
Proceedings of The 10th International Natural Language Generation conference, pages 218–222,
Santiago de Compostela, Spain, September 4-7 2017. c©2017 Association for Computational Linguistics

Realization of long sentences using chunking

Ewa Muszyńska
Computer Laboratory

University of Cambridge
emm68@cam.ac.uk

Ann Copestake
Computer Laboratory

University of Cambridge
aac10@cam.ac.uk

Abstract

We propose sentence chunking as a way to re-
duce the time and memory costs of realization
of long sentences. During chunking we di-
vide the semantic representation of a sentence
into smaller components which can be pro-
cessed and recombined without loss of infor-
mation. Our meaning representation of choice
is Dependency Minimal Recursion Semantics
(DMRS). We show that realizing chunks of a
sentence and combining the results of such re-
alizations increases the coverage for long sen-
tences, significantly reduces the resources re-
quired and does not affect the quality of the
realization.

1 Introduction

Surface realization, or generation, is a task of pro-
ducing sentences from a representation. Realiza-
tion can be thought of as the inverse of parsing and
constraint-based approaches, implemented, for in-
stance, using chart algorithms, make it possible to
use the same reversible grammar for both parsing
and realization.

Large semantic representations present a chal-
lenge to generators. In the worst-case scenario chart
generation has exponential complexity with respect
to the size of the representation, although the al-
gorithm can be modified to improve the perfor-
mance (Carroll et al., 1999; White, 2004).

In this paper we propose chunking (Muszyńska,
2016) as a way to reduce memory and time cost
of realization. The general idea of chunking is that
strings and semantic representations can be divided

into smaller parts which can be processed indepen-
dently and then recombined without a loss of in-
formation. For realization we chunk input seman-
tic representations. There may be multiple chunk-
ing points in one sentence. Here we show that the
efficient realization of a full sentence is possible
through a principled composition of realizations of
the chunks.

We show that the technique noticeably reduces the
cost of realization and in some cases it allows for re-
alization where no result was found using the stan-
dard approach. This effect is achieved without sig-
nificantly degrading realization quality.

2 DELPH-IN framework

The semantic representation we use in our experi-
ments is Dependency Minimal Recursion Semantics
(DMRS) (Copestake, 2009), developed as part of the
DELPH-IN initiative1, together with several wide-
coverage HPSG-based grammars, notably the En-
glish Resource Grammar (ERG) (Flickinger, 2000;
Flickinger et al., 2014). The ERG is a broad-
coverage, symbolic, bidirectional grammar of En-
glish. The DELPH-IN realization systems have been
used successfully in a number of applications, such
as question generation (Yao et al., 2012), paraphras-
ing logic forms for teaching purposes (Flickinger,
2016) and abstractive summarisation (Fang et al.,
2016).

An example of a DMRS graph is shown in Fig. 1.
Nodes correspond to predicates, edges (links) repre-
sent relations between them. It is inter-convertible

1Deep Linguistic Processing with HPSG, www.
delph-in.net

218



with Minimal Recursion Semantics (MRS) for-
mat (Copestake et al., 2005).

DMRS graphs can be manipulated using two ex-
isting Python libraries. The pyDelphin library2

is a more general MRS-dedicated library which we
use for conversions between MRS and DMRS. The
pydmrs library3 (Copestake et al., 2016) is dedi-
cated solely to DMRS.

In these experiments, we work with DMRS
graphs which are the output of parsing with the
1214 version of the ERG. The realizer we use,
ACE4, is one of the processors designed to work
with DELPH-IN grammars. It is a more efficient
re-implementation of the chart parser and genera-
tor of the LKB (Carroll et al., 1999; Copestake,
2002; Flickinger, 2016). Parsing and realization re-
sults are ranked by a maximum entropy language
model (Velldal, 2008).

In this paper we refer to the realization using de-
fault ACE settings as the standard realization. We
introduce two adjustments to this set-up: a fixed
time-out of 30s after which a realization attempt is
abandoned even if it did not produce a result, and a
mechanism to deal with unknown words. The time-
out chosen is quite high and does not affect most
realizations.

The ACE generator does not currently have a
mechanism to cope with unknown predicates, i.e.
predicates which do not appear in the grammar’s lex-
icon. They can be parsed, however, and assigned
a part-of-speech tag. Based on this information,
we substitute each unknown predicate with a known
predicate with the same part-of-speech tag before
the semantic representation is input to the genera-
tor. Afterwards, the known surface form of the sub-
stitute predicate is replaced in the realization string
with the surface form of the original unknown pred-
icate (Horvat, 2017).

We retrieve all possible realizations for the given
semantic representation together with their ranking
scores. We also note the amount of memory and
time needed for the realization, and the number of
edges produced in the chart generation process.

2https://github.com/delph-in/pydelphin
3https://github.com/delph-in/pydmrs
4The Answer Constraint Engine 0.9.24, http:

//sweaglesw.org/linguistics/ace/, by Woodley
Packard.

We do not expect full realization coverage, even
though the generator uses the same grammar as the
parser which produced the representations. Some
lexical items, such as infinitival to, are semantically
empty according to the ERG analysis, i.e. they are
not assigned their own predicates (Carroll et al.,
1999). During realization with ERG/ACE, hand-
written rukes are used to signal that particular se-
mantically empty lexical items may be required.
Missing rules sometimes cause realization failure.

3 Realization with chunking

Realization from chunks consists of four phases. Af-
ter chunking a sentence (§ 3.1), we convert each
chunk into a well-formed DMRS, introducing small
place-holder graphs where necessary (§ 3.2). Dur-
ing the realization phase we generate from each of
the chunk DMRSs separately. Finally, we use the in-
formation about how chunks are related to combine
the chunk realizations into a full sentence realization
(§ 3.4).

3.1 Chunking

Here we use an approach to chunking based on
DMRS graphs. We chunk a semantic representa-
tion by dividing it into subgraphs, without access to
any information about the surface form of the rep-
resented sentence. The link structure of the DMRS
graph reveals appropriate chunk boundaries. Cur-
rently chunking is based on three grammatical con-
structions: clausal coordination, subordinating con-
junctions and clausal complements.

For each chunking decision, we identify a func-
tional chunk which plays the role of a trigger
for chunking, i.e. its presence indicates the chunk-
ing possibility. For example, if a semantic repre-
sentation contains a subordinating conjunction, it
can be chunked as shown in Fig. 1. A functional
chunk in this case consists of a single node with
since x subord predicate representing the sub-

ordinating lexeme. Each chunking decision also
identifies two clauses. In Fig. 1 they are simple main
and subordinate clauses, but in more complicated
sentences these clauses could contain further chunk-
ing triggers, forming a tree-like hierarchy of chunks.

219



Figure 1: A DMRS graph for the sentence Since Kim got a dog, she exercises more. Chunk boundaries are marked in red.

3.2 Substitution
Functional chunks are not well-formed DMRSs –
they typically consist of a single node. During
chunking we preserve information about severed
links between the chunks (trigger links, highlighted
in Fig. 1) and in the substitution phase we introduce
small pre-defined DMRSs at the end of the trigger
links, where we would originally find other chunks.
This ensures the well-formedness of the functional
chunk.

In the experiment we use two minimalistic sub-
stitution DMRSs corresponding to clauses It was
snowing and it was raining. Their DMRS graphs
consist of single nodes and have one possible real-
ization, which is important for the assembly phase.
For coordination and subordinating conjunction we
substitute both clauses and for clausal complements
we substitute the complement. The resulting DMRS
for the functional chunk of the example in Fig. 1
would consist of three nodes: since x subord,
snow v 1 at the end of the highlighted ARG1 link

and rain v 1 at the end of the ARG2 link.

3.3 Realization
In this phase we simply feed chunk DMRSs into the
ACE generator. In the case of functional chunks
these are the DMRSs obtained through substitution.
Collected data and realization settings are the same
as for the standard realization.

3.4 Surface assembly
After all possible realizations are collected for all
chunks, we replace realizations of the substitute
DMRSs with realizations of appropriate chunks.
Based on the chunk hierarchy preserved during
chunking, we know which chunk was originally at
the end of each trigger link and following this in-
formation we can assemble the full sentence recur-
sively.

Percentage Count
Both 40.6 128
Only chunking 17.5 55
Only full 8.9 28
Neither 33.0 104

Table 1: The percentage and absolute counts of examples for

which the standard realization and/or realization with chunking

were successful or not.

4 Dataset

We use the 1214 release of WeScience (Ytrestøl et
al., 2009), a fragment of a 2008 Wikipedia snapshot.
It is a part of the Redwoods treebank (Oepen et al.,
2004), so the analyses it contains are verified by hu-
mans as optimal for the original sentence.

Out of the entire dataset, we took 315 sentences
which have DMRSs with more than 40 nodes and
which can be chunked. There are on average 3.6
chunks per sentence (st. dev. 1.3, max. 12). We do
not have space to illustrate the sentences here, but
see tinyurl.com/y9ghd35x.

5 Coverage and performance

In the experiment we compare the results of the stan-
dard realization from a full sentence and realization
from a chunked sentence (Table 1).

Realization with chunking allowed realization
from some semantic graphs which do not produce
a sentence using the standard ACE set-up. The cov-
erage is about 9% higher overall. Some sentences
cannot be realized with the new method even though
the standard system works. This is because of the
presence of grammatical structures not covered by
the chunking algorithm, which lead to incorrect sub-
graphs. Limitations of the chunking algorithm are
discussed in detail elsewhere (Muszyńska, 2016).

We investigated the performance of the two ap-
proaches in terms of time and memory usage. Fig. 2

220



Figure 2: The time needed for realization with chunking

against the time taken by the standard realization.

shows CPU time for all examples where sentences
were successfully realized with both methods or
where the standard realization failed without a time-
out. The time measured for realization with chunk-
ing was the sum across all chunks. The maximum
time needed for realization with chunking was 16s.
The outliers in the upper half of the graph corre-
spond to sentences where the standard realization
failed or chunking was incorrect.

We also recorded the maximum memory used.
For space reasons, we do not show the graph but its
shape matches that for time, including the outliers.
The maximum number of passive edges produced in
chart generation also follows a similar pattern and is
consistently smaller for chunking than for the stan-
dard realization.

The ACE generator ranks its results with a maxi-
mum entropy language model and assigns a score to
each result. We assign a score to a result of realiza-
tion with chunking by adding logarithms of scores
of the constituent chunk realizations.

Following the original work on the ERG generator
by Velldal (2008), we evaluate the ranking quality by
comparing the top-ranked realization result with the
original sentence on which the semantic representa-
tion was based. We use two metrics: the exact match
percentage and the BLEU score.

We report an exact match in top n realizations if
the original and realized surface strings are identical
after removing capitalization and punctuation. Real-
ization with chunking yields comparable results for
all n for the examples where both methods produced
results (Fig 3). In fact, it slightly overtakes the stan-

Figure 3: Percentage of exact matches in top n realizations.

dard approach for n ≈ 40 as some lower ranked
realizations are produced only with chunking.

The BLEU score is evaluated only for the top
ranked realizations, again after removing punctua-
tion and capitalization. The average score for the
standard realization is 0.79 ± 0.14 (st. dev.), and
0.77 ± 0.15 (st. dev.) for realization with chunk-
ing. The standard approach achieved a higher score
for 17.1% examples, while realization with chunk-
ing scored higher for 12.4%. However, there is no
statistically significant difference between the two
approaches.

6 Conclusions

Chunking noticeably reduces the realization cost for
long sentences without affecting the quality of re-
sults. In fact, some sentences can be realized only
after applying chunking (given time-out). We ex-
pect that refinements in chunking will further im-
prove the realization coverage. In future we will also
investigate whether the chunking information can be
used to improve realization ranking.

Acknowledgements

The authors would like to thank Dan Flickinger
for helpful discussions and Matic Horvat for assis-
tance with resolving unknown words. The research
is funded by EPSRC Doctoral Research Studentship
(EP/M508007/1).

221



References
John Carroll, Ann Copestake, Dan Flickinger, and Vic-

tor Poznanski. 1999. An efficient chart generator for
(semi-)lexicalist grammars. In Proceedings of the 7th
European Workshop in Natural Language Generation
(ENLG), pages 86–95.

Ann Copestake, Dan Flickinger, Carl Pollard, and Ivan A.
Sag. 2005. Minimal Recursion Semantics: An in-
troduction. Research on Language and Computation,
3(2):281–332.

Ann Copestake, Guy Emerson, Michael Wayne Good-
man, Matic Horvat, Alexander Kuhnle, and Ewa
Muszyńska. 2016. Resources for building applica-
tions with Dependency Minimal Recursion Semantics.
In Proceedings of the Tenth Language Resources and
Evaluation Conference (LREC ’16).

Ann Copestake. 2002. Implementing typed feature struc-
ture grammars, volume 110 of CSLI Lecture Notes.
Center for the Study of Language and Information,
Stanford, CA.

Ann Copestake. 2009. Slacker semantics: Why superfi-
ciality, dependency and avoidance of commitment can
be the right way to go. In Proceedings of the 12th Con-
ference of the European Chapter of the ACL (EACL
2009), pages 1–9, Athens, Greece.

Yimai Fang, Haoyue Zhu, Ewa Muszyńska, Alexander
Kuhnle, and Simone Teufel. 2016. A proposition-
based abstractive summariser. In Proceedings of COL-
ING 2016, the 26th International Conference on Com-
putational Linguistics, pages 567–578, Osaka, Japan.

Dan Flickinger, Emily M. Bender, and Stephan Oepen.
2014. Towards an encyclopedia of compositional se-
mantics. Documenting the interface of the English Re-
source Grammar. In Proceedings of the Ninth Lan-
guage Resources and Evaluation Conference (LREC
’14), pages 875–881, Reykjavik, Iceland.

Dan Flickinger. 2000. On building a more efficient
grammar by exploiting types. Natural Language En-
gineering, 6(1):15–28.

Dan Flickinger. 2016. Generating English paraphrases
from logic. In Martijn Wieling, Martin Kroon, Gert-
jan Van Noord, and Gosse Bouma, editors, From Se-
mantics to Dialectometry, chapter 11. College Publi-
cations.

Matic Horvat. 2017. Hierarchical statistical semantic
translation and realization. Ph.D. thesis, University
of Cambridge, Computer Laboratory.

Ewa Muszyńska. 2016. Graph- and surface-level sen-
tence chunking. In Proceedings of the ACL 2016 Stu-
dent Research Workshop, pages 93–99, Berlin, Ger-
many.

Stephan Oepen, Dan Flickinger, Kristina Toutanova, and
Christopher D. Manning. 2004. LinGO Redwoods.

Research on Language and Computation, 2(4):575–
596.

Erik Velldal. 2008. Empirical Realization Ranking.
Ph.D. thesis, University of Oslo, Department of Infor-
matics.

Michael White. 2004. Reining in CCG chart realization.
In Anja Belz, Roger Evans, and Paul Piwek, editors,
Natural Language Generation. Lecture Notes in Com-
puter Science, volume 3123. Springer, Berlin, Heidel-
berg.

Xuchen Yao, Gosse Bouma, Yi Zhang, Paul Piwek, and
Kristy Elizabeth Boyer. 2012. Semantics-based ques-
tion generation and implementation. Dialogue and
Discourse, 3(2):11–42.

Gisle Ytrestøl, Dan Flickinger, and Stephan Oepen.
2009. Extracting and annotating Wikipedia sub-
domains - towards a new eScience community re-
source. In Proceedings of the Seventh International
Workshop on Treebanks and Linguistic Theories (TLT
7), pages 185–197, Groningen, The Netherlands.

222


