word an it will be the input for the next
stage.

4.1.2 Correcting a misspelled word
For this stage, both graphs of letter and syllables
described in the previous section are loaded. Each
word that has to be corrected is evaluated. In this
way, the number of vowels in the word allows to
approximate number of syllables that can be iden-
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Figure 3: Identifying a misspelled word

Figure 4: Correcting a misspelled word
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tified. Since the absence or increasing of a vowel
may be an error, it is considered a little higher
range of syllables that can form the word: [num-
ber of syllables - 1; number of syllables + 1]. This
helps in the generation of the possible correct so-
lutions of each word.

The next step is the solution search. This is done
by recursively traversing the misspelled word let-
ter by letter. In this way, each possible syllable
combination is contrasted versus the rule-based
syllabification model and the range of syllables
considered. Also, each solution receive a value
calculated by the sum of the repetition of each own
letter in the dictionary and the value of the unions
in the graph. While traversing the misspelled word
by finding a mistake, different paths are generated,
the first one is from deleting the wrong letter, the
next is when making a change of letter with the
previous one, and the other paths are generated by
changing the wrong letter with related letters in the
graph. In this way, when creating several paths are
generating different solutions.

Once the search for correct solutions is com-
pleted, they are evaluated through a modified lan-
guage model. For that purpose the second graph
containing syllables and the repetitions of the con-
nections between syllables are used. In order to
start the process, each possible solution is sepa-
rated into syllables and the sum of the connections
of these syllables is calculated using the graph.
Additionally, the edit distance with Damerau-
Levenshtein is calculated. At the end of calcu-
lating the two values, a 90% multiplication was
performed on Damerau-Levenshtein and 10% on
the sum of syllabic relationships, these values of
90% and 10% were chosen after testing to iden-
tify which optimized results. Finalized the calcu-
lations to each word, there are chosen the three
possible correct words with the best values to be
returned as solution.

4.2 Suggestions component

The suggestions component has been defined so
that the user can make corrections to the solution
that the application provides, allowing to improve
the results since it will not have a totally accurate
correction and adding new elements to the cor-
rected list structure. It starts when the user se-
lects the corrected word, activating a menu with
the additional suggested words that were obtained
when performing the correction. Then, the user

selects the option that seems more precise and it
is changed in the corrected text. Once this change
is made, an additional change is made to the inter-
nal structures, where the correct word is added to
the corrected list structure and the values are up-
dated in the internal graph that is handled for the
correction algorithm.

5 Experimentation and Results

An experiment will be carried out to establish the
effectiveness of the spelling checker using metrics
(van Huyssteen et al., 2004) to evaluate this type
of projects.

5.1 Dataset

To construct the dataset there was more than
one source. The first is a dictionary of shipibo-
konibo and Spanish which through a preprocess-
ing has been updated to the new rules of writing
and consists of 5486 words. The second source
is separated texts by domain (educational, legal
and religious) that was translated from Spanish to
Shipibo-Konibo. The educational domain consists
of 2097 sentences consisting of 16789 words, the
legal domain consists of 957 sentences consisting
of 16794 words and the religious domain consists
of 13482 sentences consisting of 212921 words.
This is the initial dataset that helps to construct the
graphs that are needed in the correction algorithm.

The dataset is available at a website project.1

5.2 Design of the experiment

To perform the experiment, where the effective-
ness of the algorithm will be tested, it has been de-
cided to use different sentences extracted from the
shipibo-konibo dictionary (Lauriout et al., 1993).
These sentences correspond to the examples of
each dictionary entry. As the dictionary is not with
the new official changes, proceeded to perform a
pre-processing to update all the words in the ex-
ample sentences.

After cleaning, 2 types of tests will be gener-
ated. The first test is to randomly add a character
to some words in the sentence. On the other hand,
the second test adds, deletes or changes characters
of some words at random in the sentence.

Three columns are created in a table: in the
first column the original sentence which is already
cleaned, in the second column the sentence with
the first type of error and in the last column the

1chana.inf.pucp.edu.pe/resources

113



Sentence Sentence for test type 1
nokon wái óroa

pekaora ea náshiai nyokon wái aóroa poekaora eda náshiai

eara nénoa iki eara nénopa iki
rámara tı́ta ka

cónko iki rámara tı́taa ka cónko ikii

Table 3: Example of sentences for the test 1

Sentence Sentence for test type 2
nokon wái óroa

pekaora ea náshiai nokon wáji óra dpekaora a náshiai

eara nénoa iki eaora néoa oiki
rámara tı́ta ka

cónko iki rámara tı́ta k cónko iki

Table 4: Example of sentences for the test 2

sentence with more than 1 type of error. The file
with the generated tables is used as input to per-
form the experiment.

5.3 Results

Correction of the 2 types of test was done with
5121 sentences. In order to identify the cor-
rect functioning, the Recall, Precision, measure
of suggestions and general performance metrics
were proposed for the evaluation of spell check-
ers (van Huyssteen et al., 2004). When counting
the number of words in sentences, the result was
55786 words, these included correct words and
misspelled words which will allow a better eval-
uation of the metrics. To calculate the recall and
precision of the results:

• True positives (Tp): Misspelled word that are
well corrected.

• True negatives (Tn): Misspelled word that
are poorly corrected.

• False positives (Fp): Correct word that are
well corrected.

• False negatives (Fn): Correct word that are
poorly corrected.

To calculate the measure of suggestions a score
is used depending on the suggestion of correction
that will be applied to all corrections. Upon com-
pletion, a sum of all the scores obtained from the
corrections will be made and divided by the num-
ber of positive ones to find the value of the sugges-
tion measure. The scores used are:

• Correction in the first position of the sugges-
tions: 1 point

Data Value
True positive 7099
True negative 6276
False positive 14200
False negative 128
Correction in the first position of the suggestion 13340
Correction in some position of the suggestions 7959
No correct suggestion 6404
No suggestion 533

Table 5: Experiment type 1 data

Data Value
True positive 3504
True negative 9769
False positive 14242
False negative 111
Correction in the first position of the suggestion 12695
Correction in some position of the suggestions 5051
No correct suggestion 9980
No suggestion 510

Table 6: Experiment type 2 data

• Correction in some position of the sugges-
tions: 0.5 points

• No correct suggestion: -0.5 points

• No suggestion: 0 points

With the values in Tables 5 and 6, it was pos-
sible to calculate the recall and precision metrics
with the formulas 1 and 2:

recall =
Tp

Tp + Fp
(1)

precision =
Tp

Tp + Tn
(2)

Finally, to find the value of overall performance
of the corrector, the following formula 3 is used:

overall =
Tp + Fp

Tp + Tn + Fp + Fn
(3)

’
With the results obtained in Table 7 and Table

8, the values of the Recall and precision metrics
are low, however this is because the spell-checker
has yet to be improved to better identify the errors.

Data Value
Recall 0.33
Precision 0.53
Suggested Measure 14117.5 points
Overall Performance 0.76

Table 7: Resulting metric type 1
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Data Value
Recall 0.19
Precision 0.26
Suggested Measure 10230.5 points
Overall Performance 0.64

Table 8: Resulting metric type 2

Recall Precision Overall
0

0.2

0.4

0.6

0.8

1

Type Error 1 Type Error 2

Figure 5: Metrics by type of error

What would improve its effectiveness is to be able
to better detect words that do not need to be really
corrected, because as can be appreciate, many of
the words that are corrected are words that did not
need it. An approach to face this problem is to
take advantage of the available corpus to perform
a search of the word and identify in the corpus if
it already exists. This would avoid unnecessary
correction, but would mean an increase in the time
due to a search for each word that although in short
texts would not be much difference, in longer texts
it would be noticed.

Despite the low numbers in recall and precision
as can see in Figure 5, the spell-checker get a good
result at the general level because it is considered
within the correct result that both misspelled and
well written words, when corrected, offer a correct
result. In addition, it can be seen that more than
half the time a good correction proposal has been
found and 25% of the time these corrections are in
the first position as a suggestion in the two types
of tests performed.

There was another experiment where it can be
found the ranking of the suggestions, for this case

Top Type of errors 1 Type of errors 2
1 13400 12695
3 722 376
5 665 337
7 6572 4338

Table 9: Number of words in top suggestions by
type of errors

we use four elements: the first position, the top-3,
the top-5 and the top-7. These results can be seen
in Table 9. In most cases, the corrected sugges-
tions are in the first positions and low values in the
next positions in both types of errors.

6 Conclusions and Future Work

In this study, it was proposed a hybrid approach for
the development of a spell-checker for Shipibo-
konibo. This method was supported with the im-
plementation of linguistic rules (in the syllabifica-
tion process) and the information obtained from
different text corpus for the language. One of the
difficult tasks was the use of recursion at the fol-
lowing of different paths when finding an error in
the words (since it could be possible to change the
character, add or remove it). That is why it was
used a cutoff depth that help not to create long
paths.

Finally the results were obtained, however they
were not very promising because the approach fol-
lowed is not enough to obtain a precise correc-
tion. However, as a future work, a context analysis
will be integrated, using embedded words with a
character-level model to identify terms that should
not be corrected, because they may be well written
but are not suitable in the context of a sentence.
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Abstract

We propose a new type of subword em-
bedding designed to provide more infor-
mation about unknown compounds, a ma-
jor source for OOV words in German. We
present an extrinsic evaluation where we
use the compound embeddings as input
to a neural dependency parser and com-
pare the results to the ones obtained with
other types of embeddings. Our evaluation
shows that adding compound embeddings
yields a significant improvement of 2%
LAS over using word embeddings when
no POS information is available. When
adding POS embeddings to the input, how-
ever, the effect levels out. This suggests
that it is not the missing information about
the semantics of the unknown words that
causes problems for parsing German, but
the lack of morphological information for
unknown words. To augment our evalua-
tion, we also test the new embeddings in a
language modelling task that requires both
syntactic and semantic information.

1 Introduction

Parsing morphologically rich languages (MRLs)
is a challenging task. One of the main problems
is the high proportion of unknown words in the
data, due to the high number of different inflected
forms. In some languages, this problem is made
even worse by compounding, a highly productive
word formation process. Thus, handling unknown
words is crucial for parsing MRLs and especially
for German where compounding is a frequent phe-
nomenon.

While word embeddings are a promising way to
learn a general representation that captures syntac-
tic and semantic properties of a word, they have

not fully solved the sparse data problem. Recent
studies are exploring representations at the sub-
word level that can provide information even for
rare and unseen words. Well-known examples
are character and character-ngram-based embed-
dings (Sperr et al., 2013; dos Santos and Zadrozny,
2014; Ling et al., 2015; Vania and Lopez, 2017),
morphological embeddings (Luong et al., 2013;
Botha and Blunsom, 2014; Cotterell and Schütze,
2015; Cao and Rei, 2016), or byte embeddings
(Plank et al., 2016; Gillick et al., 2016).

Ballesteros et al. (2015) were the first to inte-
grate character-based embeddings into a syntac-
tic parser and compared the effect for different
languages with different levels of morphological
richness. They showed that replacing word em-
beddings with character-based embeddings can be
useful, especially for parsing agglutinative lan-
guages. Since then, character-based embeddings
have become an ingredient in many parsing sys-
tems.

Other work has addressed the compounding
problem on the level of word embeddings. Dima
et al. have tried to model compound composi-
tionality for English (Dima and Hinrichs, 2015)
and German (Dima, 2015). However, experiments
were on the semantic level, and the compounds
were restricted to two components only. To the
best of our knowledge, nobody has tried com-
pound embeddings to tackle the unknown word
problem in statistical parsing.

2 The problem with compounds
Compounds are words that include more than one
stem. In some languages (e.g. English), the
individual components are separated by spaces,
while in other languages, such as German, they are
merged into a new word form. Compounding is
highly productive and thus, in languages like Ger-
man, a major source of new, unseen words. Take,
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Threshold en de

1 13.17 37.18
2 19.48 48.78
3 24.39 55.59
4 28.36 60.51
5 31.90 64.12

Table 1: The percentage of unknown words in the
test data set with respect to different levels of cut-
off threshold in the training data. Threshold of 1
means no words in the training data are discarded.

for example, the German compound Verbraucher-
schutzgesetz (consumer protection law). While all
three parts are reasonably frequent and thus have
a good chance of being included in a sufficiently
large data set, the merged compound itself, most
probably, is not.

This poses a problem for most statistical
parsers. In our work, we focus on recent neu-
ral dependency parsers which, instead of using
hand-crafted feature templates, directly learn the
features from the training data (Chen and Man-
ning, 2014; Zhang et al., 2017). These parsers
usually introduce an UNKNOWN token for out-of-
vocabulary words. A well-known technique for
computing the embeddings of the UNKNOWN to-
ken is to discard infrequent words below a certain
threshold and also treat them as unknown.

To illustrate the differential effect of this prac-
tice for languages that write compounds with
word-internal spaces versus languages that use
run-together compounds, let us take a look at
the English Penn Treebank (PTB) (Marcus et al.,
1993) and the German data set from the SPMRL
2014 shared task (Seddah et al., 2014), and com-
pare the ratio of sparse or unknown words in the
test sets for both treebanks with regard to differ-
ent frequency thresholds. Table 1 shows that the
ratio of words to be declared unknown is more
than twice as high in the German data, due to a
high amount of unknown common nouns. At a
cutoff threshold of 5, the most frequent POS for
unknown words in the German data are common
nouns (47.4%) and proper nouns (17.3%). In the
English data, however, proper names are the most
frequent source for UNKNOWNs (35.4%) and com-
mon nouns only amount to 24.1%. One of the
main reasons for this difference between the two
Germanic languages is the high productivity of
German compounds. We thus hypothesize that the
high ratio of compounds will have a major impact
on parsing German, which we address with our
new compound embeddings.

3 Character vs Compound Embeddings
In a neural parsing system, each word is repre-
sented by a vector stored in a lookup table. One
way to reduce the negative effect of unknown
words in the vocabulary and also, if only indi-
rectly, provide a treatment for compound words,
is to replace the word lookup table by character-
based embeddings (Ling et al., 2015). In this ap-
proach, each word is treated as a sequence of char-
acters and the representation for each word is con-
structed from the representations for its charac-
ters, using a bi-directional long short-term mem-
ory network (LSTM) (Hochreiter and Schmidhu-
ber, 1997). Given word w as a sequence of char-
acters (c1, c2, ..., cm) and ec as the vector repre-
sentation of character c, we can compute the rep-
resentation echar

w of word w as follows:

sF
t = LSTMF (ect , s

F
t−1) (1)

sB
t = LSTMB(ect , s

B
t+1) (2)

echar
w = DF sF

m + DBsB
0 + b (3)

where sF
t and sB

t are the hidden states of the for-
ward and backward LSTMs at time t; DF , DB and
b are the weight and bias vectors.

We now outline our compositional model for
compound embeddings. We assume that most
compounds have a transparent meaning that can
be inferred from the meaning of its components
and hypothesize that providing the parser with
subword embeddings that combine the represen-
tations of the individual components will help the
model to handle unseen compounds. To that end,
we first split each compound into lexemes and
then combine the sequence of lexemes as we did
for the character-based embeddings, using a bi-
directional LSTM.

For compound splitting, we use the IMS split-
ter (Weller and Heid, 2012) which adopts a
frequency-based approach with additional linguis-
tic features. The input information for the split-
ter (frequencies, POS and lemmas) was extracted
from SdeWac (Faaß and Eckart, 2013), a cleaned-
up version of the deWac corpus (Baroni et al.,
2009) with automatic POS tags and lemmas.

4 Experiments
4.1 Parsing Model
Our parsing model is an extension of the head-
selection parser of Zhang et al. (2017) (figure 1).
Given the sentence S = (w0, w1, ..., wN ) and xi

as the input representation of word wi, the model
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Figure 1: The parsing as head selection model

uses a bi-directional LSTM to learn a feature vec-
tor for each word in S:

hF
i = LSTMF (xi, h

F
i−1) (4)

hB
i = LSTMB(xi, h

B
i+1) (5)

hi = [hF
i ; hB

i ] (6)

The feature vector hi of word wi is the concate-
nation of the hidden states from the forward and
backward passes of the bi-direction LSTM. An ar-
tificial root node w0 token is appended at the be-
ginning of each sentence.

Unlabeled parsing is modeled as choosing the
most probable head for each word in a sentence.
In sentence S = (w0, w1, ..., wN ), the probability
of word wj being the head of wi is calculated as:

Phead(wj | wi, S) =
exp(g(aj , ai))∑N

k=0 exp(g(ak, ai))
(7)

where g is a neural network that predicts a score
for the feature vectors hi and hj as follows:

g(aj , ai) = v>a · tanh(Ua · aj + Wa · ai) (8)

Finally, an additional neural network is used to
assign the grammatical function label to each edge
in the unlabeled tree. The input to that network is
the concatenation of the input representations and
the learned feature vectors of head j and depen-
dent i:

[xi; xj ; hi; hj ] (9)

Note that in our implementation we use a single
hidden-layer rectifier network instead of the two-
layer rectifier network in Zhang et al. (2017), since
we achieve better results with only one hidden
layer.

Module Hyperparameter Value
Word emb. size 300
POS emb. size 40
Character-based
emb.

character embedding size 50
hidden size 100

Compound
emb.

lexeme embedding size 50
hidden size 100

BiLSTM hidden size 300
Regularization L2 1e-3

input dropout rate 0.05
dropout rate 0.5
max-norm 5.0

Optimization optimizer Adam
learning rate 0.001
1st momentum 0.9
2st momentum 0.999
no. epochs 15

Others word cutoff threshold 5

Table 2: Hyperparameters used in all experiments

4.2 Input representations

To assess the effect of different compound hand-
ling techniques on parsing performance, we sys-
tematically vary the input information for the
parser, as described below:

Word Embeddings (+word) Each word w in
the lexicon is represented as a vector ew in the
lookup table. We do not use any pre-trained em-
beddings; all embeddings are initialized randomly.

POS Embeddings (+pos) If word w has POS
tag p, we add an embedding ep for tag p to the
input information.

Character-Based Embeddings (+char) In ad-
dition to the word embeddings ew from the lookup
table, we also use the character-based embeddings
echar
w of word w (equation 3).

Compound Embeddings (+comp) The com-
pound embedding e

comp
w of word w is calculated

based on the lexeme embeddings (see section 3).
When combining different types of information

in the input, we use the concatenation of each em-
bedding type.

4.3 Training

We train our own implementation of the parser,
following Zhang et al. (2017). For optimiza-
tion, we used Adam (Kingma and Ba, 2015) with
default parameters. All models were trained in
15 epochs and the training process was regular-
ized using common techniques like L2 regular-
ization, max-norm and dropout (Srivastava et al.,
2014). We chose all hyperparameters for our
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Input UAS LAS

+pos

b1 +word,pos 90.50 88.06
b2 head:+word,pos 90.46 88.13

+comp,pos 90.23 87.93
+comp,word,pos 90.39 88.10
+char,pos 90.53 88.49
+word,char,pos 90.69 88.56

-pos

b1 +word 86.27 83.08
b2 head:+word 87.00 83.97

+word,comp 88.29 85.42
+word,char 90.42 88.20

Table 3: Results for different input combinations

experiments manually, following suggestions by
Zhang et al. (2017) (see table 2).

We report parsing performance (UAS and LAS)
with punctuation on the German data set from the
SPMRL 2014 shared task. The training set con-
tains 40,472 sentences and the development and
test sets both include 5,000 sentences.

The compound splitting (section 3) affected
about one third of the lexemes in the lexicon, all of
them nouns. Of all the unknown words in the test
set (64.12% at a cutoff threshold of 5, see table 1),
24.92% now consist of known lexemes, 73.79%
have only one unknown lexeme, and only 1.29%
have more than one unknown component.

We compare our results against two baselines,
(b1) using the original words for parsing and (b2)
a greedy baseline head, where we discard all com-
pound components except the rightmost one, since
in most cases, the rightmost lexeme is the head of
the compound. Baseline (b2) reduces the number
of unknown words in the data by 10%.

4.4 Results

Table 3 (+pos) shows results for different combi-
nations of input information. The +word,pos
setting (baseline b1) is the one implemented in
the original parser. The results show that our spe-
cial treatment of compounds does not have the de-
sired effect. In both settings, using only the head
words (b2) and using compound embeddings, we
see only minor changes in parsing accuracy and
when replacing word with compound embeddings,
results actually decrease. This strongly suggests
that the parsing model is often able to make the
right decision without actually knowing the word.

Adding the character embeddings improves the
LAS by 0.5%, but does not have a significant ef-
fect on the UAS. Since German is a richly in-
flected, semi-free word order language, this sug-
gests that the character-based embeddings have
learned morphological information from the sur-

Label Freq. -char +char
P R P R

SB 6,638 90.7 91.2 90.6 92.2
OA 3,184 82.3 85.7 83.3 87.5
DA 568 73.2 55.3 78.9 63.9
AG 2,241 91.3 91.5 94.2 93.9
OG 21 100.0 4.8 N/A 0.0
PD 1,045 82.5 74.3 84.8 80.8

Table 4: Precision (P) and recall (R) for core gram-
matical functions with/without character-based
embeddings. SB: subj, OA: accusative obj, DA:
dative obj, AG: genitive attribute, OG: genitive
obj, PD: predicate.

face of the words that helps assign the correct
grammatical function for each head-dependent
pair. Table 4 confirms this by showing the im-
provements we get for the core arguments when
adding character-based embeddings.

The effect of POS tags In the next set of ex-
periments, we exclude the POS tag information
to isolate the effect of the different techniques for
handling compounds. Table 3 (-pos) shows that
without POS information, we now see a significant
effect. The greedy baseline that keeps only the
head word for each compound increases UAS and
LAS by 0.7% and 0.9% respectively, and our com-
pound embeddings now improve both scores by
more than 2%. Using character-based embeddings
in combination with word embeddings, however,
yields comparable results to the +word,pos sys-
tem. We take that as evidence that the character-
based embeddings implicitly learn morphological
information that is complementary to the informa-
tion included in the word embeddings. Our results
are in line with previous results from the literature,
claiming that character-based embeddings are able
to capture morphological information (Ling et al.,
2015; Cao and Rei, 2016; Kim et al., 2016).

Our results also corroborate findings by
Köhn (2016) who evaluates different types of word
embeddings in a syntax-based classification task,
reporting that the embeddings yielded improve-
ments only when no POS information was given.

4.5 Language Modeling

To validate our results in a different setting, we
also test the compound embeddings in a language
modeling task. Language models (LM) are an im-
portant ingredient in many NLP applications, e.g.
in speech recognition and machine translation, and
they require both syntactic and semantic informa-
tion.
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Model Word Compound Char
Perplexity 36.954 35.987 32.273

Table 5: Perplexity for different language models
on German texts from Wikipedia.

In our experiment, we use the framework1 and
setup described in Vania and Lopez (2017) to
build a language model for German texts. The
framework includes implementations for word and
subword-based (morpheme, character or character
n-gram) embeddings and uses either bidirectional
LSTMs or addition as the combination function of
subwords.

The German data sets are from the preprocessed
Wikipedia data (Al-Rfou et al., 2013). Hyper-
links have been removed and the input texts have
been lower-cased before learning the word- and
compound-based embeddings. For the character-
based embeddings, the upper-cased letters have
been preserved. We split the data into training, de-
velopment and test sets, with approximately 1.2M,
150K and 150K tokens, respectively. For training
and evaluation we closely follow Vania and Lopez
(2017).

We report results for three language models.
The word model and the character model (using
a bidirectional LSTM as composition function)2

are already implemented in the framework. For
the compound embeddings, we first split the com-
pounds in the data sets as described in section 3
and then combine them, again using a bidirec-
tional LSTM as composition function.

The results are shown in table 5. Using
compound-based embeddings yields better per-
plexity in comparison to the vanilla word model,
but the compound model is still far behind
the character-based embeddings which obtain the
lowest perplexity. The results for the language
model thus confirm the trend observed in the pars-
ing experiments.

5 Discussion

In both tasks, parsing and language modelling, the
character-based embeddings clearly outperformed
the compound-based embeddings. This suggests
that the character-based embeddings are able to

1https://github.com/claravania/
subword-lstm-lm

2These are the same character-based embeddings that we
used in the parsing experiment (sections 4.3, 4.4).

pick up structural information that is important for
both tasks.

For parsing, the results for the compound-based
embeddings were even below the ones for the
word embeddings when including POS informa-
tion in the input. This implies that the informa-
tion needed for parsing unknown words is not
so much information about the semantics of a
word but, crucially, morphological information.
This was confirmed by the improved results for
using character-based embeddings instead of the
compound-based ones, where we were able to
make up for the decrease in LAS that resulted from
removing POS information from the input.

Our results are important, as they show that un-
known words are not per se a problem for parsing,
as long as we are able to learn something about
their morphological properties.

6 Conclusions and future work

In the paper, we introduced a new type of subword
embedding, the compound embedding. The new
embeddings are designed to provide more infor-
mation about unknown compounds which consti-
tute a major part of OOV words in German.

We evaluated the embeddings in dependency
parsing and showed that although the compound-
based embeddings outperformed word embed-
dings when no POS information was available, the
character-based model showed a performance su-
perior to the one for word and compound embed-
dings. For language modelling, where not only
syntactic but also semantic information is impor-
tant, the results follow the same trend.

This leaves us with two avenues for future work.
To provide an improved handling of OOV words
for parsing, we need to optimise subword embed-
dings to represent morphological information for
unknown words. In addition, we would like to test
the compound embeddings in a purely semantic
task where we can explore their full potential.
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Abstract

We present a general-purpose tagger based
on convolutional neural networks (CNN),
used for both composing word vectors
and encoding context information. The
CNN tagger is robust across different tag-
ging tasks: without task-specific tuning of
hyper-parameters, it achieves state-of-the-
art results in part-of-speech tagging, mor-
phological tagging and supertagging. The
CNN tagger is also robust against the out-
of-vocabulary problem; it performs well
on artificially unnormalized texts.

1 Introduction

Recently, character composition models have
shown great success in many NLP tasks, mainly
because of their robustness in dealing with out-
of-vocabulary (OOV) words by capturing sub-
word informations. Among the character compo-
sition models, bidirectional long short-term mem-
ory (LSTM) models and convolutional neural net-
works (CNN) are widely applied in many tasks,
e.g. part-of-speech (POS) tagging (dos Santos
and Zadrozny, 2014; Plank et al., 2016), named
entity recognition (dos Santos and Guimarães,
2015), language modeling (Ling et al., 2015; Kim
et al., 2016), machine translation (Costa-jussà and
Fonollosa, 2016) and dependency parsing (Balles-
teros et al., 2015; Yu and Vu, 2017).

In this paper, we present a state-of-the-art
general-purpose tagger that uses CNNs both to
compose word representations from characters
and to encode context information for tagging.1

We show that the CNN model is more capable than

1The tagger is available at http://www.ims.
uni-stuttgart.de/institut/mitarbeiter/
xiangyu/index.en.html

the LSTM model for both functions, and more sta-
ble for unseen or unnormalized words, which is
the main benefit of character composition models.

Yu and Vu (2017) compared the performance of
CNN and LSTM as character composition model
for dependency parsing, and concluded that CNN
performs better than LSTM. In this paper, we
show that this is also the case for POS tagging.
Furthermore, we extend the scope to morphologi-
cal tagging and supertagging, in which the tag set
is much larger or long-distance dependencies be-
tween words are more important.

In these three tagging tasks, we compare our
tagger with the bilstm-aux tagger (Plank et al.,
2016) and the CRF-based morphological tagger
MarMot (Müller et al., 2013) as baselines. The
CNN tagger shows robust performance across the
three tasks, and achieves the highest average accu-
racies in all tasks. It considerably outperforms the
LSTM tagger in morphological tagging and both
baselines in supertagging.

To test the robustness of the taggers against the
OOV problem, we also conduct experiments on
unnormalized text by artificially corrupting words
in the normal dev sets. With the increasing degree
of unnormalization, the performance of the CNN
tagger degrades much slower than the other two,
which suggests that the CNN tagger is more ro-
bust against unnormalized text.

Therefore we conclude that our CNN tagger is a
robust state-of-the-art general-purpose tagger that
can effectively compose word representation from
characters and encode context information.

2 Model

Our proposed CNN tagger has two main compo-
nents: the character composition model and the
context encoding model. Both components are es-
sentially very similar CNN models, capturing dif-
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ferent levels of information: the first CNN cap-
tures morphological information from character n-
grams, the second one captures contextual infor-
mation from word n-grams. Figure 1 shows a dia-
gram of both models of the tagger.
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Figure 1: Diagram of the CNN tagger.

2.1 Character Composition Model

The character composition model is similar to Yu
and Vu (2017), where several convolution filters
are used to capture character n-grams of different
sizes. The outputs of each convolution filter are
fed through a max pooling layer, and the pooling
outputs are concatenated to represent the word.

2.2 Context Encoding Model

The context encoding model captures the con-
text information of the target word by scanning
through the word representations of its context
window. The word representation could be only
word embeddings (~w), only composed vectors (~c),
or the concatenation of both (~w + ~c).

A context window consists of N words to both
sides of the target word and the target word itself.
To indicate the target word, we concatenate a bi-
nary feature to each of the word representations
with 1 indicating the target and 0 otherwise, simi-
lar to Vu et al. (2016). Additional to the binary fea-
ture, we also concatenate a position embedding to
encode the relative position of each context word,
similar to Gehring et al. (2017).

2.3 Hyper-parameters

For the character composition model, we take a
fixed input size of 32 characters for each word,
with padding on both sides or cutting from the
middle if needed. We apply four convolution fil-
ters with sizes of 3, 5, 7, and 9. Each filter has
an output channel of 25 dimensions, thus the com-
posed vector is 100-dimensional. We apply Gaus-
sian noise with standard deviation of 0.1 on the
composed vector during training.

For the context encoding model, we take a con-
text window of 15 (7 words to both sides of the tar-
get word) as input and predict the tag of the target
word. We also apply four convolution filters with
sizes of 2, 3, 4 and 5, each filter is stacked by an-
other filter with the same size, and the output has
128 dimensions, thus the context representation is
512-dimensional. We apply one 512-dimensional
hidden layer with ReLU non-linearity before the
prediction layer. We apply dropout with probabil-
ity of 0.1 after the hidden layer during training.

The model is trained with averaged stochastic
gradient descent with a learning rate of 0.1, mo-
mentum of 0.9 and mini-batch size of 100. We ap-
ply L2 regularization with a rate of 10−5 on all the
parameters of the network except the embeddings.

3 Experiments

3.1 Data

We use treebanks from version 1.2 of Univer-
sal Dependencies2 (UD), and in the case of sev-
eral treebanks for one language, we only use the
canonical one. There are in total 22 treebanks, as
in Plank et al. (2016).3 Each treebank splits into
train, dev, and test sets, we use the dev sets for
early stop training.

In order to compare to more previous works
on POS tagging, we additionally experiment POS
tagging on the more established Penn Treebank
Wall Street Journal (WSJ) data set (Marcus et al.,
1993). We use the standard splitting, where sec-
tions 0-18 are used for training, 19-21 for tuning,
and 22-24 for testing (Collins, 2002).

3.2 Tasks

We evaluate the taggers on three tagging tasks:
POS tagging (POS), morphological tagging
(MORPH) and supertagging (SUPER).

For POS tagging we use Universal POS tags,
which are an extension of Petrov et al. (2012). The
universal tag set tries to capture the “universal”
properties of words and facilitate cross-lingual
learning. Therefore the tag set is very coarse and
leaves out most of the language-specific properties
to morphological features.

Morphological tags encode the language-
specific morphological features of the words, e.g.,
number, gender, case. They are represented in the

2http://universaldependencies.org
3We use all training data for Czech, while Plank et al.

(2016) only use a subset.

125



UD treebanks as one string which contains several
key-value pairs of morphological features.4

Supertags (Joshi and Bangalore, 1994) are tags
that encode more syntactic information than stan-
dard POS tags, e.g. the head direction or the sub-
categorization frame. We use dependency-based
supertags (Foth et al., 2006) which are extracted
from the dependency treebanks. Adding such
tags into feature models of statistical dependency
parsers significantly improves their performance
(Ouchi et al., 2014; Faleńska et al., 2015). Su-
pertags can be designed with different levels of
granularity. We use the standard Model 1 from
Ouchi et al. (2014), where each tag consists of
head direction, dependency label and dependent
directions. The SUPER task is more difficult than
POS and MORPH because it generally requires
taking long-distance dependencies between words
into consideration.

These three tagging tasks differ strongly in tag
set sizes. Generally, the POS set sizes for all the
languages are no more than 17 and SUPER set
sizes are around 200. When treating morphologi-
cal features as a string (i.e. not splitting into key-
value pairs), the sizes of the MORPH tag sets range
from about 100 up to 2000.

3.3 Setups

As baselines to our models, we take the two state-
of-the-art taggers MarMot5 (denoted as CRF) and
bilstm-aux6 (denoted as LSTM). We train the
taggers with the recommended hyper-parameters
from the documentations.

To ensure a fair comparison (especially between
LSTM and CNN), we generally treat the three
tasks equally, and do not apply task-specific tun-
ing on them, i.e., using the same features and same
model hyper-parameters in each single task. Also,
we do not use any pre-trained word embeddings.

For the LSTM tagger, we use the recommended
hyper-parameters from the documentation7 in-
cluding 64-dimensional word embeddings (~w) and
100-dimensional composed vectors (~c). We train
the ~w, ~c and ~w+~c models as in Plank et al. (2016).

4German, French and Indonesian do not have MORPH
tags in UD-1.2, thus not evaluated in this task.

5http://cistern.cis.lmu.de/marmot/
6https://github.com/bplank/bilstm-aux
7We use the most recent version of the tagger and stacking

3 layers of LSTM as recommended. The average accuracy
for POS in our evaluation is slightly lower than reported in
the paper, presumably due to different versions of the tagger,
but it does not influence the conclusion.

We train the CNN taggers with the same dimen-
sionalities for word representations.

For the CRF tagger, we predict POS and
MORPH jointly as in the standard setting, which
performs much better than with separate predic-
tions, as shown in Müller et al. (2013). Also, the
CRF tagger splits the morphological tags into key-
value pairs, whereas the two neural-based taggers
treat the whole string as a tag.8 We predict SUPER

as a separate task.

3.4 Results
The test results for the three tasks are shown in
Table 1 in three groups. The first group of seven
columns are the results for POS, where both LSTM
and CNN have three variations of input features:
word only (~w), character only (~c) and both (~w+~c).
For MORPH and SUPER, we only use the ~w + ~c
setting for both LSTM and CNN.

On macro-average, three taggers perform close
in the POS task, with the CNN tagger being
slightly better. In the MORPH task, CNN is again
slightly ahead of CRF, while LSTM is about 2
points behind. In the SUPER task, CNN outper-
forms both taggers by a large margin: 2 points
higher than LSTM and 8 points higher than CRF.

While considering the input features of the
LSTM and CNN taggers, both taggers perform
close with ~w as input, which suggests that the two
taggers are comparable in encoding context for
POS. However, with only ~c, CNN performs much
better than LSTM (95.54 vs. 92.61), and close to
~w + ~c (96.18). Also, ~c consistently outperforms
~w for all languages with CNN. This suggests that
the CNN model alone is capable of learning most
of the information that the word-level model can
learn, while the LSTM model is not.

The more interesting cases are MORPH and
SUPER, where CNN performs much higher than
LSTM. One potential explanation for the consid-
erably large difference is that the LSTM tagger
may be more sensitive to hyper-parameters and re-
quires task specific tuning. We use the same set-
ting which is tuned for the POS task, thus it under-
performs in the other tasks. Another factor could
be the large tag sets in MORPH tagging task, which
are larger than POS in orders of magnitudes, es-
pecially for cs, eu, fi, hr, pl, and sl, all of which
have more than 500 distinct tags, and the LSTM

8Since we use the CRF tagger as a non-neural baseline,
we prefer to use the settings which maximize its perfor-
mances rather than rigorously equal but suboptimal settings.
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POS MORPH SUPER
CRF LSTM CNN CRF LSTM CNN CRF LSTM CNN

~w ~c ~w + ~c ~w ~c ~w + ~c ~w + ~c ~w + ~c ~w + ~c ~w + ~c

ar 98.83 95.05 98.35 98.88 95.30 98.89 99.00 98.11 97.91 98.45 79.67 83.70 85.51
bg 98.11 94.96 96.94 98.07 95.25 97.79 98.20 95.12 92.28 94.85 78.91 85.91 87.64
cs 98.74 96.12 92.98 98.40 96.36 98.35 98.79 93.81 90.21 94.45 76.33 81.43 87.46
da 95.96 91.74 94.29 96.06 92.08 95.24 95.92 95.50 94.15 95.14 73.83 81.00 81.82
de 92.77 89.91 88.97 92.57 90.21 92.44 92.73 - - - 70.56 77.58 79.69
en 94.49 91.58 88.99 94.17 92.64 93.76 94.76 95.69 95.45 95.88 75.57 83.27 85.87
es 95.28 93.27 91.41 94.62 93.95 95.36 95.65 96.14 95.26 96.34 78.07 83.80 86.27
eu 94.79 88.70 89.80 93.99 89.69 94.31 94.94 89.60 84.32 89.06 70.44 77.88 80.43
fa 96.82 95.67 94.73 96.95 95.97 96.12 97.12 96.56 96.37 96.50 76.76 83.21 83.25
fi 95.79 87.78 84.41 94.16 88.24 94.33 95.31 94.33 87.33 93.82 70.69 76.65 82.63
fr 95.98 94.34 91.82 95.85 94.56 95.68 96.27 - - - 78.36 84.01 85.44
he 95.48 93.81 92.96 95.62 93.81 94.68 96.04 92.92 91.27 93.29 76.73 82.56 85.44
hi 96.36 95.66 91.12 96.23 96.04 95.77 96.69 90.93 90.78 92.11 85.54 89.62 90.08
hr 95.56 88.10 94.47 94.69 88.92 94.76 95.05 87.25 84.56 87.73 71.42 77.77 79.27
id 93.51 90.40 90.76 92.97 91.15 92.32 93.44 - - - 75.37 80.55 81.63
it 97.74 96.04 94.64 97.55 96.54 97.08 97.62 97.63 97.13 97.47 84.02 89.10 90.89
nl 91.03 85.09 86.52 92.23 83.74 92.05 93.11 92.32 91.26 93.12 67.04 77.71 79.68
no 97.61 94.39 93.32 97.49 94.60 97.05 97.65 96.03 94.85 95.74 79.99 86.45 89.41
pl 96.92 89.53 95.05 96.30 90.48 96.41 96.83 87.74 82.34 87.13 76.09 80.00 83.45
pt 97.78 94.20 94.95 97.53 94.41 97.22 97.46 94.99 94.75 95.76 78.68 86.02 87.42
sl 96.60 90.43 96.35 97.42 91.02 96.89 97.16 90.41 86.47 91.94 76.35 85.67 86.45
sv 96.23 93.04 94.48 96.20 93.27 95.38 96.28 95.65 94.08 95.30 73.81 81.04 83.34

avg 96.02 92.26 92.61 95.82 92.65 95.54 96.18 93.72 91.62 93.90 76.10 82.50 84.69

Table 1: Tagging accuracies of the three taggers in the three tasks on the test sets of UD 1.2, the highest
accuracy for each task on each language is marked in boldface.

tagger performs poorly on these languages. In
the SUPER task, where the information from long-
distance context is more important, CNN performs
much better than both CRF and LSTM. CRF simply
has a much smaller context window, thus the poor
performance. The LSTM model theoretically can
model long-distance contexts, but the information
may gradually fade away during the recurrence,
whereas the CNN model treat all words equally
as long as they are in the context window.

On the more established WSJ data set, Table 2
shows the tagging performances of the CNN model
along with some previous works as reference.
Generally, the differences among the taggers are
very small, we could not conclude any one being
considerably better on this data set. This result is
expected since English is not a morphologically
rich language and WSJ is large data set and has
a relatively low OOV rate. Note that the Convnet
tagger by dos Santos and Zadrozny (2014) used
pre-trained word embeddings while our CNN tag-
ger does not.

3.5 Unnormalized Text

It is a common scenario to use a model trained
with news data to process text from social media,
which could include intentional or unintentional

WSJ Accuracy

CRF (Müller et al., 2013) 97.30
Convnet (dos Santos and Zadrozny, 2014) 97.32
bi-LSTM (Ling et al., 2015) 97.36
bi-LSTM (Plank et al., 2016) 97.22
CNN (this work) 97.30

Table 2: Tagging accuracy on the WSJ test set.

misspellings. Unfortunately, we do not have social
media data for all the languages. However, we de-
sign an experiment to simulate unnormalized text,
by systematically editing the words in the dev sets
with one of the four operations: insertion, dele-
tion, substitution, and swap. For example, if we
modify a word abcdef at position 2 (0-based), the
modified words would be abxcdef, abdef, abxdef,
and abdcef, where x is a random character from
the alphabet of the language.

For each operation, we create a group of mod-
ified dev sets, where all words longer than two
characters are edited by the operation with a prob-
ability of 0.25, 0.5, 0.75, or 1. For each language,
we use the models trained on the normal training
sets and predict POS for the modified dev sets. The
average accuracies are shown in Figure 2.

Generally, all models suffer from the increasing
degrees of unnormalization, but CNN always de-
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grades the least and slowest. In the extreme case
where almost all words are unnormalized, CNN
performs 4 to 8 points higher than LSTM and 4 to
12 points higher than CRF. This suggests that the
CNN is more robust to misspelt words.

While looking into the specific cases of mis-
spelling, CNN is less sensitive to substitution,
while insertion and deletion have stronger effect,
and swap degrades its performance the most. In
the case of substitution, the distortion to the char-
acter n-gram patterns are smaller than varying
the lengths, i.e. insertion and deletion, thus has
smaller negative impact. However, in the case
of swap, the effect is similar to substituting two
characters instead of one, thus larger degradation.
LSTM and CRF on the other hand, are affected the
most by substitution.
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Figure 2: POS tagging accuracies on the dev sets
with the four modifications of different degrees.

4 Conclusion

In this paper, we propose a general-purpose tag-
ger that uses two CNNs for both character com-
position and context encoding. On the universal
dependency treebanks (v1.2), the tagger achieves
state-of-the-art or comparable results for POS tag-
ging and morphological tagging, and to the best of
our knowledge, it performs by far the best for su-
pertagging. The tagger works well across different
tagging tasks without tuning the hyper-parameters,
and it is also robust against unnormalized text.

Our tagger uses a greedy window-based ap-
proach, which mainly aims at showing the effec-
tiveness of CNN in composing word representa-
tions and encoding contexts. However, a globally
normalized decoding method, e.g. beam-search

or sentence-level inference as in Collobert et al.
(2011), could potentially further improve the tag-
ger’s performance, which is left for future work.
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Abstract

Pre-trained word embeddings improve the
performance of a neural model at the cost
of increasing the model size. We propose
to benefit from this resource without pay-
ing the cost by operating strictly at the sub-
lexical level. Our approach is quite simple:
before task-specific training, we first opti-
mize sub-word parameters to reconstruct
pre-trained word embeddings using vari-
ous distance measures. We report interest-
ing results on a variety of tasks: word sim-
ilarity, word analogy, and part-of-speech
tagging.

1 Introduction

Word embeddings trained from a large quantity
of unlabled text are often important for a neu-
ral model to reach state-of-the-art performance.
They are shown to improve the accuracy of part-
of-speech (POS) tagging from 97.13 to 97.55 (Ma
and Hovy, 2016), the F1 score of named-entity
recognition (NER) from 83.63 to 90.94 (Lample
et al., 2016), and the UAS of dependency pars-
ing from 93.1 to 93.9 (Kiperwasser and Goldberg,
2016). On the other hand, the benefit comes at the
cost of a bigger model which now stores these em-
beddings as additional parameters.

In this study, we propose to benefit from this
resource without paying the cost by operating
strictly at the sub-lexical level. Specifically, we
optimize the character-level parameters of the
model to reconstruct the word embeddings prior
to task-specific training. We frame the problem as
distance minimization and consider various met-
rics suitable for different applications, for example
Manhattan distance and negative cosine similarity.

While our approach is simple, the underlying
learning problem is a challenging one; the sub-
word parameters must reproduce the topology of
word embeddings which are not always morpho-
logically coherent (e.g., the meaning of fox does
not follow any common morphological pattern).
Nonetheless, we observe that the model can still
learn useful patterns. We evaluate our approach on
a variety of tasks: word similarity, word analogy,
and POS tagging. We report certain, albeit small,
improvement on these tasks, which indicates that
the word topology transformation based on pre-
training can be beneficial.

2 Related Work

Faruqui et al. (2015) “retrofit” embeddings against
semantic lexicons such as PPDB or WordNet. Cot-
terell et al. (2016) leverage existing morphologi-
cal lexicons to incorporate sub-word components.
The aim and scope of our work are clearly differ-
ent: we are interested in training a strictly sub-
lexical model that only operates over characters
(which has the benefit of smaller model size) and
yet somehow exploit pre-trained word embeddings
in the process.

Our work is also related to knowledge distil-
lation which refers to training a smaller “stu-
dent” network to perform better by learning from
a larger “teacher” network. We adopt this termi-
nology and refer to pre-trained word embeddings
as the teacher and sub-lexical embeddings as the
student. This problem has mostly been consid-
ered for classification and framed as matching the
probabilities of the student to the probabilities of
the teacher (Ba and Caruana, 2014; Li et al., 2014;
Kim and Rush, 2016). In contrast, we work di-
rectly with representations in Euclidean space.
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3 Reconstruction Method

LetW denote the set of word types. For each word
w ∈ W , we assume a pre-trained word embedding
xw ∈ Rd and a representation hw ∈ Rd computed
by sub-word model parameters Θ; we defer how to
define hw until later. The reconstruction error with
respect to a distance function D : Rd × Rd → R
is given by

LD (Θ) =
∑
w∈W

D (xw, hw) (1)

where xw is constant and hw is a function of Θ.
Since we use gradient descent to optimize (1), we
can define D(u, v) to be any continuous function
measuring the discrepency between u and v, for
example,

D1(u, v) :=
d∑

i=1

|ui − vi| (Manhattan)

D√2(u, v) :=

√√√√ d∑
i=1

|ui − vi|2 (Euclidean)

D2(u, v) :=
d∑

i=1

|ui − vi|2 (squared error)

D∞(u, v) :=
d

max
i=1
|ui − vi| (l∞ distance)

Dcos (u, v) :=
−u>v
||u||2 ||v||2

(negative cosine)

Unlike other common losses used in the neural
network literature such as negative log likelihood
or the hinge loss, LD has a direct geometric inter-
pretation illustrated in Figure 1. We first optimize
(1) over sub-word model parameters Θ for a set
number of epochs, and then proceed to optimize
a task-specific loss L(Θ,Θ′) where Θ′ denotes all
other model parameters.

3.1 Analysis of a Linear Model

In general, hw can be a complicated function of
Θ. But we can gain some insight by analyzing the
simple case of a linear model, which corresponds
to the top layer of a neural network. More specifi-
cally, we assume the form

hw
i = θ>i z

w ∀i = 1 . . . d

where zw ∈ Rd′
is fixed and Θ = {θ1 . . . θd} ⊂

Rd′
is the only parameter to be optimized.

xw

hw

θ

Figure 1: Geometric losses corresponding to
different distance metrics: Manhattan distance
(blue), Euclidean distance (green), squared error
(yellow), l∞ distance (red), and negative cosine
similarity (− cos θ).

Manhattan distance The error LD1(Θ) is now

LD1(Θ) =
∑
w∈W

d∑
i=1

∣∣∣xw
i − θ>i zw

∣∣∣ =
d∑

i=1

LADi(θi)

where LADi(θ) :=
∑

w∈W
∣∣xw

i − θ>i zw
∣∣ is least

absolute deviations (LAD). It is well-known that
the LAD criterion is robust to outliers. To see this,
if zw = (1/d′)1 for all w ∈ W , then a minimizer
of LADi(θ) is given analytically by

θ∗i = median {xw
i : w ∈ W}

where the median resists extreme values (e.g., the
median of both {1, 2, 3} and {1, 2, 999} is 2).
Thus using Manhattan distance can be useful when
teacher word embeddings are noisy or there are oc-
casional exceptions in morphological patterns that
are best ignored.

Squared error The error LD2(Θ) is now

LD2(Θ) =
∑
w∈W

d∑
i=1

∣∣∣xw
i − θ>i zw

∣∣∣2 =
d∑

i=1

OLSi(θi)

where OLSi(θ) :=
∑

w∈W
∣∣xw

i − θ>zw
∣∣2 is ordi-

nary least squares (OLS). Thus if the matrix Z ∈
R|W|×d′

with zw as rows has rank d′, the unique
solution is given by θ∗i =

(
Z>Z

)−1
Z>xw

i . Let
h̄w

i = (θ∗i )>zw denote the optimal sub-word em-
bedding value. It is well-known that the change in
h̄w

i caused by removing xw
i from the dataset is pro-

portional to the residual xw
i − h̄w

i (Davidson et al.,
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1993). In other words, squared error is sensitive to
outliers and may not be as suitable as Manhattan
distance for fitting noisy or incoherent word em-
beddings.

Other distance metrics Euclidean distance is
geometrically intuitive but less mathematically
convenient than squared error, thus we choose not
to focus on it. l∞ distance penalizes the dimension
with maximum absolute difference and can be use-
ful if calculating one coordinate at a time is conve-
nient. Finally, negative cosine similarity penalizes
the angle between embeddings. This is suitable
when we only care about directions and not mag-
nitude, for instance in word similarity where we
measure cosine similarities between word embed-
dings.

There are distance metrics not discussed here
that may be appropriate in certain situations. For
instance, the KL divergence is a natural (assymet-
ric) measure if word embeddings are distributions
(e.g., over context words). More generally, we can
consider the wide class of metrics in the Bregman
divergence (Banerjee et al., 2005).

4 Sub-Word Architecture

We now describe how we define word embedding
hw ∈ Rd from sub-word parameters. We use
a character-based embedding scheme closely fol-
lowing Lample et al. (2016). We use an LSTM
simply as a mapping φ : Rd×Rd′ → Rd′

that takes
an input vector x and a state vector h to output a
new state vector h′ = φ(x, h). See Hochreiter and
Schmidhuber (1997) for a detailed description.

4.1 Character Model
Let C denote the set of character types. The model
parameters Θ associated with this layer are

• ec ∈ Rdc for each c ∈ C
• Character LSTMs φCf , φ

C
b : Rdc×Rdc → Rdc

• W f ,W b ∈ Rd×dc , bC ∈ Rd

Let w(j) ∈ C denote the character of w ∈ W at
position j. The model computes hw ∈ Rd as

fCj = φCf
(
ew(j), fCj−1

)
∀j = 1 . . . |w|

bCj = φCb
(
ew(j), bCj+1

)
∀j = |w| . . . 1

zw = W ffC|w| +W bbC1 + bC

hw
i = max {0, zw

i } ∀i = 1 . . . d (2)

We also experiment with a highway network
(Srivastava et al., 2015) which has been shown
to be beneficial for image recognition (He et al.,
2015) and language modeling (Kim et al., 2016).
In this case, Θ includes additional parameters
W highway ∈ Rd×d and bhighway ∈ Rd. A new
character-level embedding h̃w is computed as

t = σ (W highwayhw + bhighway)

h̃w = t� hw + (1− t)� zw (3)

where σ(·) ∈ [0, 1] denotes an element-wise sig-
moid function and � the element-wise multiplica-
tion. This allows the network to skip nonlinearity
by making ti close to 0. We find that the additional
highway network is beneficial in certain cases. We
will use either (2) or (3) in our experiments de-
pending on the task.

5 Experiments

Implementation We implement our models us-
ing the DyNet library. We use the Adam optimizer
(Kingma and Ba, 2014) and apply dropout at all
LSTM layers (Hinton et al., 2012). For POS tag-
ging and parsing, we perform a 5 × 5 grid search
over learning rates 0.0001 . . . 0.0005 and dropout
rates 0.1 . . . 0.5 and choose the configuration that
gives the best performance on the dev set. We
use the highway network (3) for word analogy and
parsing and (2) for others. Note that the character
embedding dimension dc must match the dimen-
sion of the pre-trained word embeddings.

Teacher Word Embeddings We use 100-
dimensional word embeddings identical to those
used by Dyer et al. (2015) which are computed
with a variant of the skip n-gram model (Ling
et al., 2015). These embeddings have been shown
to be effective in various tasks (Dyer et al., 2015;
Lample et al., 2016).

5.1 Word Similarity and Analogy
Data For word similarity, we use three public
datasets WordSim-353, MEN, and Stanford Rare
Word. Each contains 353, 3000, and 2034 word
pairs annotated with similarity scores. The evalu-
ation is conducted by computing the cosine of the
angle θ between each word pair (w1, w2) under the
model (2):

cos(θ) =
(hw1)> hw2

||hw1 ||2 ||hw2 ||2
(4)
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number of reconstruction epochs
metric 0 10 20 30 50
D1 0.03 0.09 0.11 0.12 0.13
D2 0.03 0.12 0.12 0.14 0.15
D∞ 0.03 0.12 0.10 0.09 0.10
Dcos 0.03 0.13 0.15 0.15 0.15

Table 1: Effect of reconstruction on word simi-
larity: the teacher word embeddings obtain score
0.50.

and computing the Spearman’s correlation coeffi-
cient with the human scores. We report the av-
erage correlation across these datasets. For word
analogy, we use the 8000 syntactic analogy ques-
tions from the dataset of Mikolov et al. (2013b)
and 8869 semantic analogy questions from the
dataset of Mikolov et al. (2013a). We use the mul-
tiplicative technique of Levy and Goldberg (2014)
for answering analogy questions.

Result Table 1 shows word similarity scores
for different numbers of reconstruction training
epochs. The teacher word embeddings obtain 0.5.
The sub-word model improves performance from
the initial score of 0.03 up to 0.16. In particular,
the negative cosine distance metric which directly
optimizes the relevant quantity (4) is consistently
best performing.

Table 2 shows the accuracy on the syntactic
and semantic analogy datasets. An interesting
finding in our experiment is that for syntactic
analogy, a randomly initialized character-based
model outperforms the pre-trained embeddings
and thus reconstruction only decreases the perfor-
mance. We suspect that this is because much of
the syntactic regularities is already captured by
the architecture. Many questions involves only
simplistic transformation, for instance adding r in
wise : wiser ∼ free : x. The model cor-
rectly answers such questions simply by following
its architecture, though it is unable to answer less
regular questions (e.g., see : saw ∼ keep : x).

Semantic analogy questions have no such
morphological regularities (e.g., Athens :
Greece ∼ Havana : x) and are challenging to
sub-lexical models. Nonetheless, the model is able
to make a minor improvement in accuracy.

5.2 POS Tagging

We perform POS tagging on the Penn WSJ tree-
bank with 45 tags using a BiLSTM model de-

Embedding Syntactic Semantic
random 65.21 1.13
D1 26.32 2.20
D2 27.56 2.47
D∞ 45.68 1.74
Dcos 23.77 2.22
teacher 57.42 59.58

Table 2: Effect of reconstruction on word analogy
(10 reconstruction epochs).

model accuracy lookup
FULL 97.20 43211
FULL+EMB 97.32 252365
CHAR 96.93 80
CHAR(D1) 97.17 93
CHAR(D2) 97.08 93
CHAR(D∞) 97.06 93
CHAR(Dcos) 97.08 93

Table 3: POS tagging accuracy with different defi-
nitions of vw (see the main text). The final column
shows the number of lookup parameters.

scribed in Lample et al. (2016). Given a vector se-
quence (vw1 . . . vwn) corresponding to a sentence
(w1 . . . wn) ∈ Wn, the BiLSTM model produces
feature vectors (h1 . . . hn). We adhere to the sim-
plest approach of making a local prediction at each
position i by a feedforward network on hi,

p(ti|hi) ∝ exp
(
W 2f(W 1hi + b1) + b2

)
where fi(v) = max {0, vi} and W 1,W 2, b1, b2

are additional parameters. The model is trained
by optimizing log likelihood. We consider the fol-
lowing choices of vw:

• FULL: vw = ew ⊕ hw uses both word-level
lookup parameter ew and character-level em-
bedding hw (2).

• FULL+EMB: Same as FULL but the lookup
parameters ew are initialized with pre-trained
word embeddings.

• CHAR: vw = hw uses characters only.

• CHAR(D): Same as CHAR but optimized for
10 epochs to reconstruct pre-trained word
embeddings with distance metric D.

Table 3 shows the accuracy of these models. We
see that pre-trained word embeddings boost the
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beautiful wonderful prettiest gorgeous smartest jolly famous sensual
baleful bagful basketful bountiful boastful bashful behavioural
bountiful peaceful disdainful perpetual primaeval successul purposeful

amazing incredible wonderful remarkable terrific marvellous astonishing unbelievable
awaking arming aging awakening angling agonizing among
arousing amusing awarding applauding allaying awaking assaying

Springfield Glendale Kennesaw Gainesville Lynchburg Youngstown Kutztown Harrisburg
Spanish-ruled Serbian-held Serbian-led Spangled Serbian-controlled Schofield Sharif-led
Stubblefield Smithfield Stansfield Butterfield Littlefield Bitterfeld Sinfield

Table 4: Nearest neighbor examples: for each word, the three rows respectively show its nearest neigh-
bors using pre-trained word embeddings, student embeddings at random initialization (3), and student
embeddings optimized for 10 epochs using D1.

performance of FULL from 97.20 to 97.32. When
we use the strictly character-based model CHAR

without reconstruction, the performance drops to
96.93. But with reconstruction, the model recov-
ers some of the lost accuracy. In particular, recon-
structing with the Manhattan distance metric gives
the largeset improvement and yields 97.17.

5.3 Analysis of Student Embeddings
Table 4 shows examples of nearest neighbors. For
each example, the first row corresponds to the
teacher, the second to the student (3) at random
initialization, and the third to the student opti-
mized for 10 epochs using D1. The student em-
beddings at random initialization are already ca-
pable of capturing morphological regularities such
as -ful and -ing. With reconstruction, there
is a subtle change in the topology. For instance,
the nearest neighbors of beautiful change
from baleful and bagful to bountiful
and peaceful. For Springfield, near-
est neighbors change from unrelated words such
as Spanish-ruled to fellow nouns such as
Stubblefield.

6 Conclusion

We have presented a simple method for a sub-
lexical model to leverage pre-trained word em-
beddings. We have shown that by recontructing
the embeddings before task-specific training, the
model can improve over random initialization on a
variety of tasks. The reconstruction task is a chal-
lenging learning problem; while our model learns
useful patterns, it is far from perfect. An important
future direction is to improve reconstruction with
other choices of architecture.
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Abstract

We present a novel supervised approach
to inflection generation for verbs in Span-
ish. Our system takes as input the verb’s
lemma form and the desired features such
as person, number, tense, and is able to
predict the appropriate grammatical conju-
gation. Even though our approach learns
from fewer examples comparing to pre-
vious work, it is able to deal with all
the Spanish moods (indicative, subjunc-
tive and imperative) in contrast to previous
work which only focuses on indicative and
subjunctive moods. We show that in an
intrinsic evaluation, our system achieves
99% accuracy, outperforming (although
not significantly) two competitive state-of-
art systems. The successful results ob-
tained clearly indicate that our approach
could be integrated into wider approaches
related to text generation in Spanish.

1 Introduction

Existing Natural Language Generation (NLG) ap-
proaches are usually applied to non morphological
rich languages, such as English, where the mor-
phological inflection of the word during the gener-
ation process can be addressed using simple hand-
written rules or existing libraries such as Sim-
pleNLG (Gatt and Reiter, 2009). In contrast, when
it comes to morphological rich languages, such as
Spanish, the use of rules can lead to incorrect in-
flection of a word, thus generating ungrammatical
or meaningless texts. Our ultimate goal is to im-
plement a morphological inflection approach for
Spanish sentences within an NLG system based on
the use of lexicons. However, lexicons lack some
verbs’ information, specifically, regarding gram-
matical moods (i.e., the grammatical features of

verbs used for denoting modality - statement of
facts, desires, commands, etc.). To create lexicons
for all the verb inflections and moods would be
a very time-consuming and costly task, so in this
context the use of machine learning approaches
can benefit the inflection of unseen verb forms.
Based on this, the research challenge we tackle
is defined as follows: given a Spanish verb in its
base form (i.e., its lemma), we want to automati-
cally generate all the inflections for that verb. This
is very useful for tasks involving natural language
generation (e.g., text generation, machine transla-
tion), since the generated texts would sound more
natural and grammatically correct.

Our contributions to the field are as follows: we
present a novel and efficient method for tackling
the challenge of inflection generation for Spanish
verbs using an ensemble of algorithms; we pro-
vide a high-quality dataset which includes inflec-
tion rules of Spanish verbs for all the grammatical
moods (i.e. indicative, subjunctive and imperative,
being this last one do not tackled by the current
approaches); our models are trained with fewer re-
sources than the state-of-art methods; and finally,
our method outperforms the state-of-the-art meth-
ods achieving a 2% higher accuracy.

The rest of the paper is shaped as follows: In
the next section (Section 2) we refer to the related
work on inflection generation. In Section 3, we
describe the overall methodology and the dataset
used to train our model. In Section 4, we present
a comparison to the state-of-art inflection genera-
tion approaches and in Section 5, we discuss the
results. Finally, in Section 6, directions for future
work are discussed.

2 Related Work

Morphological inflection has been addressed from
different perspectives within the area of Compu-
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tational Linguistics, commonly for morphological
rich languages, such as German, Spanish, Finnish
or Arabic, as well as less morphological rich lan-
guages such as English.

Previous work has used supervised or semi-
supervised learning (Durrett and DeNero, 2013;
Ahlberg et al., 2014; Nicolai et al., 2015; Faruqui
et al., 2016) to learn from large datasets of mor-
phological rules on word forms in order to ap-
ply them to inflect the desired words. Other
approaches have relied on linguistic informa-
tion, such as morphemes and phonology (Cot-
terell et al., 2016); morphosyntactic disambigua-
tion rules (Suárez et al., 2005); and, graphical
models (Dreyer and Eisner, 2009).

Recently, the morphological inflection has been
also addressed at SIGMORPHON 2016 Shared
Task (Cotterell et al., 2016) where, given a lemma
with its part-of-speech, a target inflected form had
to be generated (task 1). This task was addressed
through several approaches, including align and
transduce (Alegria and Etxeberria, 2016; Nico-
lai et al., 2016; Liu and Mao, 2016); recurrent
neural networks (Kann and Schütze, 2016; Aha-
roni et al., 2016; Östling, 2016); and, linguistic-
inspired heuristics approaches (Taji et al., 2016;
Sorokin, 2016). Overall, recurrent neural net-
works approaches performed better, being (Kann
and Schütze, 2016) the best performing system in
the shared task, obtaining around 98%.

Furthermore, the work described here differs
from existing statistical surface realisation meth-
ods which use phrase-based learning (e.g., (Kon-
stas and Lapata, 2012)) since they do not usu-
ally include morphological inflection. In this re-
spect, our work is more similar to (Dušek and
Jurčı́ček, 2013), where the inflected word forms
are learnt through multi-class logistic regression
by predicting edit scripts. The aforementioned
data-driven methods achieve high accuracy in pre-
dicting the appropriate inflection by learning from
huge datasets. For example, Durret and DeNero
(2013) use 11400 amount of data (i.e. the total
number of instances or rules used to predict the
inflections of a verb). In contrast, we use almost
half to train our system (4556 instances), and we
achieve comparable or better results for Spanish.
Finally, the work presented here relies on ensem-
bles of classifiers which has been proved success-
ful for content selection in data-to-text systems
(Gkatzia et al., 2014).

3 Methodology

In order to perform the inflection task, we first
created a dataset to be used for training machine
learning algorithms to inflect verbs in Spanish. As
part of this submission we will make our dataset
freely available1. Then, we trained a model ca-
pable of predicting the appropriate inflection of a
verb automatically, given a verb base form. Next,
each of the stages of the proposed approach are
described in more detail.

3.1 Dataset Creation
For the purposes of this research, we created a par-
allel dataset of Spanish base forms and their cor-
responding inflected form. The Spanish verbs can
be divided into regular and irregular verbs, where
all the regular verbs share the same inflection pat-
terns whereas, the irregular ones do not and can
completely vary from one verb to another, as it is
shown in Figure 1.

Figure 1: Differences between regular and irregu-
lar verbs in Spanish, for the first singular person of
the present tense and in the subjunctive mood.

Therefore, we constructed a dataset, contain-
ing the necessary examples of inflection for all
the tenses in the Spanish language, by consulting
the Real Academia Española2 and the Enciclope-
dia Libre Universal en Español3. We further con-
sidered that a verb can be divided in three parts:
(1) ending, (2) ending stem, and (3) penSyl. An
example is shown in Figure 2. This information
will be later used as features within the dataset.
In Spanish, the verbs can be classified depending
on their ending, specifically, the verbs ended by “-
ar”, “-er” and “-ir” belong to the first, second an
third conjugation, respectively. Moreover, for the
feature penSyl, the previous syllable of the end-
ing, formed by the whole syllable, or its dominant
vowel is extracted. Finally, the ending stem is the
closest consonant to the ending.

1Our dataset for the Spanish verbs inflection is available
here: https://github.com/cbarrosua/infDataset

2http://www.rae.es/diccionario-panhispanico-de-
dudas/apendices/modelos-de-conjugacion-verbal

3http://enciclopedia.us.es/index.php/Categorı́a:Verbos
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Figure 2: Division of the Spanish verb to begin
and its inflection for the first singular person of the
present tense and in the subjunctive mood.

Besides the previous features obtained from the
verb, other features, such as suff1, suff2 or stemC1
were included because in Spanish some verbs have
several variations of an inflection for the same
tense, person and number. Therefore, our dataset
is finally composed of the following features: (1)
ending, (2) ending stem, (3) penSyl, (4) person, (5)
number, (6) tense, (7) mood, (8) suff1, (9) suff2,
(10) stemC1, (11) stemC2, (12) stemC3. In partic-
ular, suff1 and suff2 are the inflection predicted for
the suffix of the verb form; and stemC1, stemC2
and stemC3, refer to the inflection predicted for
the penSyl of the verb form. An example of an
entry of the dataset is shown in Table 1. Overall,
there are 4556 possible inflections. An example
of a verb and several of its inflections is shown in
Table 2.

3.2 Obtaining the Model and Reconstructing
the Verb

As mentioned earlier, our learning task is formed
as follows: given a set of 7 features, select the
inflection which is most appropriate for the verb.
The set of 7 features are as follows: (1) ending,
(2) ending stem, (3) penSyl, (4) person, (5) num-
ber, (6) tense, (7) mood. Using these features, we
trained a group of individual models for each of
the features described in Section 3.1, which rep-
resents a potential inflection value. We used the
WEKA (Frank et al., 2016) implementation of the
Random Forest algorithm to train the models for
the stemC3 and stemC2 features, and the Random
Tree algorithm to train the models for the suff1,
suff2 and stemC1 features.

Once the models were trained, we predicted all
the possible inflections given a verb in its base
form, i.e., all the tenses for each mood in Span-
ish. For accomplishing this task, we first anal-
ysed the base form to extract the necessary fea-

tures for the inflection. In this manner, the base
form was divided into syllables, taking the penul-
timate one to obtain the penSyl feature. Since all
verbs in Spanish always end with “-ar”, “-er” and
“-ir”, as described in the previous section, we split
the last syllable into the ending and ending stem
features. Then, for each model we predicted its
potential inflection using these extracted features
combined with the ones related to the verb tense,
i.e., the number, person, etc. Finally, the predicted
inflections were employed to replace the features
previously identified in the base form, leading to
the reconstruction of the base form into the desired
inflection, as it can be seen in Figure 3.

Figure 3: Reconstruction of the verb elegir (to
choose) with the features predicted by the models.

4 Experiments

We compared our system (RandFT) with two very
competitive baselines described below by measur-
ing the accuracy of their output for Spanish verb
inflections. The baselines are as follows:

• Durret13: This system automatically ex-
tracts the orthographic transformation rules
of the morphology from labeled examples,
and then learns which of those transforma-
tions to apply in different contexts by us-
ing a semi-Markov conditional random field
(CRF) model.

• Ahlberg14: This system uses a semi-
supervised approach to generalise inflection
paradigms from inflection tables by using a
finite-state construction.

We reproduced the experiments presented in
Durrett and DeNero (2013) and in Ahlberg et al.
(2014). In order to compare our system with both
baselines, we employed the test set of examples
(200 different verbs) which was made available
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verb
pattern ending endingstem penSyl person number tense mood suff1 suff2 stemC1 stemC2 stemC3

amar
ar ANY ANY 1 0 1 1 ara ase ANY ANY ANY
ar ANY ANY 2 0 1 1 aras ases ANY ANY ANY
ar ANY ANY 3 0 1 1 ara ase ANY ANY ANY

yacer
er ANY yac 1 0 0 0 o ANY yazc yazg yag
er ANY yac 2 0 0 0 es ANY yac ANY ANY
er ANY yac 3 0 0 0 e ANY yac ANY ANY

Table 1: Example of the 1st, 2nd and 3rd singular person of the subjunctive past tense of “amar” (to
love); and the 1st, 2nd and 3rd singular person of present tense in indicative mood of “yacer” (to lie). We
assigned the term ANY to indicate that the value of a feature does not need to change during the inflection
with respect to its value in the base form.

Verb: regar (to water)
Features Inflection

ar, g, e, 1P, Sing, Pres., Ind riego
ar, g, e, 2P, Sing, Pres., Sub riegues
ar, g, e, 2P, Plural, Cond., Ind regarı́ais
ar, g, e, 3P, Sing, Past I., Sub regara, regase

Table 2: Example of some possible inflections for
the verb “regar” (to water) (Pres. = present; Cond.
= conditional; Past I. = imperfect past; Ind = In-
dicative; Sub = subjunctive).

by Durrett and DeNero (2013), since this test set
included verbs with both uncommon and regular
forms. This test set does not included any entry
that appeared in the training data. For the experi-
ments, we generated all the verb inflections for the
200 base forms. Furthermore, the aforementioned
baselines do not predict all the grammatical moods
that exist in the Spanish language (both baselines
are only able to predict the indicative and subjunc-
tive mood, but not the imperative one, which is
not easy, especially for irregular forms). There-
fore, we used an additional test-set to evaluate this
grammatical mood. We created the additional test-
set by employing information from the Freeling’s
lexicon for the imperative forms of these 200 verbs
(Padró and Stanilovsky, 2012).

5 Results and Discussion

The results obtained, together with the results of
Durrett and DeNero (2013) and Ahlberg et al.
(2014), are shown in Table 3, where we compared
the inflection of the same verb tenses as Durret and
Ahlberg using the test set described in the previous
section. Our group of classifiers (RandFT), trained
with our generalised dataset for Spanish, obtained
a higher overall accuracy (but not significantly) re-
garding the state-of-the-art baselines systems.

In addition, our model can correctly perform the

Approach
Correctly pre-
dicted verb ta-
bles

Correctly pre-
dicted verb
forms

RandFT 99% 99.98%
Durret13 97% 99.76%
Ahlberg14 96% 99.52%

Table 3: Accuracy of predicting inflection of verb
tables and individual verb forms given only the
base form, evaluated with an unseen test set of
200 verbs. For the imperative mood, our system
achieves 100% accuracy, however the baselines do
not predict the imperative form.

inflection of the imperative mood, which was not
included in the baseline systems. This grammat-
ical mood, which forms commands or requests,
contains unique imperative forms among the irreg-
ular Spanish verbs, as shown in Table 4. For this
experiment, our system achieves 100% accuracy
when evaluated on the additional test set. Further-
more, our model contributes to the improvement
of naturalness and expressivity of NLG (Barros
et al., 2017).

Base form–Inflected form
contar–cuenta; errar–yerra; haber–he; hacer–haz; oler–
huele; ir–ve; oı́r–oye; decir–di

Table 4: Variability of inflection in the imperative
mood for the 2nd person singular of the present.

Error Analysis: Although our system obtains
almost 100% accuracy, it fails on the inflection
of the participles of extremely rare irregular verbs
(e.g., verb: ejabrir→ generated: ejabrido→ cor-
rect: ejabierto). These errors could be corrected
by adding specific rules for these cases.
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6 Conclusion and Future Work

This paper presented a robust light-weight super-
vised approach to obtain the inflected forms of
any Spanish verb for any of its moods (indica-
tive, subjunctive and imperative). This approach
uses an ensemble of supervised learning algo-
rithms to learn how the verbs are composed in
order to obtain the inflection of a verb given its
base form. Our method obtained accuracy close to
100%, outperforming existing state-of-the-art ap-
proaches. In addition, our method is able to fur-
ther predict the inflection of the imperative mood,
which was not tackled by previous work. In fu-
ture, we plan to test our inflection approach for
other languages, as well as other types of words
(not only verbs). Furthermore, we also plan to
compare this approach with the ones obtaining the
best results (i.e. the ones employing recurrent neu-
ral networks) in the reinflection task of the SIG-
MORPHON 2016 Shared Task. Our short-term
goal would be to integrate it within a surface reali-
sation method, which will allow us to inflect whole
sentences in different ways and tenses, thus im-
proving the generation capabilities of current NLG
systems.

Acknowledgments

This research work has been partially funded
by the Generalitat Valenciana through the
projects “DIIM2.0: Desarrollo de técnicas In-
teligentes e Interactivas de Minerı́a y generación
de información sobre la web 2.0” (PROME-
TEOII/2014/001); and partially funded by the
Spanish Government through projects TIN2015-
65100-R, TIN2015-65136-C2-2-R, as well as by
the project “Análisis de Sentimientos Aplicado a
la Prevención del Suicidio en las Redes Sociales
(ASAP)” funded by Ayudas Fundación BBVA a
equipos de investigación cientı́fica.

References
Roee Aharoni, Yoav Goldberg, and Yonatan Belinkov.

2016. Improving sequence to sequence learning
for morphological inflection generation: The biu-
mit systems for the sigmorphon 2016 shared task
for morphological reinflection. In Proceedings of
the 14th Annual SIGMORPHON Workshop on Com-
putational Research in Phonetics, Phonology, and
Morphology. Association for Computational Lin-
guistics, pages 41–48.

Malin Ahlberg, Markus Forsberg, and Mans Hulden.

2014. Semi-supervised learning of morphological
paradigms and lexicons. In Proceedings of the 14th
Conference of the European Chapter of the Associa-
tion for Computational Linguistics. pages 569–578.
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Abstract

We present a solution to the problem of
paraphrase identification of questions. We
focus on a recent dataset of question pairs
annotated with binary paraphrase labels
and show that a variant of the decompos-
able attention model (Parikh et al., 2016)
results in accurate performance on this task,
while being far simpler than many com-
peting neural architectures. Furthermore,
when the model is pretrained on a noisy
dataset of automatically collected question
paraphrases, it obtains the best reported
performance on the dataset.

1 Introduction

Question paraphrase identification is a widely use-
ful NLP application. For example, in question-and-
answer (QA) forums ubiquitous on the Web, there
are vast numbers of duplicate questions. Identi-
fying these duplicates and consolidating their an-
swers increases the efficiency of such QA forums.
Moreover, identifying questions with the same se-
mantic content could help Web-scale question an-
swering systems that are increasingly concentrating
on retrieving focused answers to users’ queries.

Here, we focus on a recent dataset published by
the QA website Quora.com containing over 400K
annotated question pairs containing binary para-
phrase labels.1 We believe that this dataset presents
a great opportunity to the NLP research commu-
nity and practitioners due to its scale and quality; it
can result in systems that accurately identify dupli-
cate questions, thus increasing the quality of many
QA forums. We examine a simple model family,
the decomposable attention model of Parikh et al.
(2016), that has shown promise in modeling natural

1See https://data.quora.com/First-Quora-Dataset-Release-
Question-Pairs.

language inference and has inspired recent work on
similar tasks (Chen et al., 2016; Kim et al., 2017).

We present two contributions. First, to mitigate
data sparsity, we modify the input representation
of the decomposable attention model to use sums
of character n-gram embeddings instead of word
embeddings. We show that this model trained on
the Quora dataset produces comparable or better
results with respect to several complex neural ar-
chitectures, all using pretrained word embeddings.
Second, to significantly improve our model perfor-
mance, we pretrain all our model parameters on the
noisy, automatically collected question-paraphrase
corpus Paralex (Fader et al., 2013), followed by
fine-tuning the parameters on the Quora dataset.
This two-stage training procedure achieves the best
result on the Quora dataset to date, and is also sig-
nificantly better than learning only the character
n-gram embeddings during the pretraining stage.

2 Related Work

Paraphrase identification is a well-studied task in
NLP (Das and Smith, 2009; Chang et al., 2010; He
et al., 2015; Wang et al., 2016, inter alia). Here,
we focus on an instance, that of finding questions
with identical meaning. Lei et al. (2016) consider
a related task leveraging the AskUbuntu corpus
(dos Santos et al., 2015), but it contains two or-
ders of magnitude less annotations, thus limiting
the quality of any model. Most relevant to this
work is that of Wang et al. (2017), who present the
best results on the Quora dataset prior to this work.
The bilateral multi-perspective matching model
(BIMPM) of Wang et al. uses a character-based
LSTM (Hochreiter and Schmidhuber, 1997) at its
input representation layer, a layer of bi-LSTMs
for computing context information, four different
types of multi-perspective matching layers, an ad-
ditional bi-LSTM aggregation layer, followed by a
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two-layer feedforward network for prediction. In
contrast, the decomposable attention model uses
four simple feedforward networks to (self-)attend,
compare and predict, leading to a more efficient
architecture. BIMPM falls short of our best per-
forming model pretrained on noisy paraphrase data
and uses more parameters than our best model.

Character-level modeling of text is a popular
approach. While conceptually simple, character
n-gram embeddings are a highly competitive repre-
sentation (Huang et al., 2013; Wieting et al., 2016;
Bojanowski et al., 2016). More complex representa-
tions built directly from individual characters have
also been proposed (Sennrich et al., 2016; Luong
and Manning, 2016; Kim et al., 2016; Chung et al.,
2016; Ling et al., 2015). These representations are
robust to out-of-vocabulary items, often produc-
ing improved results. Our pretraining procedure is
reminiscent of several recent papers (Wieting et al.,
2016, inter alia) who aim for general purpose char-
acter n-gram embeddings. In contrast, we pretrain
all model parameters on automatic but in-domain
paraphrase data. We employ the same neural ar-
chitecture as our end task, similar to prior work on
multi-task learning (Søgaard and Goldberg, 2016,
inter alia), but use a simpler learning setup.

3 Approach

Our starting point is the decomposable attention
model (Parikh et al., 2016, DECATT henceforth),
which despite its simplicity and efficiency has been
shown to work remarkably well for the related
task of natural language inference (Bowman et al.,
2015). We extend this model with character n-gram
embeddings and noisy pretraining for the task of
question paraphrase identification.

3.1 Problem Formulation

Let a = (a1, . . . , a`a) and b = (b1, . . . , b`b
) be

two input texts consisting of `a and `b tokens, re-
spectively. We assume that each ai, bj ∈ Rd is
encoded in a vector of dimension d. A context win-
dow of size c is subsequently applied, such that the
input to the model (ā, b̄) consists of partly overlap-
ping phrases āi = [ai−c, . . . , ai, . . . , ai+c], b̄j =
[bj−c, . . . , bj , . . . , bj+c] ∈ R2c+1×d. The model is
estimated using training data in the form of labeled
pairs {a(n),b(n),y(n)}Nn=1, where y(n) ∈ {0, 1} is
a binary label indicating whether a is a paraphrase
of b or not. Our goal is to predict the correct label
y given a pair of previously unseen texts (a,b).

3.2 The Decomposable Attention Model
The DECATT model divides the prediction into
three steps: Attend, Compare and Aggregate. Due
to lack of space, we only provide a brief outline
below and refer to Parikh et al. (2016) for further
details on each of these steps.

Attend. First, the elements of ā and b̄ are aligned
using a variant of neural attention (Bahdanau et al.,
2015) to decompose the problem into the compari-
son of aligned phrases.

eij := F (āi)>F (b̄j) . (1)

The function F is a feedforward network. The
aligned phrases are computed as follows:

βi :=
`b∑

j=1

exp(eij)∑`b
k=1 exp(eik)

b̄j ,

αj :=
`a∑

i=1

exp(eij)∑`a
k=1 exp(ekj)

āi . (2)

Here βi is the subphrase in b̄ that is (softly) aligned
to āi and vice versa for αj . Optionally, the inputs
ā and b̄ to (1) can be replaced by input representa-
tions passed through a “self-attention” step to cap-
ture longer context. In this optional step, we modify
the input representations using “self-attention” to
encode compositional relationships between words
within each sentence, as proposed by (Cheng et al.,
2016). Similar to (1), we define

fij := Fself (āi)>F ′self (āj) . (3)

The function Fself and F ′self are feedforward net-
works. The self-aligned phrases are then computed
as follows:

a′i :=
`a∑

j=1

exp(fij + di−j)∑`a
k=1 exp(fik + di−k)

aj . (4)

where di−j is a learned distance-sensitive bias term.
Subsequent steps then use modified input represen-
tations defined as āi := [ai,a′i] and b̄i := [bi,b′i].

Compare. Second, we separately compare the
aligned phrases {(āi, βi)}`a

i=1 and {(b̄j , αj)}`b
j=1 us-

ing a feedforward network G:

v1,i := G([āi, βi]) ∀i ∈ 〈1, . . . , `a〉 ,
v2,j := G([b̄j , αj ]) ∀j ∈ 〈1, . . . , `b〉 . (5)

where the brackets [·, ·] denote concatenation.
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Aggregate. Finally, the sets {v1,i}`a
i=1 and

{v2,j}`b
j=1 are aggregated by summation. The sum

of two sets is concatenated and passed through an-
other feedforward network followed by a linear
layer, to predict the label ŷ.

3.3 Character n-Gram Word Encodings

Parikh et al. assume that each token ai, bj ∈ Rd

is directly embedded in a vector of dimension d;
in practice, they used pretrained word embeddings.
Inspired by prior work mentioned in Section 2, we
use an alternative approach and instead represent
each token as a sum of its embedded character n-
grams. This allows for more effective parameter
sharing at a small additional computational cost.
As observed in Section 4, this leads to better results
compared to word embeddings.

3.4 Noisy Pretraining

While character n-gram encodings help in effective
parameter sharing, data sparsity remains an issue.
Pretraining embeddings with a task-agnostic ob-
jective on large-scale corpora (Pennington et al.,
2014) is a common remedy to this problem. How-
ever, such pretraining is limited in the following
ways. First, it only applies to the input represen-
tation, leaving subsequent parts of the model to
random initialization. Second, there may be a do-
main mismatch unless embeddings are pretrained
on the same domain as the end task (e.g., questions).
Finally, since the objective used for pretraining
differs from that of the end task (e.g., paraphrase
identification), the embeddings may be suboptimal.

As an alternative to task-agnostic pretraining
of embeddings on a very large corpus, we pro-
pose to pretrain all parameters of the model on
a modest-sized corpus of automatically gathered,
and therefore noisy examples, drawn from a simi-
lar domain.2 As observed in Section 4, such noisy
pretraining of the full model results in more ac-
curate performance compared to using pretrained
embeddings, as well as compared to only pretrain-
ing embeddings on the noisy in-domain corpus.3

2Paralex is gathered from WikiAnswers, a QA forum.
3The Quora data is similar to the Paralex corpus and we

exploit this by pretraining our entire model on the latter. It can
be argued that not all sentence pair modeling tasks may benefit
similarly from the Paralex corpus and a detailed empirical
study is warranted to investigate that; in this work, we restrict
our scope to only the question paraphrase identification task,
a very useful NLP application by itself.
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Figure 1: Learning curves for the Quora develop-
ment set with and without pretraining on Paralex.

4 Experiments

4.1 Implementation Details

Datasets We evaluate our models on the Quora
question paraphrase dataset which contains over
400,000 question pairs with binary labels. We use
the same data and split as Wang et al. (2017), with
10,000 question pairs each for development and
test, who also provide preprocessed and tokenized
question pairs.4 We duplicated the training set,
which has approximately 36% positive and 64%
negative pairs, by adding question pairs in reverse
order (since our model is not symmetric). When
pretraining the full model parameters, we use the
Paralex corpus (Fader et al., 2013), which consists
of 36 million noisy paraphrase pairs including du-
plicate reversed paraphrases. We created 64 million
artificial negative paraphrase pairs (reflecting the
class balance of the Quora training set) by combin-
ing the following three types of negatives in equal
proportions: (1) random unrelated questions, (2)
random questions that share a single word, and (3)
random questions that share all but one word.5

Hyperparameters We tuned the following hyper-
parameters by grid search on the development set
(settings for our best model are in parenthesis):
embedding dimension (300), shape of all feedfor-
ward networks (two layers with 400 and 200 width),
character n-gram sizes (5), context size (1), learn-
ing rate (0.1 for both pretraining and tuning), batch
size (256 for pretraining and 64 for tuning), dropout
ratio (0.1 for tuning) and prediction threshold (pos-
itive paraphrase for a score ≥ 0.3). We examined
whether self-attention helps or not for all model
variants, and found that it does for our best model.
Note that we tried multiple orders of character n-

4This split is available at https://zhiguowang.github.io.
5More complex sampling procedures are possible, for ex-

ample, by using pretrained word embeddings.
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ID Question 1 Question 2 DECATTglove DECATTchar pt-DECATTchar Gold

A
How shall I start my preparation for IIT-JEE
in class 10?

Should I start preparing for the IIT JEE in class
10 only?

N Y Y Y

B What is fama french three factor model? What is Fama-French three factor model? N Y Y Y

C How does PayPal work in India?
Does PayPal work in India? What features of
PayPal are available in India?

Y Y N N

D
What are the similarities between British En-
glish and American English?

What are the similarities between American
English and British English?

N N Y Y

E
How is buying land on the moon a good in-
vestment? Why do people buy land on the
moon?

At $20 an acre, isn’t buying moon plots a solid
investment?

N N N Y

F
What can wrestlers do to prevent cauliflower
ears?

Why do wrestlers have deformed ears? N N N Y

Table 1: Example wins and losses from the DECATTglove, DECATTchar and the pt-DECATTchar models.

Method Dev Acc Test Acc

Siamese-CNN - 79.60
Multi-Perspective CNN - 81.38
Siamese-LSTM - 82.58
Multi-Perspective-LSTM - 83.21
L.D.C - 85.55
BIMPM 88.69 88.17

FFNNword 85.07 84.35
FFNNchar 86.01 85.06

DECATTword 86.04 85.27
DECATTglove 87.42 86.52
DECATTchar 87.78 86.84
DECATTparalex−char 87.80 87.77

pt-DECATTword 88.44 87.54
pt-DECATTchar 88.89 88.40

Table 2: Results on the Quora development and
test sets in terms of accuracy. The first six rows are
taken from (Wang et al., 2017).

grams with n ∈ {3, 4, 5} both individually and
separately but 5-grams alone worked better than
these alternatives.
Baselines We implemented several baseline mod-
els. In our first two baselines, each question is
represented by concatenating the sum of its uni-
gram word embeddings and the sum of its trigram
vectors, where each trigram vector is a concate-
nation of 3 adjacent word embeddings. The two
question representations are then concatenated and
fed to a feedforward network of shape [800, 400,
200]. We call these FFNNword and FFNNchar;
in the latter, word embeddings are just sums of
character n-gram embeddings. Second, we com-
pare purely supervised variants of decomposable
attention model, namely a word-based model with-

out any pretrained embeddings (DECATTword), a
word-based model with GloVe (Pennington et al.,
2014) embeddings (DECATTglove), a character n-
gram model (DECATTchar) without pretrained em-
beddings and DECATTparalex−char whose charac-
ter n-gram embeddings are pretrained with Paralex
while all other parameters are learned from scratch
on Quora. Finally we present a baseline where a
word-based model is pretrained completely on Par-
alex (pt-DECATTword) and our best model which
is a character n-gram model pretrained completely
on Paralex (pt-DECATTchar). Note that in case of
character n-gram based models, for tokens shorter
than n characters, we backoff and emit the token
itself. Also, boundary markers were added at the
beginning and end of each word.

4.2 Results
Other than our baselines, we compare with Wang
et al. (2017) in Table 2. We observe that the sim-
ple FFNN baselines work better than more com-
plex Siamese and Multi-Perspective CNN or LSTM
models, more so if character n-gram based em-
beddings are used. Our basic decomposable at-
tention model DECATTword without pre-trained
embeddings is better than most of the models, all
of which used GloVe embeddings. An interest-
ing observation is that DECATTchar model with-
out any pretrained embeddings outperforms DE-
CATTglove that uses task-agnostic GloVe embed-
dings. Furthermore, when character n-gram em-
beddings are pre-trained in a task-specific manner
in DECATTparalex−char model, we observe a signif-
icant boost in performance. 6

The final two rows of the table show results
achieved by pt-DECATTword and pt-DECATTchar.

6Note that Paralex is orders of magnitude smaller than the
corpus used to pretrain GloVe.
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We note that the former falls short of the DE-
CATTparalex−char, which shows that character n-
gram representations are powerful. Finally, we note
that our best performing model is pt-DECATTchar,
which leverages the full power of character embed-
dings and pretraining the model on Paralex.

Noisy pretraining gives more significant gains
in case of smaller human annotated data as can be
seen in Figure 1 where non-pretrained DECATTchar

and pretrained pt-DECATTchar are compared on a
logarithmic scale of number of Quora examples. It
also gives an important insight into trade off be-
tween having more but costly human annotated
data versus cheap but noisy pretraining. Table 1
shows some example predictions from the DE-
CATTglove, DECATTchar and the pt-DECATTchar

models. The GloVe-trained model often makes mis-
takes related to spelling and tokenization artifacts.
We observed that hyperparameter tuning resulted in
settings where non-pretrained models did not use
self-attention while the pretrained character based
model did, thus learning better long term context at
its input layer; this is reflected in example D which
shows an alternation that our best model captures.
Finally, E and F show pairs that present complex
paraphrases that none of our models capture.

5 Conclusion and Future Work

We presented a focused contribution on question
paraphrase identification, on the recently published
Quora corpus. First, we showed that replacing the
word embeddings of the decomposable attention
model of Parikh et al. (2016) with character n-gram
embeddings results in significantly better accuracy
on this task. Second, we showed that pretraining
the full model on automatically labeled noisy, but
task-specific data results in further improvements.
Our methods perform better than several complex
neural architectures and achieve state of the art.
While conceptually simple, we believe that these
are two important insights that may be more widely
applicable within the field of natural language un-
derstanding. We leave investigation of this claim to
future work that may involve evaluation on related
tasks such as recognizing textual entailment.

References
Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-

gio. 2015. Neural machine translation by jointly
learning to align and translate. In Proceedings of
ICLR.

Piotr Bojanowski, Edouard Grave, Armand Joulin, and
Tomas Mikolov. 2016. Enriching word vectors with
subword information. arXiv 1607.04606.

Samuel R. Bowman, Gabor Angeli, Christopher Potts,
and Christopher D. Manning. 2015. A large anno-
tated corpus for learning natural language inference.
In Proceedings of EMNLP.

Ming-Wei Chang, Dan Goldwasser, Dan Roth, and
Vivek Srikumar. 2010. Discriminative learning over
constrained latent representations. In Proceedings
of HLT-NAACL.

Qian Chen, Xiaodan Zhu, Zhen-Hua Ling, Si Wei, and
Hui Jiang. 2016. Enhancing and combining sequen-
tial and tree LSTM for natural language inference.
arXiv 1609.06038 .

Jianpeng Cheng, Li Dong, and Mirella Lapata.
2016. Long short-term memory-networks for
machine reading. In Proceedings of the 2016
Conference on Empirical Methods in Natural
Language Processing. Association for Computa-
tional Linguistics, Austin, Texas, pages 551–561.
https://aclweb.org/anthology/D16-1053.

Junyoung Chung, Kyunghyun Cho, and Yoshua Ben-
gio. 2016. A character-level decoder without ex-
plicit segmentation for neural machine translation.
In Proceedings of ACL.

Dipanjan Das and Noah A. Smith. 2009. Paraphrase
identification as probabilistic quasi-synchronous
recognition. In Proceedings of ACL-IJCNLP.

Cicero dos Santos, Luciano Barbosa, Dasha Bog-
danova, and Bianca Zadrozny. 2015. Learning hy-
brid representations to retrieve semantically equiva-
lent questions. In Proceedings of ACL.

Anthony Fader, Luke Zettlemoyer, and Oren Etzioni.
2013. Paraphrase-driven learning for open question
answering. In Proceedings of ACL.

Hua He, Kevin Gimpel, and Jimmy Lin. 2015. Multi-
perspective sentence similarity modeling with con-
volutional neural networks. In Proceedings of
EMNLP.

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long short-term memory. Neural Computation
9(8):1735–1780.

Po-Sen Huang, Xiaodong He, Jianfeng Gao, Li Deng,
Alex Acero, and Larry Heck. 2013. Learning deep
structured semantic models for web search using
clickthrough data. In Proceedings of CIKM.

Yoon Kim, Carl Denton, Loung Hoang, and Alexan-
der M. Rush. 2017. Neural machine translation by
jointly learning to align and translate. In Proceed-
ings of ICLR.

Yoon Kim, Yacine Jernite, David Sontag, and Alexan-
der M. Rush. 2016. Character-aware neural lan-
guage models. In Proceedings of AAAI.

146



Tao Lei, Hrishikesh Joshi, Regina Barzilay, Tommi
Jaakkola, Kateryna Tymoshenko, Alessandro Mos-
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Abstract

In East Asian languages such as
Japanese and Chinese, the semantics
of a character are (somewhat) reflected
in its sub-character elements. This pa-
per examines the effect of using sub-
characters for language modeling in
Japanese. This is achieved by decom-
posing characters according to a range
of character decomposition datasets,
and training a neural language model
over variously decomposed character
representations. Our results indicate
that language modelling can be im-
proved through the inclusion of sub-
characters, though this result depends
on a good choice of decomposition
dataset and the appropriate granular-
ity of decomposition.

1 Introduction
The Japanese language makes use of

Chinese-derived ideographs (“kanji”) which
contain sub-character elements (“bushu”) that
to varying degrees reflect the semantics of the
character. For example, the character 鯨 (ku-
jira “whale”) consists of two sub-characters:
⿂ (sakana “fish”) and京 (kyou “capital city”).
Similarly, the character 鮃 (hirame “floun-
der”) consists of the sub-characters⿂ (sakana
“fish”) and 平 (hira “something broad and
flat”). Here, the sub-character ⿂ (sakana
“fish”) is a semantically significant element
which appears in characters relating to marine
life. Current Japanese language models do not
capture sub-character information, and hence
lack the ability to capture such generalisations.

A key limitation of word-based language
modelling is the tendency to produce poor esti-

mations for rare or OOV (out-of-vocabulary)
words, and character-based language models
have been shown to solve some of the sparsity
problem in English by modeling how words
are constructed (Graves, 2013). We take
inspiration from this work, but observe for
Japanese that since the kanji portion of the
Japanese writing system contains thousands
rather than dozens of characters, a character-
based language model will still be susceptible
to sparsity. Given that a large number of
Japanese characters can be decomposed into
sub-characters, we examine the question of
whether sub-character language models can
achieve similar gains in language model qual-
ity to character language models in English.

In this paper we train sub-character lan-
guage models for Japanese based on decom-
positions available in several existing kanji
datasets. Our results suggest that decompos-
ing characters is of value, but that the results
are sensitive to the nature and granularity of
the decomposition.

2 Kanji Datasets

In order to investigate the usefulness of sub-
character decomposition for language models,
we need some way of deriving these bushu from
kanji. Here, we consider four kanji datasets
that provide decompositions for kanji char-
acters: GlyphWiki, IDS, KanjiVG, and
KRADFILE. An example kanji decomposi-
tion under the four datasets is provided in Fig-
ure 1.

2.1 GlyphWiki
GlyphWiki1 is a community-driven wiki

that stores information about kanji characters
1http://glyphwiki.org
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⽬

各

⼡ ⼝
(c) KanjiVG

賂

⾙ ⽬ ハ ⼝ ⼡
(d) KRADFILE

Figure 1: A visualisation of a full decomposition of the character 賂 (mainai “bribe”) according
to the four kanji datasets.

such as their decompositions into bushu, and
their usage as bushu in other kanji. Decompo-
sition information in GlyphWiki is collected
by user contribution.

2.2 IDS
IDS2 is based on an open source project

which uses character processing methods to
create descriptions of character components
(Morioka and Wittern, 2002). The decomposi-
tions in IDS are generated automatically, us-
ing character topic maps to draw associations
between kanji and their constituent elements.

In Figure 1b we see that IDS provides a
more detailed breakdown than GlyphWiki,
including two bushu that are not found in
GlyphWiki. At the first level of decompo-
sition, though, they are identical.

2.3 KanjiVG
KanjiVG3 is a collection of images that

provides information about kanji and their
decompositions. Decomposition information
for KanjiVG is derived from the analysis of
strokes used to write kanji characters (Apel
and Quint, 2004). Although KanjiVG does
allow for the decomposition of characters down

2https://github.com/cjkvi/cjkvi-ids
3http://kanjivg.tagaini.net/

to the stroke level, we exclude all strokes in
this research as we do not consider strokes to
reflect semantic meaning.

Note in Figure 1c that the decomposition
is different to IDS, because KanjiVG spec-
ifies that the bottom elements of the bushu
character ⾙ (kai “shell”) are strokes rather
than bushu, meaning they are excluded from
decomposition.

2.4 KRADFILE
KRADFILE4 represents a flat decompo-

sition of kanji into their constituent bushu.
One key aspect of KRADFILE that differs
from the other datasets is the use of a rela-
tively limited set of bushu. Additionally, un-
like the other datasets, KRADFILE does not
list bushu in an order consistent with their ap-
pearance in the kanji. Furthermore, KRAD-
FILE provides a single exhaustive decompo-
sition for all kanji characters and their bushu.
Because of this, we consider KRADFILE to
have only a single, indivisible layer of decom-
position.

2.5 Dataset Comparison
Table 1 shows descriptive statistics for the

four datasets and their decompositions.
4http://users.monash.edu/~jwb/kradinf.html
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GlyphWiki IDS KanjiVG KRADFILE

Characters 18761 20970 6744 12156
Unique bushu 2834 3104 1327 254

Average bushu per kanji 1.9 2.1 2.2 4.5
Average branching factor 1.5 2.1 1.9 4.5

Average depth 2.7 3.1 2.9 1.0

Table 1: Statistics for the four kanji datasets

The Characters row of the table describes
the total number of characters in each dataset
that have a decomposition. KanjiVG con-
tains a much smaller number of kanji than the
other two datasets, although note that in mod-
ern Japanese, kanji is generally restricted to
2,136 jouyou kanji (Bond and Baldwin, 2016).
All four datasets have full coverage over our
corpus.

Unique bushu describes the number of char-
acters that have been used as bushu. In gen-
eral, if a kanji character is found in the de-
composition of another kanji character, then
it is counted as a bushu. While most of the
datasets use thousands of bushu, KRADFILE
is notable in that it uses a much smaller bushu
set. With respect to Average bushu per kanji,
there is strong similarity between Glyph-
Wiki, IDS and KanjiVG, but KRADFILE
produces almost double the number of bushu
because the decompositions are exhaustive.

Average branching factor describes the av-
erage number of bushu found through exhaus-
tively decomposing over every kanji and its
bushu (an example of exhaustive decomposi-
tion — which we call “deep decomposition”
— can be seen in Figure 2). Because KRAD-
FILE provides a single layer of decomposition
that is complete and indivisible, we cannot de-
compose each bushu any further. Therefore,
KRADFILE has an average depth of 1.

3 Experimental Setup

For our experiments, we use version 1.5 of
the NAIST text corpus (Iida et al., 2007),
a collection of Japanese newspaper articles
which is widely used in Japanese NLP research
(Imamura et al., 2009; Sasano and Kurohashi,
2011). The corpus consists of roughly 1.7 mil-
lion character tokens, of which roughly 42%
are kanji. To build and test our models we

use 5-fold cross-validation.
Our language models are standard neural

network models, implemented in Tensorflow;
they consist of a embedding layer, with em-
beddings for each character (including kanji,
bushu, and other elements of the Japanese
writing systems) which are learned during
training, a standard unidirectional LSTM
(Sundermeyer et al., 2012), and a layer which
maps the output of the LSTM to a vector rep-
resenting the probability of the next charac-
ter; the hidden (embedding) size of the LSTM
for our experiments is 128. We train the lan-
guage model by minimizing the cross-entropy
between the output probabilities and the one-
hot vector corresponding to the correct an-
swer, using the Adam optimizer with a batch
size of 128 and a learning rate of 0.002.

In addition to the four kanji datasets, we
consider two kinds of decomposition: shallow
and deep. Shallow decomposition refers to us-
ing only the first layer of decomposition of a
kanji character, whereas deep expansion refers
to an exhaustive decomposition of the kanji
and all of its bushu. We use these two meth-
ods to explore whether semantic information is
reflected in deeper levels of decomposition. In
general, we aim to compare the performance of
a language model based on the way kanji are
decomposed and the depth of their decompo-
sitions.

Figure 2 includes examples of both shal-
low and deep decompositions, for kanji includ-
ing 賂 (mainai “bribe”) from Figure 1b. De-
composition is done in a left-to-right in-order
traversal.

It is possible for multiple kanji to share
the same bushu. For example, according to
KanjiVG, the characters 由 (yoshi “cause/
reason”), 甲 (kou “carapace/shell”), and 申
(saru “monkey”) are decomposed into ⽥ (ta
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Unmodified: 彼は賂を取った。
Shallow: ⼻⽪ 彼 は ⾙各 賂 を ⽿⼜ 取 った。
Deep: ⺅⼻ ⽪ 彼 は ⽬⾙ ⼡⼝各 賂 を ⽿⼜ 取 った。

Figure 2: Examples of shallow and deep decomposition using KanjiVG, with original characters
highlighted in red. Boxes denote characters that have been decomposed.

k Baseline
GlyphWiki IDS KanjiVG

KRADFILE
Shallow Deep Shallow Deep Shallow Deep

1 77.76 34.31 40.68 37.11 47.75 40.04 47.04 160.94
2 38.17 33.34 37.52 33.75 48.54 35.91 45.20 89.17
3 59.41 39.72 49.02 44.73 63.69 45.95 57.79 99.79
4 70.40 50.70 61.68 50.79 62.00 50.79 64.68 125.67
5 60.05 50.83 52.65 52.12 68.58 53.03 71.00 155.00

Average 61.16 41.78 48.31 43.70 58.11 44.74 57.14 126.11

Table 2: Language model perplexity based on the different decompositions

“rice field”) and ⼁ (tatebou “vertical line”).
Because of this, using just the decomposition
of a character can actually lead to a loss of
information. Thus, we postpend all decompo-
sition sequences with the original kanji char-
acter to preserve the mapping of bushu to its
original kanji.

We evaluate based on perplexity, normal-
izing the product of the probability of the
(sub-)characters in our test set by the char-
acter length of the corpus (lower perplexity is
better). Because decomposing characters af-
fects the superficial length of the corpus, how-
ever, we note that in the cases of decomposi-
tion we are normalizing using the original (un-
decomposed) corpus length in all cases, and
not the decomposed token length. This re-
flects the fact that by adding decompositions
of a character we are not really adding new
text to the corpus. Both regular and decom-
posed language models in fact predict exactly
the original contents of the corpus, but for
the decomposed models the uncertainty asso-
ciated with each kanji is distributed among the
predictions of its bushu (and the postpended
kanji), and can be retrieved simply by multi-
plying all the individual probabilities together.

4 Results
Table 2 shows the perplexity for each of the

sub-character language models, for the two

possible decomposition depths, as compared
to a baseline where no decomposition occurs.
We report perplexity for each fold of our 5-fold
cross-validation, as well as the average.

First, we note that while most of the sub-
character language models showed some im-
provement over the undecomposed baseline,
KRADFILE performed substantially worse,
with a mean perplexity score almost twice as
high as that of the baseline. One potential
problem with KRADFILE is that it provides
only deep, exhaustive decompostions. Other
limitations of using KRADFILE for language
modelling are the lack of order in how bushu
are arranged, and the fact that the bushu are
limited to a specific set of characters. We can
conclude that it is not a useful dataset for this
purpose.

The best-performing dataset was Glyph-
Wiki, with shallow decomposition. Not only
was this configuration markedly better than
the baseline on average, it also beat ev-
ery other option on every fold of our cross-
validation. The results for KanjiVG and IDS
were similar, but slightly worse. Interestingly,
based on the statistics in Table 1, Glyph-
Wiki is the most conservative of the datasets
in terms of the average number of decomposed
bushu. We also found that the best results
all involved shallow decomposition, which may
reflect the fact that the most semantically-
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salient bushu tend to appear at the first level
of composition; this result was also consistent
across folds for IDS and KanjiVG. Taken to-
gether, these results indicate that some decom-
position is useful for building Japanese lan-
guage models, but too much decomposition is
not advisable.

5 Related Work

Working at the character level has proven
useful in language modelling in English, as
well as related applications such as build-
ing word representations (Graves, 2013; Ling
et al., 2015). With regards to ideographic
languages, there is work in information re-
trieval that has considered the appropriate
representation for indexing; the focus has typi-
cally been word versus character (Kwok, 1997;
Baldwin, 2009), but Fujii and Croft (1993)
considered (though ultimately rejected) sub-
character based indexing. In terms of in-
vestigations of the usefulness of sub-character
representations for neural network models in
ideographic languages, relevant work includes
recent papers that use sub-character infor-
mation to assist in the training of charac-
ter embeddings for Chinese (Sun et al., 2014;
Li et al., 2015; Yin et al., 2016) or build
sub-character embeddings directly (Shi et al.,
2015), demonstrating that sub-character infor-
mation is useful for representing semantics in
Chinese. However, our work differs not only
in language and task, but also in our use of
decomposition, since the work done in Chi-
nese has primarily focused on a single semanti-
cally relevant sub-character (known as the rad-
ical), despite the fact that other sub-characters
do provide additional semantic information in
some characters.

6 Conclusion and Future Work

In this paper we have explored the idea of
decomposing Japanese kanji to improve lan-
guage modeling using neural network mod-
els. Our results indicate that it is possible
to improve the predictive power of a language
model using decomposition, as measured by
perplexity, but the effectiveness of this does
depend on the properties of the kanji database:
whereas GlyphWiki is a useful resource for
our purpose, KRADFILE is clearly not.

With respect to future work, we have thus
far explored only a subset of the options
with regards to the decomposition and or-
dering of sub-characters, and we would also
like to consider more sophisticated models
which integrate the structure of the kanji in-
stead of flattening it, and applying our sub-
character modeling to other sequential tasks
such as part-of-speech tagging. Given the cor-
respondence between kanji and Chinese char-
acters, a comparison of the two languages
with regards to the usefulness of decomposi-
tion would be worth exploring. We are also in-
terested in performing an intrinsic evaluation
of the character- and bushu-level embeddings
learned through language modelling, e.g. rela-
tive to character-level similarity datasets such
as that of Yencken and Baldwin (2006).
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Abstract

This paper presents experiments compar-
ing character-based and byte-based neural
machine translation systems. The main
motivation of the byte-based neural ma-
chine translation system is to build multi-
lingual neural machine translation systems
that can share the same vocabulary. We
compare the performance of both systems
in several language pairs and we see that
the performance in test is similar for most
language pairs while the training time is
slightly reduced in the case of byte-based
neural machine translation.

1 Introduction

Multilingual neural machine translation is raising
interest in the community because it re-opens the
possibility of an interlingual architecture. the main
advantage of the current setting is that interlingua
is not manually designed but it seems that it can
be automatically extracted (Johnson et al., 2016).
In addition, this multilingual environment seems
to allow to build translation systems among lan-
guage pairs that do not have parallel corpus avail-
able (Johnson et al., 2016), what is called “zero-
shot translation”.

These two motivations (interlingua and zero-
shot translation) are strong enough to motivate the
entire commmunity to experiment towards mul-
tilingual architectures. Recently, there have ap-
peared works in multilingual word representations
(Schwenk et al., 2017; España-Bonet et al., 2017)

Most multilingual works are at the level of
words. As multilingual character research we can
find (Lee et al., 2016) which goes from many-
to-one languages in translation and achieves im-
provements for several language pairs. Previous
work on character-based neural machine transla-

tion includes (Ling et al., 2015; Costa-jussà and
Fonollosa, 2016), among others.

We want to explore multilingual character-
based neural machine translation with a diversity
of languages, including languages as Chinese. In
case of using languages with different alphabets,
the character dictionary can not be shared or it has
to be considerably augmented. In order to keep the
dictionary to the order of hundreds, we want to ex-
plore how byte-based neural machine translation
behaves. In this paper, we propose to use the fully-
character neural machine translation architecture
(Lee et al., 2016) but using bytes instead of char-
acters. We compare the performance of charac-
ter against byte-based neural machine translation
among similar languages (Catalan/Spanish and
Portuguese/Brazilian) and relatively far languages
(in terms of alphabet) (German/Finnish/Turkish-
English).

As far as we are concerned, we are not aware
of any research work in neural machine transla-
tion that has experimented with bytes. Related
work can be found int the area of natural language
processing. Gillick et al. (2016) propose an neu-
ral network that reads text as bytes and use this
model in tasks of Part-of-Speech and Named En-
tity Recognition. The recent investigation of Irie
et al (2017) describes the use of a byte-level con-
volutional layer (instead of character-level) in the
neural language model (Irie et al., 2017), which is
applied to low resource speech recognition.

2 Character-based Neural Machine
Translation

Our system uses the architecture from (Lee et al.,
2016) where a character-level neural MT model
that maps the source character sequence to the
target character sequence. The main difference
in the encoder architecture of the standard neural
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MT model from (Bahdanau et al., 2015) is that in-
stead of using word embeddings, the system uses
character embeddings based on previous works
like (Kim et al., 2015; Costa-jussà and Fonollosa,
2016). The architecture uses character embed-
dings include convolution layers, max pooling and
highway network layers. The character embed-
dings from the decoder are the input of the bidirec-
tional recurrent neural network. The main differ-
ence in the decoder architecture is that the single-
layer feedforward network computes the attention
score of next target character (instead of word) to
be generated with every source segment represen-
tation. And afterwards, a two-layer character-level
decoder takes the source context vector from the
attention mechanism and predicts each target char-
acter.

3 Byte-based Neural Machine
Translation

The byte-based Neural Machine Translation
changes the character representation of words to
the byte representation. Each sentence is repre-
sented as the concatenation of bytes that form its
characters in utf-8 encoding. No explicit vocabu-
lay is used but we can consider the byte represen-
tation as a vocabulary of 256 positions in which
every possible byte can be represented. This mod-
ifications provides the following improvements
over the previously seen architecture.

• Both languages share the same representa-
tion. If a word is identical in the source and in
the target language they share the same rep-
resentation when converted into sequences to
be fed in the network. This is an advan-
tage over the character-based representation,
which dictionary is language-dependent.

• This representation uses a limited set of to-
kens of size 256 independently of the lan-
guage. Therefore, the system is not affected
by the size of character vocabulary. Note
that there are languages that have a very rich
explicit morphological representation or that
have a wide range of characters (e.g. Chi-
nese). However, the byte-based decoding
also produces a sequence of correct bytes in
a similar way that character level translation
works compared to word-based systems.

• All words are theoretically representable by
the system even if they have not been previ-

uosly seen in the training. This is due to the
fact that every single character of word can
be seen as a concatenation of bytes and the
full range of possible bytes is covered by the
system.

4 Experimental Framework

In this section we detail experimental corpora, ar-
chitecture and parameters that we used.

4.1 Data and Preprocessing

For Catalan-Spanish, We use a large corpus ex-
tracted from ten years of the paper edition of a
bilingual Catalan newspaper, El Periódico (Costa-
jussà et al., 2014). The Spanish-Catalan corpus
is partially available via ELDA (Evaluations and
Language Resources Dis-tribution Agency) in cat-
alog number ELRA-W0053. Development and
test sets are extracted from the same corpus.

For Portuguese-Brazilian, we used the OPUS
corpus (Tiedemann, 2012) which is a growing col-
lection of translated texts from the web. In par-
ticular, for Portuguese-Brazilian the source corpus
are from Ubuntu and GNOME. We extracted the
parallel text from translation memories (TMX for-
mat) and from the complete text, we extracted a
collection of development and test set.

Finally, we used WMT 2017 1 corpus data for
German, Finish and Turkish to English. For the
three language pairs, we used all data parallel data
provided in the evaluation. For German-English,
we used: europarl v.7, news commentary v.12,
common crawl and rapid corpus of EU press re-
leases. For Finnish-English, we used europarl v.8,
wiki headlines and rapid corpus of EU press re-
leases. For Turkish-English, we used setimes2.
The German and Finish test set is the news 2015
evaluation set, for Turkish the test set is the news
2016 evaluation set.

Preprocessing consisted in cleaning empty sen-
tences, limiting sentences up to 50 words, tok-
enization and truecasing for each language using
tools from Moses (Koehn et al., 2007). Table 1
shows details about the corpus statistics after pre-
processing.

4.2 Parameters

Both character and byte-based systems share the
same parameters. Further research may explore
different parameters for the byte-based system,

1http://www.statmt.org/wmt17/translation-task.html
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LP L Set S W V

EsCa

Es
Train 6478618 165170227 736873
Dev 2244 55478 12237
Test 2244 55988 12218

Ca
Train 6478618 178954335 713445
Dev 2244 60130 11734
Test 2244 60693 11691

PtBr

Pt
Train 4280310 33954616 362592
Dev 2000 16122 4155
Test 2000 16012 4141

Br
Train 4280310 33600508 320972
Dev 2000 15963 3939
Test 2000 15663 3964

DeEn

De
Train 9659106 2 03634165 1721113
Dev 2999 62362 12674
Test 2169 44085 9895

En
Train 9659106 210205446 954387
Dev 2999 64503 9506
Test 2169 46830 7871

FiEn

Fi

Train 2468673 3 7755811 863898
Dev 3000 47779 16236
Test 2870 43069 15748

En
Train 2468673 52262051 240625
Dev 3000 63519 9059
Test 2870 60149 8961

TuEn

Tu
Train 200290 42 48508 158276
Dev 1001 16954 6463
Test 3000 54128 15898

En
Train 299290 4713025 73906
Dev 1001 22136 4318
Test 3000 66394 9503

Table 1: Corpus Statistics. Number of sentences
(S),words (W), vocabulary (V).

since we are adopting for the byte-based systems
the character-based parameters from previous re-
search (Lee et al., 2016).

For the embedding of the source sentence, we
use set of convolutional layers which number ker-
nels are (200-200-250-250-300-300-300-300) and
their lengths are (1-2-3-4-5-6-7-8) respectively.
Additionally 4 highway layers are employed. And
a bidirectional LSTM layer of 512 units for encod-
ing. The maximum souce sentence’s length is 450
during training and 500 for decoding both during
training and sampling.

4.3 Byte differences among language pairs

Characters may be represented by a single or sev-
eral bytes. English and its close languages usually
have a correspondance of character and byte (a
character is represented by a single byte). There-
fore, these languages are not really affected by this
representation, mainly because the ASCII encod-
ing makes possible to represent all possible char-
acters in a single byte which results in a simi-
lar length representation in both baseline and pro-
posed system.

However, in other languages (e.g. Turkish,
Finnish...) which contain stressed characters
(among other modifications), a single character
in utf-8 may be a concatenation of several bytes.
For these cases, the performance of the byte-based

Language Bytes
Spanish 1.026
Catalan 1.040
German 1.015
Finnish 1.044
Turkish 1.087
English 1.000
Portuguese 1.027
Brazilian Portuguese 1.028
Chinese 2.108

Table 2: Mean bytes for character for all the lan-
guages tested, Chinese added for comparison.

system differs from the character-based system.
Table 2 shows the mean number of bytes for

character changes for different languages. As the
languages are more similiar to English the differ-
ence between bytes and characters changes. For
all the languages tested in our experiments using
all latin alphabet the differences are small and re-
sultant sentence length is similar to its character
counterpart.

On the other hand for languages that use a dif-
ferent alphabet such as Chinese we can observe
how for each character more than two bytes have
to be correctly generated.

5 Results

This section compares the performance of the
byte-based neural machine translation system with
the character-based in terms of translation quality
and training time. In order to compare training
times all systems have been trained in the same
machine using an NVIDIA TITAN X with 12GB of
RAM.

Table 3 shows BLEU results and number for
close languages Catalan-Spanish and Portuguese-
Brazilian in both directions. Comparison between
character and byte-based models shows that by us-
ing a byte-base system comparable results to the
ones obtained using a character-based system. In
our experiments, we have observed that the byte-
based system tends to converge at least a couple of
hundred iterations earlier than the character-based
system.

Table 4 shows BLEU results for distant lan-
guages German, Finish and Turkish into English.
Comparison between character and byte-based
models shows how even in distance languages
similar or even equal results can be obtained us-
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Language System BLEU
esca char 87.12

byte 86.91
caes char 82.43

byte 81.27
ptbr char 48.54

byte 48.28
brpt char 46.41

byte 47.20

Table 3: Close languages. BLEU results.

Language System BLEU
tren char 5.87

byte 4.75
deen char 28.63

byte 25.29
fien char 14.75

byte 14.75

Table 4: Distant languages. BLEU results.

ing the byte-based system. For the case of Turk-
ish and English (and training for an equal number
of iterations), results are lower than the ones ob-
tained by the char-based system but given the re-
duced size of the corpus variance in the results can
be caused by other factors. For Finnish-English,
we achieved the same results with several hun-
dred training iterations less. In the case of the
German-English pair, results show that the char-
based approach provides quite better results than
the proposed byte-based system but also it is worth
mentioning that when using bytes, the results con-
verged several hundred training iterations before
than when using the baseline system.

6 Conclusions

This paper shows an experimental comparison be-
tween char-based neural machine translation and
byte-based neural machine translation. Variability
has been found in the results for different language
pairs ranging for−3.3 to +0.8 BLEU points. Also
the main advantage of the proposed system com-
pared to the baseline system is that it tends to re-
quire less training iterations which translates in a
reduction of training time that can vary from sev-
eral days to even two weeks.

Further work includes the experimentation of
multilingual neural machine translation using
byte-based system. In addition, we want to include

in our experimentation languages with complete
different alphabets such as Chinese and we will in-
vestigate if byte-based neural machine translation
system proposes malformed characters. In future
research, we will test different parameters such as
changing the number of convolutional filters.
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Abstract

Fine-grained sentiment analysis received
increasing attention in recent years. Ex-
tracting opinion target expressions (OTE)
in reviews is often an important step in
fine-grained, aspect-based sentiment anal-
ysis. Retrieving this information from
user-generated text, however, can be dif-
ficult. Customer reviews, for instance, are
prone to contain misspelled words and are
difficult to process due to their domain-
specific language. In this work, we inves-
tigate whether character-level models can
improve the performance for the identifi-
cation of opinion target expressions. We
integrate information about the character
structure of a word into a sequence label-
ing system using character-level word em-
beddings and show their positive impact
on the systems performance. Specifically,
we obtain an increase by 3.3 points F1-
score with respect to our baseline model.
In further experiments, we reveal encoded
character patterns of the learned embed-
dings and give a nuanced view of the per-
formance differences of both models.

1 Introduction

In recent years, there has been an increased inter-
est in developing sentiment analysis models that
predict sentiment at a more fine-grained level than
at the level of a complete document. A key task
within fine-grained sentiment analysis consists in
identifying so called opinion target expressions
(OTE). These are the objects of a sentiment ex-
pression. Consider the following example:

“ Moules were excellent , but the lobster ravioli was

VERY salty ! ”

where blue boxes mark opinion targets, (dashed)
red boxes the opinion terms and arrows the respec-
tive relations. In this example, there are two sen-
timent statements, one positive and one negative.
The positive one is indicated by the word excellent
and is expressed towards the Moules. The second,
negative sentiment, is indicated by the word salty
and is expressed towards the lobster ravioli.

In this work, we consider the task of identify-
ing such opinion target expressions in reviews as
a sequence labeling problem. A particular chal-
lenge involved in OTE identification stems from
the fact that online reviews can be of low qual-
ity and contain misspelled words, novel word cre-
ations, rare words etc. We thus hypothesize that
including character-embeddings might be benefi-
cial in the context of OTE extraction, allowing a
model to be robust to spelling errors as well as
generalize to unseen words. A further challenge
is that an OTE can span multiple tokens.

In this work, we thus investigate whether a
character-based approach is capable of using the
additional low-level information to improve upon
a standard word-based baseline. We hypothesize
that character-level word embeddings capture rel-
evant information for opinion target expression ex-
traction that regular (skip-gram) word embeddings
lack. We propose a neural network model that
learns and utilizes character-level word embed-
dings to extract opinion target expressions and ex-
amine its characteristics. Our experimental anal-
ysis shows that with an increase of 3.3 points F1-
score, the character information is indeed valuable
for the task. Further experiments reveal encoded
character patterns of the learned embeddings and
give a nuanced view of the performance differ-
ences of both models.

The rest of the paper is structured as fol-
lows: Section 2 discusses related work from
two domains: fine-grained sentiment analysis and
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character-level neural text processing. In Section
3, we describe our approach to address opinion tar-
get extraction and present the recurrent neural net-
work models that we use to measure the impact
of character information on the task. We carry out
our evaluation and analysis in Section 4 and exam-
ine the learned character-level word embeddings
in more detail. Finally, Section 5 summarizes our
findings and presents directions for future work.

2 Related Work

Our work brings together the domains of fine-
grained sentiment analysis on the one side and
character-level neural text processing on the other
side. In this section we give a brief overview of
both domains and point out parallels to previous
work.

Fine-Grained Sentiment Analysis San Vicente
et al. (2015) present a system that addresses opin-
ion target extraction as a sequence labeling prob-
lem based on a perceptron algorithm with local
features.

Toh and Wang (2014) propose a Conditional
Random Field (CRF) as a sequence labeling model
that includes a variety of features such as Part-of-
Speech (POS) tags and dependencies, word clus-
ters and WordNet taxonomies.

Jakob and Gurevych (2010) follow a very sim-
ilar approach that addresses opinion target extrac-
tion as a sequence labeling problem using CRFs.
Their approach includes features derived from
words, POS tags and dependency paths, and per-
forms well in a single and cross-domain setting.

Klinger and Cimiano (2013a,b) model the task
of joint aspect and opinion term extraction using
probabilistic graphical models and rely on Markov
Chain Monte Carlo methods for inference. They
demonstrate the impact of a joint architecture on
the task with a strong impact on the extraction of
aspect terms, but less so for the extraction of opin-
ion terms.

Character-Level Neural Network Models
Character-level neural network models are
gaining interest in many research areas such as
language modeling (Kim et al., 2016), spelling
correction (Sakaguchi et al., 2017), text classi-
fication (Zhang et al., 2015) and more. Most
similar works from the area of character-level
word representations can be found in (dos Santos
and Zadrozny, 2014; dos Santos et al., 2015;

Ma and Hovy, 2016). In these works, word and
character level representations are successfully
learned and combined to improve Part-of-Speech
(POS) tagging and Named Entity Recognition
(NER).

dos Santos and Zadrozny (2014) and dos San-
tos et al. (2015) apply a convolutional neural net-
work (CNN) to the raw character sequence that
detects character patterns and represents them as
a fixed-sized embedding vector. The concatenated
sequence of word and character-level embeddings
is then used to predict POS or NER tags for each
word.

Ma and Hovy (2016) use a similar CNN-based
word structure model. However, the subsequent
processing of the embedded word sequence is car-
ried out using a bidirectional Long Short-Term
Memory network (LSTM).

An example of character-level text classification
not requiring any tokenization is given by Zhang
et al. (2015). In their work, the authors perform
text classification using character-level CNNs on
very large datasets and obtain comparable results
to traditional models based on words. Their find-
ings suggest that the standard tokenization of text
is indeed something to be reconsidered.

3 Model

In this work, we approach the task of extracting
opinion target expressions by phrasing it as a se-
quence labeling problem. Doing so allows us to
extract an arbitrary number of multi-word expres-
sions in a given text. We use the IOB scheme
(Tjong Kim Sang and Veenstra, 1999) to repre-
sent OTEs as a sequence of tags. According to
this scheme, each word in our text receives one of
3 tags, namely I, O or B that indicate if the word
is at the Beginning1, Inside or Outside of an ex-
pression:

The wine list is also really nice .
O I I O O O O O

The task is thus reduced to mapping a sequence
of words to a sequence of tags. We model the
sequence labeling task using recurrent neural net-
works (RNN). RNNs allow us to easily integrate
character-level knowledge into the model in the
form of character-level word embeddings. To

1Note that the B token is only used to indicate the bound-
ary of two consecutive phrases.
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GRU GRU GRU GRU

GRU GRU GRU GRU

The wine list is

Figure 1: Illustration of the RNN sequence la-
beling model. The dashed boxes represent the
character-level word embeddings that are only
present in the character-enhanced model.

quantify the impact of these embeddings, we com-
pare it to a baseline model that only uses word
level embeddings.

3.1 Baseline Model

The proposed baseline model is a recurrent neu-
ral network that receives a word sequence w =
{w1, . . . ,wn} as input features and predicts an
output sequence of IOB tags t = {t1, . . . , tn}.
Figure 1 illustrates the baseline neural network.

Formally, the word sequence is passed to a
word embedding layer that maps each word wi

to its dwrd-dimensional embedding vector xwrd
i

by means of an embedding matrix Wwrd ∈
Rdwrd×|V wrd|:

xwrd
i = Wwrdewi

where V wrd is the vocabulary of the word embed-
dings and ewi is a one-hot vector of size |V wrd|
representing the word wi.

The sequence of word embedding vectors is
passed to a bidirectional layer (Schuster and Pali-
wal, 1997) of Gated Recurrent Units (GRU, Cho
et al. (2014)). The GRU uses a combination of up-
date and reset gates to improve its ability to learn
long range information comparable to Long Short-
Term Memory cells (Chung et al., 2014). The

computation of a single GRU layer at timestep2

i is as follows:

zi = σ(Wzxi + Uzhi−1 + bz)
ri = σ(Wrxi + Urhi−1 + br)
hi = (1− zi)� hi−1 + zi � gi

gi = f(Whxi + Uh(ri � hi−1) + bh)

where xi is an element of a generic input sequence
and gi the computed output. zi is the update gate
and ri the forget gate, σ is the sigmoid activa-
tion function and f is a non-linearity for which
we chose the ELU (Clevert et al., 2016) activation
function.

The bidirectional GRU is a variant of the GRU
that processes the input sequence in forward and
backward direction. The hidden states of the for-
ward pass and the backward pass are concatenated
to produce a single hidden state sequence:

g = {[−→g 1 :←−g 1], . . . , [−→g n :←−g n]}
where −→g i and ←−g i are the hidden states for the
forward and backward GRU layer, respectively.
We choose the dimensionality of the parameters
of the word-level GRU layers such that −→g i,

←−g i ∈
Rrwrd/2, where rwrd is a hyperparameter of the
model.

The bidirectional connections allow the model
to include words appearing before and after each
timestep into the computation of the hidden states.
The resulting sequence of hidden states g presum-
ably incorporates the necessary context for each
word in its corresponding hidden state. In a last
step, each hidden state gi is projected to a proba-
bility distribution qi over all possible output tags,
namely I, O and B, using a standard feedforward
layer with a softmax activation function:

qi = softmax(Wtaggi + btag)

with Wtag ∈ Rdtag×rwrd
and btag ∈ Rdtag

. For
each word, we choose the tag with the highest
probability as the predicted IOB tag. The pre-
dicted tag sequence can be decoded into a set of
opinion term expressions using the IOB scheme in
reverse.

The trainable parameters of this model are
Wwrd, Wtag, btag, and the parameters of the
GRU Wh, Uh, bh, Wz , Uz , bz , Wr, Ur, br

(for both directions).
2Each word in the input sequence is considered a

timestep.
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GRU GRU GRU GRU

GRU GRU GRU GRU

w a i t e r

GRU GRU

GRU GRU

Figure 2: Illustration of the RNN character-level
word embedding model. The output of this sub
network is later concatenated with the regular
word embeddings.

3.2 Character-Enhanced Model
We propose a variation of the baseline model from
Section 3.1 that incorporates character-level infor-
mation in the process of opinion target extraction.
Our goal is to confirm the hypothesis that char-
acter information poses a valuable source of in-
formation for this task. Following previous work
in this direction, we incorporate the character in-
formation in the form of character-level word em-
beddings. Figure 2 illustrates the character-level
word model. Given the character sequence c =
{c1, . . . , cn} of a word w, we first transform each
character ci to its corresponding dchr-dimensional
character embedding xchr

i using a character em-
bedding matrix Wchr ∈ Rdchr×|V chr|:

xchr
i = Wchreci .

Analogously to the procedure for word embed-
dings, V chr is the character vocabulary and eci

is a one-hot vector of size |V chr| representing the
character ci. As before, the sequence of charac-
ter embeddings is passed through a bidirectional
GRU layer that produces two sequences of hidden
states, −→g and ←−g . We choose the dimensionality
of the parameters such that −→g i,

←−g i ∈ Rdchr
.

To represent the sequence of characters as a
fixed-sized vector, we concatenate the final hid-
den states3 of both sequences and obtain a single
representation g = [−→gn : ←−g1] for the character se-
quence. Lastly, the concatenated hidden state g is

3Note that the final hidden state of the backwards directed
GRU is the hidden state that corresponds to the first character
in the sequence.

transformed to the final character-level word em-
bedding using a linear feedforward layer:

xcw = Wcwg + bcw

with Wcw ∈ Rdchr×2·dchr
and bcw ∈ Rdchr

.
To incorporate the word model in the overall

neural network model, we pass the correspond-
ing character sequence of each word in w =
{w1, . . . ,wn} through the character model to
obtain xcw = {xcw

1 , . . . ,xcw}. The resulting
character-level embeddings are then concatenated
with the word level embeddings:

x̃ = {[xw
1 : xcw

1 ], . . . , [xw
n : xcw

n ]}
The augmented sequence x̃ replaces x in the base-
line model and is passed through the remaining
layers of the network. Since x̃ contains word and
character-level information, the subsequent RNN
and projection layers can make use of the addi-
tional information to improve the extraction of
opinion target expressions.

The trainable parameters of this model are
Ww,Wc,Wcw, bcw, Wtag, btag, and the param-
eters of the GRU Wh, Uh, bh, Wz , Uz , bz , Wr,
Ur, br for the word and character-level RNN (and
for both directions).

3.3 Network Training
The optimization of the model parameters is done
by minimizing the classification error for each
word in the sequence using the cross-entropy loss.
The optimization is carried out using a mini-batch
size of 5 with the stochastic optimization tech-
nique Adam (Kingma and Ba, 2015). We clip the
norm of the gradients to 5 and regularize our net-
work quite rigorously using L2 regularization of
10−5 on Wtag and Wcw, as well as Dropout (Sri-
vastava et al., 2014) in various positions in our net-
work. Specifically, we apply Dropout with a drop
probability of 0.5 to the character and word em-
beddings, the output of the character-level GRUs,
as well as the input and hidden sequence of the
word-level GRUs as proposed in (Gal and Ghahra-
mani, 2016). Initial experiments suggested that
this strong regularization is necessary due to the
moderate size of the training dataset. The net-
works are implemented using the machine learn-
ing framework Keras (Chollet, 2015).

The word embedding matrix Wwrd is initial-
ized with a pretrained matrix of skip-gram em-
beddings trained on a corpus of amazon reviews
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Dataset #Sent. #OTEs #Chars per OTE
Train 2000 1880 2 -80
Test 676 650 3-50

Table 1: Relevant statistics of the SemEval 2016
dataset (Task 5, restaurant domain).

(McAuley et al., 2015). Earlier work showed that
using a domain specific corpus in the pretraining
stage significantly improves performance for sim-
ilar tasks (Jebbara and Cimiano, 2016).

4 Experiments and Evaluation

In this section, we evaluate the impact of using
character-level word embeddings on the task of
extracting opinion target expressions from user-
generated reviews. For this, we compare the
character-enhanced model from Section 3.2 to the
baseline RNN of Section 3.1. We start by describ-
ing the used dataset in Section 4.1. To select a
fitting set of hyperparameters for each model, we
perform a 5-fold cross validation on the training
portion of our dataset. Using the best hyperpa-
rameters, we evaluate both models on the test por-
tion of the data and investigate the models’ proper-
ties with respect to the induced character informa-
tion in Sections 4.3 and 4.4. Evaluation is carried
out in terms of F1-score of expected opinion tar-
get expressions and retrieved opinion term expres-
sions using exact matches4. The research code is
publicly available at https://github.com/
sjebbara/clwe-ote.

4.1 Dataset

In our experiments, we use the data for the Se-
mEval aspect-based sentiment analysis challenge
of the year 2016 (Task 5, (Pontiki et al., 2016)).
The used dataset consists of review sentences from
the restaurant domain with annotations for opinion
target expressions. Table 1 gives a summary of the
dataset.

4.2 Hyperparameter Selection

We set the dimensionality dwrd of the pretrained
word embeddings to 100 and perform a grid search
on a subset of the hyperparameters to find a suit-
able solution to be used in the final system config-
uration. We evaluate each candidate set of hyper-
parameters using a 5-fold cross validation on the

4We use the provided evaluation code from the organizers
of the SemEval 2016 challenge.

Model |V wrd| rwrd dchr ∅ F1

word-only 50000 60 – 0.6713
char+word 50000 100 100 0.6936

Table 2: Results of a search for hyperparameters.
The column ∅ F1 gives the best mean F1-score for
the best performing training epoch across cross-
validation models.

training data. The search is performed for each
model (word-only and char+word). We ex-
periment with:

• the size of the word vocabulary5 |V wrd| ∈
{10000, 20000, 50000} (with respect to the
most frequent words),

• the size of the sentence level RNN hidden
layer rwrd ∈ {60, 100, 200},

• and the size of the character-level RNN and
the corresponding character-level word em-
bedding vector dchr ∈ {20, 50, 100}.

Table 2 shows the best hyperparameters for each
model. As expected, the search indicates that it is
always better to increase the size of the word vo-
cabulary V wrd. The best model using both word
and character-level information performs on aver-
age about 2.2 points F1-score better than the best
model that only uses word-level information. For
the following evaluations, we instantiate and train
our models according to these hyperparameters.

4.3 Results on Test

For the evaluation on the test set, we use the pre-
viously found hyperparameters and instantiate our
models. We train both models on 80% of the train-
ing set and use the remaining 20% as a validation
set for early stopping (Caruana et al., 2001). The
word-only model reaches its best performance
at epoch 35 and the char+word model peaks at
epoch 73.

The performances of both models are given in
Table 3. The results confirm our hypothesis and
the findings from the cross validation that the
character-level word embeddings offer a substan-
tial improvement (3.3 points F1-score ) over the
word-only baseline model.

5The size of the word vocabulary is the main factor in
terms of (GPU) memory usage.

163



0.04 0.02 0.00 0.02 0.04

0.100

0.075

0.050

0.025

0.000

0.025

0.050

0.075

-ing
-ize
-less
-able
-ish
-ly

(a) Character-level embeddings

0.3 0.2 0.1 0.0 0.1 0.2 0.3

0.3

0.2

0.1

0.0

0.1

0.2

-ing
-ize
-less
-able
-ish
-ly

(b) Word-level embeddings

Figure 3: Visualization of suffix information of the two employed types of embeddings.

Model F1-score
word-only 0.6260
char+word 0.6586

Table 3: Results on the test set for best perform-
ing hyperparameters. The previous findings of the
usefulness of character-level word embeddings are
confirmed by the results of the test set.

4.4 Analysis

In this Section, we investigate what the character-
level word embeddings encode and if there are
specific cases in which the character-enhanced
model performs better than the baseline.

Visualization Our initial experiments in visu-
alizing the learned model suggested that the
character-level word embeddings encode morpho-
logical features of a word. To confirm this as-
sumption, we visualize the learned embeddings
using suffix information. We extract a subset of
the 2000 most frequently occurring words from re-
views that end on one of the following suffixes:
-ing, -ly, -able, -ish, -less, -ize. We project the
character-level word embeddings of the words to a
2 dimensional space using T-SNE (van der Maaten
and Hinton, 2008) and plot them as a scatter plot.
By highlighting each word according to its suf-
fix, we see that the character-level embeddings
are grouped according to their suffixes (see Fig-
ure 3a). Performing the same procedure with the
regular skip-gram word embeddings results in no
clear separation between the 6 suffix groups (see
Figure 3b).

Previous work in the direction of aspect-based
sentiment analysis shows a positive impact of POS
tag features for the extraction of opinion phrases
and opinion target expressions (Toh and Wang,
2014; Jebbara and Cimiano, 2016). It stands to
reason if the character-level word embeddings act
in a similar way. The morphological information
of character-level word embeddings (as shown in
Figure 3a) might help to disambiguate word occur-
rences with respect to their linguistic function in
the sentence, similar to the positive effect of POS
tags for this task. We leave the verification of this
hypothesis for future work.

Out-of-Vocabulary Errors Next, we are inter-
ested in seeing if the improvement in F1-score can
be backtraced to Out-of-Vocabulary (OOV) word
errors. For this, we compute the F1-score on 3
different subsets of sentences for the word-only
model and the char+word model:

• no OOV: This subset only contains sen-
tences for which all words are part of the
known vocabulary.

• OOV sent.: This subset contains sentences
that contain an unknown word at some posi-
tion in the sentence.

• OOV op.: The subset of sentences that con-
tain at least one opinion target expression
with an unknown word.

Figure 4a shows F1-scores for different subsets.
Surprisingly, we can see that the F1-scores rise
and fall similarly for both models regardless of
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Figure 4: Illustration of performance differences for different subsets of sentences.

Word atmosphere restaurant service

Nearest Neighbors
atomosphere restaraunt customer

ambience eatery serivce
atmoshpere restuarant costumer

Table 4: Three commonly used words in restaurant reviews and their 3 nearest neighbors in the embed-
ding space. Often, misspelled versions (italic) of the original word are among its closest neighbors.

the evaluated subset. This suggests, that the pos-
itive influence of the character information does
not particularly help in those cases where the text
contains previously unseen words (e.g. misspelled
words). We assume that the positive impact on
these cases is mitigated since the domain specific
skip-gram word embeddings already contain var-
ious writing errors that frequently occur in cus-
tomer reviews. This can be seen in Table 4, which
shows the nearest neighbors of exemplary words
in the skip-gram embedding space. We see that
common writing mistakes are often already cap-
tured by the word embeddings.

Multi-Word Expressions Another possible
cause for the performance difference of both
models might be related to the length of opinion
target expressions6. This hypothesis is motivated
by the idea that e.g. variations in spelling with
respect to hyphenation (e.g. bartenders vs. bar
tenders or wait staff vs. wait-staff ) could have
less of an influence on the character-based model
than on the word-based model. To test this idea,
we consider subsets of sentences that contain at
least one OTE that is a multi-word expression of

6In terms of words.

more than or equal to k words. The performance
differences for k ∈ {2, 3, 4} are visualized in
Figure 4b.

The first thing to notice is that both models
are strongly affected by the length of the OTEs.
Longer expressions seem to be harder to extract in
general. However, we can observe that the charac-
ter model is influenced by the length of an OTE to
a lesser degree. While the difference in F1-score
for all sentences between the word-only model
and char+word model is about 3.3, the differ-
ences for OTEs composed of more than or equal
to 2, 3, and 4 words are 8.4, 6.1 and 10.4, respec-
tively.

5 Conclusion

There is a growing interest in character and
subword-level models for natural language pro-
cessing in recent years. Tokenization is a crucial
step for many applications, yet neglects the infor-
mation that can be gained from the character struc-
ture of a word itself.

In this work, we were able to show that
character-level information assists in the task of
opinion target extraction, an important step in
aspect-based sentiment analysis. We compared a
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model using only word-level features to a more
sophisticated model that also includes character-
level word embeddings. We showed that the
more complex character model consistently out-
performs the baseline model with a substantial
margin of 3.3 points F1-score. A visualization
of the learned embeddings revealed encoded mor-
phological regularities that we could not find in
our skip-gram word embeddings. Through exper-
iments on different subsets of the data, we linked
the positive influence of the character-level word
embeddings to the difficulty of extracting multi-
word expressions. We did not observe a perfor-
mance difference for Out-of-Vocabulary cases.

However, it is not entirely clear how exactly the
additional character information contributes to the
task of extracting opinion target expression. In
general, we suspect that the morphological infor-
mation of character-level word embeddings helps
to disambiguate word occurrences similarly to the
positive effect of POS tags for OTE extraction. A
confirmation of this hypothesis remains for future
work.

Another interesting direction for future work is
the pretraining of parts of the network to enrich
the character-based word representation. We be-
lieve that character-level language models pose an
interesting candidate for this.

The positive results of this work and the remain-
ing research questions suggest a need to focus fur-
ther research effort in the direction of character-
level neural network models in order to improve
token-based approaches or even replace the need
for tokenization altogether.
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Gülçehre, Dzmitry Bahdanau, Fethi Bougares, Hol-

ger Schwenk, and Yoshua Bengio. 2014. Learning
phrase representations using rnn encoder–decoder
for statistical machine translation. In Proceedings of
the 2014 Conference on Empirical Methods in Nat-
ural Language Processing (EMNLP). Association
for Computational Linguistics, Doha, Qatar, pages
1724–1734.

Francois Chollet. 2015. Keras -theano-based deep
learning library. https://github.com/fchollet/keras.
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