
Evaluating an Automata Approach to Query Containment

Michael Minock
KTH Royal Institute of Technology, Stockholm, Sweden

Umeå University, Umeå, Sweden.
minock@kth.se, mjm@cs.umu.se

Abstract

Given two queries Qsuper and Qsub, query
containment is the problem of determining
if Qsub(D) ⊆ Qsuper(D) for all databases
D. This problem has long been explored,
but to our knowledge no one has empiri-
cally evaluated a straightforward applica-
tion of finite state automata to the prob-
lem. We do so here, covering the case
of conjunctive queries with limited set
conditions. We evaluate an implementa-
tion of our approach against straightfor-
ward implementations of both the canon-
ical database and theorem proving ap-
proaches. Our implementation outper-
forms theorem proving on a natural lan-
guage interface corpus over a photo/video
domain. It also outperforms the canoni-
cal database implementation on single re-
lation queries with large set conditions.

1 Introduction

Given the queriesQsuper andQsub, query contain-
ment is the problem of determining if Qsub(D) ⊆
Qsuper(D) for all databases D. Not only interest-
ing in itself, the problem is of practical importance
in query optimization, data integration (Ullman,
2000) and, of note here, in natural language gen-
eration (Shieber, 1993), dialogue (Bos and Oka,
2002) and understanding (Minock, 2017).

Over time, increasingly complex cases of the
problem have been solved: relational conjunc-
tive queries (Chandra and Merlin, 1977); con-
junctive queries with arithmetic comparisons over
dense domains (Klug, 1988); negation of sub-
goals (Levy, 1999). More recent work1 has looked

1The problem has also been addressed in semi-structured
query languages (Baumgartner et al., 2005; Björklund et al.,
2011) and in description logics (Baader et al., 2009). Still the
focus here is on query containment for relational databases.

at the problem for queries with aggregate opera-
tors (see the survey (Cohen, 2005)). Remarkably,
the decidability of the problem remains open for
queries under bag semantics (Afrati et al., 2010).

A typical approach to solving query contain-
ment is to generate a canonical database D′ that
represents Qsub and then to evaluate Qsuper(D

′).
If the answer to Qsub within D′ is within
Qsuper(D

′), then Qsuper contains Qsub (see (Ull-
man, 2000)). Another approach to solve the prob-
lem is via theorem proving. If φ is the translation
of Qsuper to a first order formula free over the an-
swer variables of Qsuper, and likewise ϕ for Qsub,
then, assuming that the queries are compatible (i.e.
free(φ) = free(ϕ)), ¬SAT(∃free(φ)(¬φ ∧ ϕ)) if
and only if Qsuper contains Qsub. A third ap-
proach, and what we look at here, is to use reduce
query containment to determining the if a finite
state automaton recognizes the empty language.
Here we present, implement, and empirically eval-
uate such an approach. We compare performance
against a canonical database and theorem prov-
ing implementation over a photo/video querying
corpus. We also conduct several special scalabil-
ity tests for queries with many predicates over the
same relation and queries with large set conditions
over a single relation.

2 Preliminaries

As is common, we present queries here in DATA-
LOG, with which we assume the reader is familiar
(see (Ullman, 1988)). As a quick refresher, under
the database state and queries of Figure 1, the an-
swer to Q1 is {(h), (i)} and the answer to Q2
is {(h)}. In fact no matter what the state of the
database is, answers of Q2 are always contained
in the answers of Q1. Likewise, Q3 contains Q1.

Before continuing, it is worth giving example
runs of the canonical database and theorem prov-

75

Proceedings of the 13th International Conference on Finite State Methods and Natural Language Processing, pages 75–79,
Umeå, Sweden, 4–6 September 2017. c© 2017 Association for Computational Linguistics

https://doi.org/10.18653/v1/W17-4010

https://doi.org/10.18653/v1/W17-4010


R(A, B, C) S(D, E) T(F G)
h i j h r
i k l i b
j m n j b

k r

Q1(X) :- R(X,Y,Z), S(Y,P)
Q2(X) :- R(X,Y,Z), S(Y,’b’), S(Z,’b’)
Q3(X) :- R(X,Y,Z)

Figure 1: Example database state and queries.

ing approaches for deciding whether Q1 contains
Q2. Under the canonical database approach, each
variable in Qsub (i.e. Q2) generates a fresh con-
stant (we use the natural numbers). Predicates in
the body of the conjunctive query Qsub are frozen
with these constants and generate tuples in the
canonical database. Thus the canonical database
state for Q2 is {R(1,2,3),S(2,’b’),S(3,’b’)}

with the frozen answer being {(1)}. It is easy to
verify that Q1 evaluated over this database state,
generates the frozen answer and thus Q1 contains
Q2. In the theorem proving approach, the sentence
sent to the SAT solver is (∃x)(¬(∃y, z, p)(R(x, y, z)∧
S(y, p))∧(∃y, z, p1, p2)(R(x, y, z)∧S(y, p1)∧S(y, p2)∧
p1 = ′b′ ∧ p2 = ′b′)). We now turn to our finite state
automata approach.

3 An Automata-based Approach

The approach we develop here is quite straight-
forward. In short, for a query Q, we build the
automaton MQ which recognizes the language
of database state encodings which generate non-
empty answers to Q. Given the closure proper-
ties of regular languages, the query containment
problem reduces to determining if L(MQsuper) ∩
L(MQsub

) is empty.
Under simple runs of building MQ, the result-

ing automaton is linear with a single final state.
More complex runs require branching over vari-
able settings, resulting in a tree shaped automaton
with multiple final states. In general post process-
ing is required to bypass parts of the automaton for
which a witnessing tuple have already been con-
sumed. Finally an assumption that tuples appear
in a fixed lexicographic order compresses the au-
tomaton. The remainder of the section presents
our approach in greater detail.

3.1 Encoding Database States
By way of example, the database state in Figure
1 is encoded as hij_ikl_jmn_#hr_ib_jb_kr_##.
We are using the symbol _ to close off tuples and

the symbol # to close off relation states. An en-
coding scheme orders a finite set of relations (and
their attributes) and specifies which constants may
appear under which attributes.

3.2 Fixing a Minimal Encoding Scheme

When deciding if Qsuper contains Qsub, we fix
a minimal encoding scheme that covers both
queries. First we collect the relations used in the
bodies of both queries and, for efficiency, truncate
these relations to include only the attributes used
in join conditions, simple conditions or the head
of a query. For example, in the containment prob-
lem determining if Q3 contains Q1, R is truncated
down to two attributes. Given this we then deter-
mine an arbitrary ordering over the truncated rela-
tions. To add constants under variables, reminis-
cent of the canonical database approach, variables
and constants ofQsub are frozen and added as con-
stants (e.g. X becomes ’x’, and ’b’ remains ’b’)
under their corresponding attributes.

For example, for the problem if Q1 contains Q2,
we collect the database relations R and S. Neither
may be truncated. Arbitrarily we determine the
relation ordering to be [R,S]. The constants under
the attributes are ’x’ under A, ’y’ under B, ’z’
under C, ’y’ and ’z’ under D and ’b’ under E.

3.3 Building the Automaton MQ

Given a query Q and an encoding scheme, we
truncate and sort the predicates in the body of Q
based on the encoding scheme. We then walk the
new truncated/sorted query body from left to right
constructing an automaton as we go. For each
relation in the encoding, we construct what we
term a relation gobbler. These relation gobblers
consume associated relations in the input database
state expression. They are chained together using
a transition on the symbol # from the last state of
one gobbler to the first state of the next.

In the normal case, in which the relation appears
in a predicate in the truncated/sorted query body,
the relation gobbler consists of what we term a tu-
ple gobbler, followed by a witness gobbler, fol-
lowed by a tuple gobbler. Tuple gobblers non-
deterministically consume irrelevant tuples. The
witness gobbler recognizes a tuple that matches
the current query predicate. In the case in which
the relation name does not appear in a predicate
of the truncated/sorted query2, the relation gobbler

2This occurs because the relation name does appear in a

76



Figure 2: A NFA that recognizes a language that includes all encoded database states which generate
answers to Q2 under the example encoding of 3.2, and no database state that does not generate answers.

consists of just a tuple gobbler. A special case oc-
curs with predicates over the same relation name
in a query. The relation gobbler for such cases is a
chained sequence of tuple-witness-tuple gobblers.

The exact algorithm of this construction method
is omitted here, but it is achieved via a fairly
simple recursive function. Once the base case is
reached, all the relations in the encoding have been
treated and a final state after the last # is marked as
accepting. The automaton in Figure 2 recognizes
database states yielding answers to Q2 under the
example encoding scheme in section 3.2. It con-
sists of two relation gobblers, where the tuple gob-
blers are highlighted in the first and the witness
gobbler in the second. Note that this automaton
did not branch because there is only one constant
under Y and only one constant under Z.

3.3.1 Branching on Variable Assignments
As we scan the predicates of the query body, a
query variable may be bound to more than one
constant. In such cases we branch the automa-
ton to the alternative possibilities. For example,
consider the encoding scheme of section 3.2, but
with the relation ordering [S,R]. The automaton
in Figure 3 shows the automaton (tuple gobblers
are not expanded for reasons of space) that recog-
nizes answers to Q2 under this alternative encod-
ing scheme. This requires branching3.

3.3.2 Witnesses over Multiple Predicates
When queries are self-joining (i.e. two or more
predicates are over the same relation in the query
body), the same tuple might need to serve as
a witness in more than one witness gobbler.
For example, consider the somewhat contrived
Q4(X) :- R(X,Y,Z),R(X,Y,Z). Clearly this is

predicate of the other query in the containment problem.
3In this particular case only one of the branches ultimately

succeeds due to possible constants under attributes, but in
general such branching can lead to multiple final states.

equivalent to Q3(X). This is handled by walk-
ing the tree shaped (or linear) automaton, keeping
track of which witnesses have been used so far.
Any predicate gobbler that is already witnessed is
bypassed and removed.

3.3.3 Ordered Database State Assumption
The arbitrary order in which witnesses might ap-
pear requires quite deep trees many of which
check the same cases. We may invoke an assump-
tion that witnesses may only appear in some given
ordering in database states and easily enforce this
in the recursive automata shortening routine of
section 3.3.2. As will be shown, this can lead to
considerable performance improvement.

3.4 The Containment Test

Given that the automaton for bothQsuper andQsub

are constructed over the same encoding scheme,
we may construct an automaton that recognizes
L(MQsuper) ∩ L(MQsub

) which is empty when
Qsuper contains Qsub.

4 Evaluation

Our approach (FSA) is implemented in Python
and for most of its automata routines it uses
PADS, a library of Python Algorithms and Data
Structures implemented by David Eppstein of the
University of California, Irvine. Although not de-
scribed above, we extended FSA to handle lim-
ited set conditions. The current set conditions sup-
ported are set conditions on non-joining attributes
over relations that appear in only one predicate of a
query. We have also implemented Python versions
of the canonical database (CDB) and the theorem
proving (TP) approaches. The database system
used in CDB is SQLITE running in main mem-
ory; performance deteriorates by several orders of
magnitude if the database must be written to disk.
Our CDB implementation is extended to set con-

77



Figure 3: A NFA that recognizes Q2 under the relation ordering [S,R].

Approach Avg Max Min
CDB 0.3 1.5 0.1
TP 11.3 33.8 7.6
FSA 1.9 23.6 0.1

Table 1: Results over photo/video corpus (ms)

ditions by converting queries using set conditions
into unions of (non-set) conjunctive queries. Each
simple non set query in the conjunction is frozen
and inserted into the same database state rather
than the less efficient technique of building sep-
arate canonical databases for each combination.
For TP, we use PROVER9.

We evaluate all three implementations us-
ing a corpus of natural language queries over
a photo/video domain (available at sites.
google.com/view/nli-corpora/). The
corpus consists of a schema and a set of 100 natu-
ral language questions (e.g. “give photos of Alice
with Bob in London in 2016”.) paired with cor-
responding SQL queries. The portion of the cor-
pus that we run our evaluation over are 27 queries
over the Picture table restricted to conjunctive
queries with simple and limited set conditions.
Obviously CDB, TP and FSA each return the same
containment determinations. Table 1 gives perfor-
mance results over the 27× 27 = 729 problems.

We also run a series of scalability tests to deter-
mine performance over long queries with multiple
predicates over the same relation and queries with
large set conditions on a single relation. To moti-
vate, consider applications where arbitrary knowl-
edge, constraints or complex view definitions are
added to the query containment problem. Also
consider cases where common names denote large
sets or contexts sets are represented. To get in-
sight into such cases, we measure performance of

Approach Case 1 Case 2 Case 3
CDB 1.0 0.6 1703
TP 62009 64.3 56235
FSA 0.9 294.9 222

Table 2: Results for special cases (ms)

long queries over a single edge relation (case 1,2)
and over large set conditions (case 3). Specifically
the first case is exactly example one in (Chandra
and Merlin, 1977) which gives a contrived query
which, through reasoning, can be radically simpli-
fied. The second case, also derived from the same
article, is based on reducing graph colorability of
graph rings of length 9 and 10 are 2-colorable
(False for 9, True for 10). Finally our third
case is over a single relation of 5 attributes, where
queries have set conditions over these attributes
with between 7 and 14 distinct values. Table 2
shows results for these scalability tests.

In summary FSA performs reasonably well on
the photo/video corpus and, in the case of large
sets it performs better than CDB. TP performs
the worst on the photo/video corpus and is dan-
gerously vulnerable to blow up on the scalability
cases 1 and 3. We view scalability case 1 as a hap-
hazard case in which many predicates may be sat-
isfied by the same witness. Case 2 is a purposeful
case in which an NP-Complete problem is being
constructed and separate witnesses are matched to
each predicate. FSA does the poorest under case
2 and even worse (561 ms) if we remove the opti-
mization of section 3.3.3. That said, we posit that
case 1 is much more likely to fit real world prob-
lems in which database constraints and view defi-
nitions are added to containment problems. Thus
we are not alarmed by FSA’s relative weakness on
case 2.

78

sites.google.com/view/nli-corpora/
sites.google.com/view/nli-corpora/


5 Discussion

It has long been recognized that natural language
questions over databases require quite advanced
semantics, going well beyond the simple con-
junctive query case (Copestake and Jones, 1990).
While we cover queries that use simple set con-
ditions, enabling us to represent and/or ambigu-
ities (e.g. “photos of Alice and Bob”), we still
do not yet cover questions expressing point in-
equalities (e.g. ‘‘photos of Alice not taken on June
1,2017”), sub-goal negation (e.g. “photos of Al-
ice without Bob”), superlatives (e.g. “latest photo
of Alice with Bob”, cardinality conditions (e.g.
“who appears in the most pictures?”) or non-
recursive DATALOG with negated sub-goals (e.g.
“is Bob in every picture in London in 2016?”, etc.
These and many other hard examples appear in our
photo/video corpus. Finally we need to integrate
key constraints (e.g. “every video is taken in some
location”, “no two distinct videos are stored in the
same file”) or knowledge into the containment de-
terminations (e.g. “Manhattan is in New York”).

As we extend FSA, it may yield insight into
these problems as well as performance advan-
tages. For example, sub-goal negation, in general,
requires the canonical database approach to con-
sider a combinatorial number of databases. Our
approach might only require special non-spoiler
gobblers linked to spoiler gobblers linked to a
dead-end states. Also we suspect that encoding
arithmetic constraints can be managed via branch-
ing over alternative variable orderings in our re-
cursive automaton construction method. Finally,
we speculate that our approach might be brought
to more powerful automata to capture containment
over ever more expressive query classes. It will be
interesting to see how far we can get.

6 Conclusions

This paper evaluated a finite state automata ap-
proach to determining relational query contain-
ment. For conjunctive queries with limited set
conditions the approach showed itself to be com-
petitive with canonical database and theorem
proving approaches. The approach still needs
to be formally proven correct, and, if there are
counterexamples, we must either extend the ap-
proach or develop natural assumptions to limit it
to correct cases. Either way, the approach has
been empirically validated under a fairly realis-
tic corpus as well as for several special scalabil-

ity tests. Future work will focus on extending the
approach to cover more and more of the examples
in our photo/video corpus (available at sites.
google.com/view/nli-corpora/).

Acknowledgments

Umeå University masters student David Hansson
built the initial CDB and TP implementations.

References
Foto Afrati, Matthew Damigos, and Manolis Gergat-

soulis. 2010. Query containment under bag and
bag-set semantics. Inf. Process. Lett., 110(10):360–
369.

Franz Baader, Ian Horrocks, and Ulrike Sattler. 2009.
Description logics. In Handbook on Ontologies,
pages 21–43.

Robert Baumgartner, Oliver Frölich, Georg Gottlob,
Marcus Herzog, and Peter Lehmann. 2005. Inte-
grating semi-structured data into business applica-
tions. In Professional Knowledge Management, WM
Kaiserslautern, Germany, pages 469–482.

Henrik Björklund, Wim Martens, and Thomas
Schwentick. 2011. Conjunctive query containment
over trees. J. Comput. Syst. Sci., 77(3):450–472.

Johan Bos and Tetsushi Oka. 2002. An inference-
based approach to dialogue system design. In COL-
ING Taipei, Taiwan, August 24 - September 1, 2002.

Ashok Chandra and Philip Merlin. 1977. Optimal
implementation of conjunctive queries in relational
databases. In Proc. of STOC, pages 77–90.

Sara Cohen. 2005. Containment of aggregate queries.
SIGMOD Record, 34(1):77–85.

Ann Copestake and Karen Sparck Jones. 1990. Nat-
ural language interfaces to databases. Knowledge
Eng. Review, 5(4):225–249.

Anthony Klug. 1988. On conjunctive queries contain-
ing inequalities. J. ACM, 35(1):146–160.

Alon Levy. 1999. Review - complexity of answering
queries using materialized views. ACM SIGMOD
Digital Review, 1.

Michael Minock. 2017. Cover: Covering the seman-
tically tractable question. In proceedings of EACL
(Software Demonstrations), Valencia, April.

Stuart Shieber. 1993. The problem of logical-
form equivalence. Computational Linguistics,
19(1):179–190.

Jeffrey Ullman. 1988. Principles of Database and
Knowledge-Base Systems. Computer Science Press.

Jeffrey Ullman. 2000. Information integration using
logical views. Theor. Comput. Sci., 239(2):189–210.

79

sites.google.com/view/nli-corpora/
sites.google.com/view/nli-corpora/

