
Proceedings of The 10th International Natural Language Generation conference, pages 115–119,
Santiago de Compostela, Spain, September 4-7 2017. c©2017 Association for Computational Linguistics

The Code2Text Challenge: Text Generation in Source Code Libraries

Kyle Richardson†, Sina Zarrieß‡ and Jonas Kuhn†

†Institute for Natural Language Processing, University of Stuttgart, Germany
kyle@ims.uni-stuttgart.de

‡Dialogue Systems Group // CITEC, Bielefeld University, Germany
sina.zarriess@uni-bielefeld.de

Abstract

We propose a new shared task for tactical data-
to-text generation in the domain of source
code libraries. Specifically, we focus on text
generation of function descriptions from ex-
ample software projects. Data is drawn from
existing resources used for studying the re-
lated problem of semantic parser induction
(Richardson and Kuhn, 2017b; Richardson
and Kuhn, 2017a), and spans a wide variety of
both natural languages and programming lan-
guages. In this paper, we describe these ex-
isting resources, which will serve as training
and development data for the task, and discuss
plans for building new independent test sets.

1 Introduction

Source code libraries are collections of computer
programs/instructions expressed in a target pro-
gramming language that aim to solve some set of
problems. Within these libraries, the designers of the
code often use natural language to describe how var-
ious internal components work. For example, Fig-
ure 1.1 shows a docstring description (in red) for
the max function in the Java standard library, which
explains what the function does (i.e., Returns the
greater of), and the types of arguments that the func-
tion takes (i.e., two long values). Similarly, a related
function and its documentation for the Python pro-
gramming language is shown in Figure 1.2.

Given the tight coupling between such high-level
text and lower-level representations, automatically
extracting parallel datasets in this domain, consist-
ing of short text descriptions and code templates,
is rather straightforward. Such datasets can then
be used to study various translation problems, in-
cluding translating text to code templates (i.e., se-

1. Java Documentation

*Returns the greater of two long values
*/ ...
public static long max(long a, long b)

2. Python Documentation

from decimal.Context

max(self, a, b):
"""Compares two values numerically
and returns the maximum"""

3. aNALoGuE Challenge (Novikova and Rieser, 2016)
MR input: name[Bibmbap House] food[French]
priceRange[cheap], area[riverside] near[Clare Hall]
NL output: Near Clare Hall, in the riverside area,
Bibimbap serves French food in the price range cheap.

Figure 1: Example source code documentation, or docstrings

in 1-2, and an example MR/text pair.

mantic parsing), or generating representations to
text (i.e., data-to-text generation). In previous work
(Richardson and Kuhn, 2017b), we looked at us-
ing source code libraries to study the first problem,
and have collected datasets for 43 software libraries
across 7 natural languages. We have also created a
tool, called Function Assistant, for extract-
ing new datasets from arbitrary software projects
(Richardson and Kuhn, 2017a).

In this paper, we propose using these resources
for studying the second problem. The task can
be described as follows: given a source code li-
brary dataset or collection of datasets consisting of
text and code template pairs, e.g., the text Returns
the greater of two.. and the function representa-
tion static long max(..) in Figure 1.1, cre-
ate a model that generates well-formed natural lan-
guage descriptions of these formal code inputs. This
task involves solving several sub-tasks, chief among
them being lexicalization, or the problem of how to

115

verbalize the function name and return value (here
using a VP returns the greater of), and the func-
tion’s arguments (expressed here as a plural expres-
sion, two long values). As shown in Figure 1.3, ex-
isting lexicalization tasks tend to involve input rep-
resentations that have considerable lexical overlap
with the verbal output, which is not the case with
our datasets and therefore makes our problem more
difficult. In addition, there is the problem of real-
ization, or here aggregating the description as a sen-
tence with an implied subject containing a transitive
verb and a complex object, where the referring ex-
pression is attached as a PP.

The available resources make the task highly mul-
tilingual, both in terms of the input programming
languages and output natural languages. Since pro-
gramming languages differ in terms of represen-
tation conventions, each formal language provides
unique challenges related to these differences. For
example, statically-typed languages, such as Java in
Figure 1.1., contain more information about argu-
ment and return values than dynamically-typed lan-
guages, such as Python in Figure 1.2.

In what follows, we motivate this task by dis-
cussing related work. We also discuss the current
datasets and plans to build new independent test sets.

2 Related Work

Data-to-text generation concerns the problem of
generating well-formed, natural language descrip-
tions from non-linguistic, formal meaning represen-
tations (Gatt and Krahmer, 2017). In our case, the
input to a given generation system is a source code
representation. In order to learn a natural language
generation (NLG) system from data, a parallel cor-
pus containing pairs of inputs and outputs must be
constructed. In many studies on data-to-text gen-
eration, these parallel resources are relatively small,
cf. work on sportscasting (Chen and Mooney, 2008),
weather reporting (Belz, 2008; Liang et al., 2009),
or biology facts (Banik et al., 2013). We follow
similar efforts to build automatic parallel resources
(Belz and Kow, 2010) by mining example software
libraries for (raw) pairs of short text descriptions and
function representations.

A recent trend is the use of crowd-sourcing to ob-
tain parallel NLG data (Wen et al., 2016; Novikova

et al., 2016; Gardent et al., 2017). Crowd-workers
are presented with some meaning representation
(MR, e.g., triples from a knowledge base) and asked
to verbalize these representations in natural lan-
guage. For example, the MR input in Figure 1.3 in
the restaurant domain is verbalized as the NL out-
put text. While this method allows for fast anno-
tation, and thus solves the data scarcity problem, it
also raises some new issues. For instance, sentences
or utterances are produced by crowd-workers with-
out much context, which puts to question the natu-
ralness of the resulting text. Novikova et al. (2016)
compare collecting data from logic-based MRs, of
the type shown in Figure 1.3, and pictorial MRs, and
find that the former approach leads to less natural
and less informative descriptions. This seems to be
related to the problem that the natural language sen-
tence is a very close verbalization of the “logic” in-
put, i.e., many terms in the MR can be simply taken
up in the sentence.

Our approach relies on naturally occurring verbal
descriptions produced by human developers. Our in-
put data (source code representations) seems more
abstract than previously used representations e.g. in
the restaurant domain where many lexical items in
the target utterance already appear in the MR. Thus,
our input data is more “naturally occurring” in the
sense that it has not been designed specifically for
an NLG system (as compared to Wen et al. (2016)
who randomly generate input representations) yet it
still corresponds to a formal language. We expect
that there is relatively little lexical correspondence
between source code representations and verbal de-
scriptions and that this is an interesting challenge
for data-driven NLG, as simple “alignment” meth-
ods might fail to predict lexicalization.

While natural language generation in technical
domains has long been of interest to the NLG com-
munity (Reiter et al., 1995), there has been renewed
interest in this and other closely related topics over
the last few years in NLP (Allamanis et al., 2015;
Iyer et al., 2016; Yin and Neubig, 2017), making a
shared task on the topic rather timely. While prepar-
ing the final version of this paper, we learned about
the work of (Miceli Barone and Sennrich, 2017),
who similarly look at generating text from automat-
ically mined Python projects, using a similar set of
tools as ours. This interest seems largely related to

116

the wider availability of new data resources in the
technical domain, especially through technical web-
sites such as Github and StackOverflow. Rather than
focus on unconstrained source code representations,
as done in some of these studies, we believe that lim-
iting the expressivity of the generation input to func-
tion representations within known software libraries
allows for more controlled experimentation.

On the resource side, our datasets are taken
from (Richardson and Kuhn, 2017b; Richardson and
Kuhn, 2017a). These resources have been used
to study the problem of semantic parser induction,
which is the inverse of the proposed data-to-text
task. Given the close connection between the two
tasks, there is often considerable overlap between
the techniques used to solve either problem, tech-
niques that are largely drawn from work on statisti-
cal machine translation (Wong and Mooney, 2006;
Belz and Kow, 2009) and parsing (Zettlemoyer and
Collins, 2012; Konstas and Lapata, 2012). While
some approaches to generation explicitly use se-
mantic parsing methods (Wong and Mooney, 2007;
Zarrieß and Richardson, 2013), a more systematic
investigation into the relation between these two
tasks seems missing, which is a topic that we hope
to address in this shared task.

3 Task Description

Given a collection of datasets consisting of text
x and function representation z pairs, or D =
{(x, z)i}n

i , the goal is to create a generation system
that can produce well-formed, natural language de-
scriptions from these representations, or gen : z →
x. As discussed above, such descriptions should
not only cover what the associated function does
in general, but should also describe the function’s
various parameters. As a secondary (optional) task,
we will allow generation systems that accommodate
processing in the other direction to compete on the
task of semantic parsing, sp : x → z, or generating
function representations from text input.

3.1 Main Research Questions

Recent data-driven approaches in NLG have been
successful in modeling end-to-end generation from
unaligned input-output, cf. (Angeli et al., 2010;
Mairesse and Young, 2014; Dušek and Jurcicek,

2015; Wen et al., 2016). However, these system have
been mostly tested on datasets (e.g., in the restaurant
domain) that require describing very similar entities,
entities that are encoded in MRs that have consider-
able lexical overlap with the target text output. A
central research question is whether these end-to-
end approaches scale to NLG settings that involve
substantially harder lexicalization problems, such as
with our datasets where the overlap is considerably
less. Similarly, generating source code documenta-
tion also involves describing a wide variety of func-
tions from many different libraries, meaning that
many more lexical concepts need to be learned.

A more general question is the following: to
what extent can one build a function to text genera-
tion system by relying only on example input-output
pairs? This question is partly about the sufficiency
of function representations for natural language gen-
eration, namely, are these representations detailed
enough to serve as a reasonable knowledge represen-
tation for natural language? If not, what is missing?
How do hybrid approaches, perhaps approaches that
rely on linguistically well-founded translation con-
straints and information about natural language syn-
tax, fare against purely data-driven systems that rely
solely on input-output as evidence?

Finally, the semantic parsing task addresses the
following questions: what is the precise relationship
between semantic parsing and data-to-text genera-
tion? Does an improvement in one task lead to an
improvement in the other task? Is data-to-text gen-
eration simply an inverse semantic parsing task (Gatt
and Krahmer, 2017) or are the two tasks fundamen-
tally different?

4 Datasets

4.1 Train and Development Sets

Figure 2 shows information about the two datasets
that will be available for model development, which
were first introduced in (Richardson and Kuhn,
2017b) and (Richardson and Kuhn, 2017a) respec-
tively1. None of these datasets have been previously
used for data-to-text generation. The first dataset
consists of the standard library documentation for 9
programming languages, including Java, Ruby, PHP,

1Please see the original papers to get more detailed informa-
tion about each dataset

117

Dataset # Software Projects # Training Pairs # Programming Languages # Natural Languages
Standard Library Docs 16 38,652 9 7
Python 27 27 37,567 1 1

Figure 2: A description of the currently available software datasets for model development.

Python, Elisp, Haskell, Clojure, C, and Scheme.
In addition, this resource includes documentation
in 7 natural languages, including English, French,
Spanish, Russian, Japanese, Turkish, and German.
The second resource includes 27 publicly available
Python projects, taken from the well-known awe-
some Python list of (Chen, 2017).

Each individual standard library documentation
set or Python project consists of short text descrip-
tions with function representations. While each
function representation typically has only a single
text description, background information in the doc-
umentation allows one to find related functions, and
therefore related descriptions, which can be taken
into account for training and evaluation. We note
that there is wide variability in the size of each indi-
vidual dataset, and some datasets are low-resource.
One interesting research question is whether it is
feasible to build a NLG system in these low-resource
scenarios, and whether training on multiple lan-
guages can help. In our previous experiments, we
built individual models for each parallel dataset,
though participants will be free to build models that
are trained on multiple projects if desired.

We also note that these datasets are constructed
automatically, and our existing extraction tool does
not do extensive text preprocessing. The motiva-
tion for this is that we can quickly construct new
resources for model development and evaluation,
though the result is that some of available text de-
scriptions are noisy. We however regard this “noisi-
ness” as an interesting technical challenge, and con-
trasts with other shared tasks where more carefully
curated data is assumed.

4.2 Test Sets
The publicly available test sets will be used for eval-
uation (see details of the evaluation below). In or-
der to ensure that participants are not fitting their
models to these sets, we are proposing to build three
additional evaluation sets, each corresponding to a
different programming language. These resources
will be built using the Function Assistant

toolkit (Richardson and Kuhn, 2017a), which al-
ready supports building parallel datasets from ar-
bitrary Python source code projects, and will soon
have functionality for the Java language.

The first two test sets, or evaluation tracks, will
be specific to the Python and Java language, and
will consist of unseen function representation-text
pairs for each language. By having two separate sets
according to language, we can see whether genera-
tion quality differs between different types of pro-
gramming languages. Taking an idea from the re-
cent CoNLL 2017 shared task on dependency pars-
ing, the third evaluation track will include examples
from a surprise programming language that has not
been observed during the training phase. The idea
is to see how generation systems generalize to unob-
served languages where the inputs vary slightly.

5 Evaluation, Baselines and Scheduling

Following other data-to-text shared tasks (Banik et
al., 2013; Colin et al., 2016) and previous work on
text generating from code (Iyer et al., 2016), we will
use automatic evaluation metrics such as BLEU and
METEOR to evaluate system output. We will also
perform fluency-based human evaluation on a sub-
set of each test set using student volunteers from the
Institute for Natural Language Processing (IMS), at
the University of Stuttgart, Germany.

To establish baseline results, we have already
started a pilot study that uses phrase-based SMT to
do generation. Such models have previously been
used to establish strong baseline generation results
(Belz and Kow, 2009; Wong and Mooney, 2007),
and have the advantage of being easy to run using
known open-source tools. Since these models only
require parallel data, they also show what a purely
input-output driven model is capable of achieving on
these datasets.

All publicly available datasets are immediately
available for system development. The goal is to de-
velop the new test sets before the end of 2017, and
for the evaluation to be carried out in summer 2018.

118

Acknowledgement

This work and the current data collection effort is
funded by the German Research Foundation (DFG)
via SFB 732, project D2, at the University of
Stuttgart. In addition, we acknowledge support
by the Cluster of Excellence “Cognitive Interaction
Technology” (CITEC; EXC 277) at Bielefeld Uni-
versity, which is also funded by the DFG.

References
Miltos Allamanis, Daniel Tarlow, Andrew Gordon, and

Yi Wei. 2015. Bimodal modelling of Source Code
and Natural Language. In Proceedings of ICML.

Gabor Angeli, Percy Liang, and Dan Klein. 2010. A
Simple Domain-Independent Probabilistic Approach
to Generation. In Proceedings of EMNLP.

Eva Banik, Claire Gardent, and Eric Kow. 2013. The
KBGen Challenge. In Proceedings of ENLG.

Anja Belz and Eric Kow. 2009. System Building Cost vs.
Output Quality in Data-to-Text Generation. In Pro-
ceedings of ENLG.

Anja Belz and Eric Kow. 2010. Extracting Parallel
Fragments from Comparable Corpora for Data-to-Text
Generation. In Proceedings of INGL.

Anja Belz. 2008. Automatic Generation of Weather
Forecast Texts using Comprehensive Probabilistic
Generation-space Models. Natural Language Engi-
neering, 14(4):431–455.

David L Chen and Raymond J Mooney. 2008. Learning
to Sportscast: a Test of Grounded Language Acquisi-
tion. In Proceedings of ICML.

Vinta Chen. 2017. Awesome Python: A curated list
of awesome Python frameworks, libraries, software
and resources. https://github.com/vinta/
awesome-python.

Emilie Colin, Claire Gardent, Yassine Mrabet, Shashi
Narayan, and Laura Perez-Beltrachini. 2016. The
WebNLG Challenge: Generating Text from DBPedia
Data. In Proceedings of INLG.

Ondřej Dušek and Filip Jurcicek. 2015. Training a nat-
ural language generator from unaligned data. In Pro-
ceedings of the ACL-IJCNLP.

Claire Gardent, Anastasia Shimorina, Shashi Narayan,
and Laura Perez-Beltrachini. 2017. Creating Train-
ing Corpora for NLG Micro-Planning. In Proceedings
of ACL.

Albert Gatt and Emiel Krahmer. 2017. Survey of the
State of the Art in Natural Language Generation: Core
tasks, applications and evaluation. arXiv preprint
arXiv:1703.09902.

Srinivasan Iyer, Ioannis Konstas, Alvin Cheung, and
Luke Zettlemoyer. 2016. Summarizing Source Code
using a Neural Attention Model. In Proceedings of
ACL.

Ioannis Konstas and Mirella Lapata. 2012. Unsupervised
Concept-to-text Generation with Hypergraphs. In Pro-
ceedings of NAACL.

Percy Liang, Michael I Jordan, and Dan Klein. 2009.
Learning Semantic Correspondences with Less Super-
vision. In Proceedings of ACL.

François Mairesse and Steve Young. 2014. Stochastic
language generation in dialogue using factored lan-
guage models. Computational Linguistics, 40(4).

Antonio Valerio Miceli Barone and Rico Sennrich. 2017.
A parallel corpus of Python functions and documen-
tation strings for automated code documentation and
code generation. arXiv preprint arXiv:1707.02275.

Jekaterina Novikova and Verena Rieser. 2016. The aNA-
LoGuE Challenge: Non Aligned Language GEnera-
tion. In Proceedings of INLG.

Jekaterina Novikova, Oliver Lemon, and Verena Rieser.
2016. Crowd-sourcing NLG Data: Pictures Elicit Bet-
ter Data. In Proceedings of INLG.

Ehud Reiter, Chris Mellish, and John Levine. 1995. Au-
tomatic Generation of Technical Documentation. Ap-
plied Artificial Intelligence, 9(3):259–287.

Kyle Richardson and Jonas Kuhn. 2017a. Function As-
sistant: A Tool for NL Querying of APIs. In Proceed-
ings of EMNLP.

Kyle Richardson and Jonas Kuhn. 2017b. Learning Se-
mantic Correspondences in Technical Documentation.
In Proceedings of ACL.

Tsung-Hsien Wen, Milica Gašic, Nikola Mrkšic, Lina M
Rojas-Barahona, Pei-Hao Su, David Vandyke, and
Steve Young. 2016. Multi-domain Neural Network
Language Generation for Spoken Dialogue Systems.
In Proceedings of NAACL-HLT.

Yuk Wah Wong and Raymond J Mooney. 2006. Learning
for Semantic Parsing with Statistical Machine Transla-
tion. In Proceedings of NACL.

Yuk Wah Wong and Raymond J Mooney. 2007. Gen-
eration by Inverting a Semantic Parser that Uses Sta-
tistical Machine Translation. In Proceedings of HLT-
NAACL.

Pengcheng Yin and Graham Neubig. 2017. A Syntactic
Neural Model for General-Purpose Code Generation.
In Proceedings of ACL.

Sina Zarrieß and Kyle Richardson. 2013. An Auto-
matic Method for Building a Data-to-Text Generator.
In Proceedings of ENLG.

Luke S Zettlemoyer and Michael Collins. 2012. Learn-
ing to Map Sentences to Logical Form: Structured
Classification with Probabilistic Categorial Grammars.
arXiv preprint arXiv:1207.1420.

119

