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Abstract 

Explanations of solutions produced by reasoning 
systems in ever growing complexity become in-
creasingly interesting, which is particularly chal-
lenging in view of fundamental differences betw-
een human and machine representation and prob-
lem-solving methods. In this paper, we formulate 
requirements for conceptual representations that 
are adequate for producing human-oriented expla-
nations, and we discuss how some reasoning me-
chanisms can serve them or can possibly be adapt-
ed to do so. This examination is intended to state 
in what ways reasoning systems can potentially 
support explanation generation, and where techno-
logy-justified limitations have to be accepted.

1 Introduction 

Explanations justifying or questioning results pro-
duced by intelligent systems were always of interest, 
but this issue was rarely addressed in depth. Simple 
attempts with expert systems, although being one 
of the most explanation-friendly reasoning tech-
niques, produced unexpectedly poor results, mainly 
because of insufficient understanding of impacts of 
human expectations and inference capabilities in 
discourse. This situation motivated the ambitious 
approach to Explainable Expert Systems (EES) 
(Swartout, Smoliar, 1997). The idea is to treat 
explanation not as an „afterthought“ but to foresee 
possible extra demands of explanations by incor-
porating suitable „built-ins“ within the reasoning 
process. While this strategy turned out to be suc-
cessful for expert systems, it hardly looks pro-
mising for many other categories of reasoning sys-
tems where the discrepancy to human-like reason-
ing is considerably more pronounced.

An intellectual challenge has been mastered  re-
cently by a system that has beaten the human 
champion of Go in a match (Silver et al. 2016). 
The system applied deep neural network learning 
and searching on the basis of enormously large 

amount of data, that is, millions of games. While 
this is sufficient to outperform top level players in 
the purely performance-oriented task of a match, 
the system, similar to chess programs, cannot docu-
ment its behavior in human-relevant terms, because 
it does not have an explicit representation of most  
domain-relevant concepts, which form the basis for 
human-adequate explanations.  

Motivated by this gap between machine and 
human representation concepts, we formulate requi-
rements for conceptual representations that are ade-
quate for producing human-oriented explanations, 
and we discuss how some prominent reasoning me-
chanisms can serve them or can possibly be adapted 
to do so. Reasoning techniques referred to include 
rule-based representations, constraint-systems, deci-
sion trees, Bayesian networks and neural networks. 

This paper is organized as follows. We first inve-
stigate what is required for producing explanations 
that are likely to be meaningful and useful to hu-
mans, and we formulate a set of complementary 
requirements. Then we examine some major reas-
oning techniques from the perspective of how they 
can serve explanation-motivated requirements, and 
if there is a gap, how it can possibly be narrowed. 
We also briefly address issues of natural-language 
presentation. Finally, we discuss the state-of affairs 
and expected future developments.

2 Requirements for Explanations
In this section, we discuss what is needed to provide 
representations from which human-adequate expla-
nations can reasonably be generated with linguistic 
techniques. We focus on representations here 
because most linguistic presentation techniques 
needed to map these representations onto text are  
suitable for several genres of text. In addition, we 
devote a short section to specificities of expla-
nations, such as the role of implicit conveyance of 
information, towards the end of the paper.  
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2.1   Categories for Explanations

Explanations may come in a variety of forms serv-
ing in part quite complementary purposes, mostly 
depending on the task at hand: this may be some 
proof of evidence for a solution, investigating  con-
stellations that may qualify for a solution, inquiring 
rationals for classification or decision preferences. 
We distinguish five categories of explanations:

1. Exposition of the lines of reasoning
This kind of explanations addresses the adequate 
presentation of an inference chain, more general 
a tree or graph of inferences, be it in the context 
of a theorem prover, an expert system, or an ar-
gumentation framework. The purpose is to in-
crease confidence in results obtained by a system, 
which may be by verifying the overall course of 
solution, or by referring to essential ingredients.

2. Hypothetical inquiries
This kind of explanation is typically revelant for 
situations in which expectations or user beliefs 
are not met by solutions proposed by a system. 
Users may have interest in some specific constel-
lation which turned out to be inferior or unac-
ceptable, may be due to some small detail, or it 
may simply be unexplored. It is desirable for this 
kind of explanation to focus on essential reasons.

3. Justification for categorization
This kind of explanation refers to the ingredients 
that have contributed to a taxonomic decision. 
As with the previous category, focusing on essen-
tial factors rather than on completeness is of im-
portance here; thereby, possible reasons for mis-
conceptons may be met, which may have moti-
vated the explanatory request.

4. Decision preferences
This kind of explanation refers to a comparison 
between properties of an entity in question and 
its closest competitors in the decision, or some 
explicitly mentioned candidates. In terms of 
what is to be compared, a combination of the 
previous and the following category may apply. 

5. Issues of calculation
This component of explanation focuses on im-
pacts of quantitative properties and their depen-
dencies on the issue to be explained. A detailed 
exposition of all calculations is of minor import-
ance – simple ranges of numbers are preferable, 
including justification where they come from.

There are larger and richer catalogs of categories, 
but we think that we have captured the most prin-
cipled ones. One important category missing are 
meta-explanations, about problem-solving strate-
gies and their application, but this is a weakness of 
virtually all systems, since they do not have expli-
cit representations of how they are working.

2.2 Properties of Human-Adequate Explanations

In order for representations to be suitable for expla-
nations we think some criteria are indispensible:

1 Focused content
For an explanation to be useful, its content must 
be to the point of the purpose of the explanatory 
request. It is of little help if the content is some-
how related to what is expected as an explana-
tion. If the reasoning mechanism does not enable 
building an adequate response specification, we 
feel it is better to provide partial or incomplete 
information or evidence that may be not optimal. 

2 Vocabulary used
The content provided should be expressed in 
terms the audience is familiar with. By this requi-
rement, we do not mean a difference between 
expert and novice terminology, which can be 
bridged by natural language generation techniques, 
at least to some degree. The requirement address-
es those cases where the problem-solving tech-
nique used by machines is fundamentally different 
from human approaches – human domain con-
cepts are not used and may not easily be identifi-
able if at all within the machines' approach.

3 Granularity
The content of an explanation should be express-
ed in an adequate level of detail. If it is too 
detailed, an overall explanation may be longish 
and perceived as boring, and may even get incom-
prehensible. If it does not contain enough details, 
it may not be of use due to limited information. 

3 Examining Explanation Potentials for 
Problem-Solving Techniques

In this section, we discuss to what extent the criteria 
elaborated in the previous subsection can be met by 
some major reasoning techniques, and we discuss 
measures to increase coverage and quality.

3.1 Systems with Rule-like Representations
This category comprises expert systems, automated 
theorem provers, and argumentation frameworks. 
These systems can serve the content of explana-
tions for exposition of the lines of reasoning rather 
well. Similarly, the vocabulary and level of granu-
larity is widely in accordance with human reasoning, 
except to automated theorem provers. They almost 
exclusively operate on the detailed resolution 
calculus, where the connection to the originally spe-
cified mathematical axioms, which constitute the 
basic vocabulary in this domain, gets widely lost. 
Fortunately, there are automated transformation 
procedures which can lift the proof representation 
to the more abstract assertion level (Huang, 1994). 
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An exception are cognitively involved inference 
patterns, such as modus tollens and disjunction eli-
mination – several of these are composed into an 
assertion level step – a decomposition into natural 
deduction level steps is advisable (Horacek 1998, 
1999, 2007). Some domain rules in expert systems 
may be associated with annotations that express 
their justification, much in the style of EES. 
Explanations on a higher level of granularity, such 
as as proof sketches and proof ideas are essentially 
unexplored. Skeletons of proofs plans may be adap-
ted for this purpose, but such approaches are rare.

3.2 Constraint Systems
For this category of systems, the suitability for ex-
planations appears to be rather good, at first sight. 
For typical applications, constraints themselves are 
expressed on a level corresponding to human views, 
so that vocabulary and granularity can be expected 
to be on a suitable level. May be, there are higher-
level conceptions which correspond to a set or 
some composition of several constraints, so that 
addressing the more abstract view requires some 
transformation process to take place, possibly on 
demand by a specific explanatory request. Potential 
problems with explanations become only clearer 
when explanatory requests and information pro-
duced by the problem-solving techniques are put in 
relation to one another. Requests for justifying a 
solution are not of major interest for constraint 
systems; the simple explanation is just a message 
indicating that all constraints are fulfilled for the 
solution proposed. More informative messages 
would selectively list those constraints which are 
barely fulfilled, for constraints which involve a 
numerical comparison. In addition, a meta-expla-
nation about the portion of the search space ex-
plored and the degree to which optimality is appro-
ached may be suitable, in case the system is set up 
in a way so that search is stopped when a solution 
with satisfactory quality is foumd. However, des-
cribing the search space in terms of which portions 
are still unexplored may be quite demanding.
 Another category of explanations suitable for 
problems addressed by constraints systems are 
hypothetical inquiries. In a design problem, several 
inquiries may refer to partial constellations which 
the designer might expect or prefer to be part of a 
solution, but the system results show different com-
binations. In an explanation the reasons might be 
some violated set of constraints, but this informa-
tion might not necessarily be complete or best. For 
excluding some combination of values from being a 
solution, a single constraint responsible for that is 
sufficient – in the search, every effort is made to 
exclude as much as possible on as little information 
as available. Hence, in order to obtain a more com-

plete and focused view, checking and evaluating 
additional constraints for explanatory purposes only 
might prove suitable. An extreme approach for this 
purpose is described in (Horacek, 1992), which at-
tempts to establishes dominances among sets of 
constraints, much in the style of Berliner (1979, 
1982), but it requires full exploration of the search 
space. Altogether, explanations for constraint sys-
tems appear reasonably doable, but the content qua-
lity may not always be as desirable, and additional 
computation effort is required to address this issue.

3.3 Decision Trees
This problem-solving method  is mostly suitable for 
obtaining categorizations or preferences between 
choices of some sort. Similar to constraint systems, 
(good) reasons for a possibly unexpected catego-
rization, thus, a hypothetical solution are typical of 
interest. Conversely,  major reasons for the catego-
rization obtained are much more sensible here than 
a similar explanatory request in the conext of con-
straint systems. Structurally, the content of an ex-
planation for a hypothetical solution is a descrip-
tion of the expressions of one of the choice points 
where the path to the category inquired is missed. 
Conversely, a complete description addressing a 
request for the categorization obtained comprises 
the expressions associated with all choice points on 
the path to that categorization. More focused ex-
planations may choose a suitable one among the 
choice points in the first case and they may be 
selective in concentrating on conceptually more 
important ones in the second case.

In contrast to the previous two system catego-
ries, presenting the content of explanations may 
prove to be problematic here, since the expressions 
associated with the choice points may be quite 
complex, typically not corresponding to domain 
concepts meaningful to humans, since the overall 
tree structure is motivated by the goal of obtained a 
mostly balanced tree. Consequently, there is a seri-
ous problem in the vocabulary discrepancy between 
the components of decision trees and human do-
main conceptions. We are aware of only a single at-
tempt to bridge this gap: in the domain of elemen-
tary chess pawn endings (king plus pawn versus 
king), decision trees were built to discriminate won 
from drawn positions (Michalski, Negri 1977). The 
tree learned on the basis of the board data only was 
compact, but its form was felt obscure by human 
players. When the building of choice point was 
biased by some force to use domain concepts, such 
as pawn square, king opposition, etc., the tree learn-
ed was structurally less optimal, but much better un-
derstandable to humans in terms of the discrimina-
tions made. This is a good example for explanations 
being a built-in, though in a different way as in EES.
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--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

  Reasoning method           Weakness Measures
Rules Granularity Transformations
Constraints Content, in part Extra searching
Decision trees Vocabulary Biasing vocabulary
Bayesian networks Role of numbers Quantitative versions
Neural networks. Content (+others) Sensitivity analysis

-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- 
 

Table 1. Reasoning methods, their weak points in 
explanation, some measures against. 

3.4   Bayesian Networks

In this category of systems, explanations may add-
ress generic or individual requests to the network. 
Generic requests concern the topology of the net-
work, which comprises dependencies, justifications, 
and probabilities, possibly extended by annotations 
in the style of EES (e.g., giving sources or other de-
tails about the probabilities). Altogether, this is a 
presentation task pretty much on the lines of docu-
menting rules, augmented by references to and des-
criptions of probabilities. Individual requests can be 
dealt with in more details. As far as the dependency 
of events is concerned, this amounts to a compo-
sition of rules, possibly in a tree. The extra com-
ponent is the reference to and documentation of 
the probabilities associated with events and coocur-
rences of events. Merely listing the numerical data 
and the results of calculations is not difficult, but in 
some cases at least, there may be a better voca-
bulary in terms of qualitative assessments, as ap-
proximations. Such an approach has been under-
taken in the context of argumentative presenta-
tions in natural language (Carenini, Moore, 2006), 
where the natural language descriptions were pre-
ferred by users to the precise graphical displays. 

3.5 Neural Networks
This is clearly the most explanation-resistant tech-
nique described in this section. Its performance-ori-
ented strength loses in explanation-related terms, 
since the important intermediate levels are not 
anywhere near a conceptual interpretation. Thus, 
the mathematical aspect is dominating, so that the 
architectural inspiration by the human brain some-
how stops half way - the network learns how to 
perform, but does not produce explicit conceptions 
in the resulting representation. Consequently, there 
is virtually nothing that provides a basis for an ex-
planation, only input and output data being on a 
level accessible to humans. Some more options are 
available for networks with a specific topology, 
such as gated networks (Zhao et al. 2017), where 
activations at intermediate levels can be visualized; 
but this techniques is probably suitable for a specific 
set of tasks only. What is remaining would be re-
runs with similar related data, to find out essential 

differences on some experimental basis. In addition, 
value differences between alternative output items 
could be used to refer to close competitors, e.g., 
near misses. However, how to orchestrate a reason-
able set of recomputations effectively is ambitious.

A summmary of the reasoning techniques dis-
cussed, in terms of major weaknesses and meaures to 
potentially overcome them is given in Table 1 

4 Presentation Methods
Explanation presentation needs good sentence plan-
ning, including aggregation (Di Eugenio et al. 2005), 
and argumentation organization (Carenini, Moore, 
2006). In addition, having a good command of ex-
plicitness and implicitness in presentation is of great 
importance in this genre (Horacek 1998, 2007), 
even more prominently in varions versions of the 
Digital Aristotle (Porter, 2007). Note that delibera-
tely leaving portions of the content specification 
implicit is fundamentally different from selectivity 
in building content specifications: the latter means 
that they are not to be conveyed to the user, where-
as the former is justified by the expectation that the 
audience is able to infer the content left implicit.

By and large, constellatons for leaving parts of 
content specification implicit are fairly well under-
stood at a local level, such as the preference of mo-
dus brevis to fully exposed modus ponens presenta-
tions, straightforward taxonomic and action infer-
ences, and expansion of known and mastered defi-
nitions. However, orchestrating the combination of 
several such constellations in a contextually ade-
quate manner is still a widely unanswered question.

5 Conclusion and Discussion

In this paper, we have advocated in favor of neces-
sary properties of representations that are suitable 
for specifics of explanations: the content, the voca-
bulary, and the level of granularity. We have 
discussed how these requirements are met or not met 
by some prominent reasoning mechanisms, We also 
have referred to measures already addressed and we 
have sketched some more ways to overcome exist-
ing discrepancies. Measures range from built-in 
methods to extra computations invoked by explana-
tory requests; they include transformation and en-
hancement of representations, and extra computa-
tions for parts not contributing to a solution.

Approaches to explanation require capabilities in 
several fields, such as automated theorem proving 
and NLP, which few researchers can cover. Never-
theless, increasing success and use of reasoning faci-
lities will require a better documentation of their ca-
pabilities, especially for users who are sceptical 
towards machine-generated problem solutions.
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