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Abstract

Training of neural machine translation
(NMT) models usually uses mini-batches
for efficiency purposes. During the mini-
batched training process, it is necessary to
pad shorter sentences in a mini-batch to
be equal in length to the longest sentence
therein for efficient computation. Previ-
ous work has noted that sorting the cor-
pus based on the sentence length before
making mini-batches reduces the amount
of padding and increases the processing
speed. However, despite the fact that
mini-batch creation is an essential step in
NMT training, widely used NMT toolkits
implement disparate strategies for doing
so, which have not been empirically vali-
dated or compared. This work investigates
mini-batch creation strategies with exper-
iments over two different datasets. Our
results suggest that the choice of a mini-
batch creation strategy has a large effect
on NMT training and some length-based
sorting strategies do not always work well
compared with simple shuffling.

1 Introduction

Mini-batch training is a standard practice in large-
scale machine learning. In recent implementa-
tions of neural networks, the efficiency of loss and
gradient calculation is greatly improved by mini-
batching due to the fact that combining training
examples into batches allows for fewer but larger
operations that can take advantage of the paral-
lelism allowed by modern computation architec-
tures, particularly GPUs.

∗ This work is done while the author was at Nara Institute
of Science and Technology.

In some cases, such as the case of processing
images, mini-batching is straightforward, as the
inputs in all training examples take the same form.
However, in order to perform mini-batching in the
training of neural machine translation (NMT) or
other sequence-to-sequence models, we need to
pad shorter sentences to be the same length as the
longest sentences to account for sentences of vari-
able length in each mini-batch.

To help prevent wasted calculation due to this
padding, it is common to sort the corpus accord-
ing to the sentence length before creating mini-
batches (Sutskever et al., 2014; Bahdanau et al.,
2015), because putting sentences that have sim-
ilar lengths in the same mini-batch will reduce
the amount of padding and increase the per-word
computation speed. However, we can also easily
imagine that this grouping of sentences together
may affect the convergence speed and stability,
and the performance of the learned models. De-
spite this fact, no previous work has explicitly ex-
amined how mini-batch creation affects the learn-
ing of NMT models. Various NMT toolkits in-
clude implementations of different strategies, but
they have neither been empirically validated nor
compared.

In this work, we attempt to fill this gap by sur-
veying the various mini-batch creation strategies
that are in use: sorting by length of the source sen-
tence, target sentence, or both, as well as making
mini-batches according to the number of sentences
and the number of words. We empirically compare
their efficacy on two translation tasks and find that
some strategies in wide use are not necessarily op-
timal for reliably training models.

2 Mini-batches for NMT

First, to clearly demonstrate the problem of mini-
batching in NMT models, Figure 1 shows an ex-
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Figure 1: An example of mini-batching in an encoder-decoder translation model.

ample of mini-batching two sentences of different
lengths in an encoder-decoder model.

The first thing that we can notice from the fig-
ure is that multiple operations at a particular time
step t can be combined into a single operation. For
example, both “John” and ”I” are embedded in a
single step into a matrix that is passed into the en-
coder LSTM in a single step. On the target side
as well, we calcualate the loss for the target words
at time step t for every sentence in the mini-batch
simultaneously.

However, there are problems when sentences
are of different length, as only some sentences will
have any content at a particular time step. To re-
solve this problem, we pad short sentences with
end-of-sentence tokens to adjust their length to the
length of the longest sentence. In the Figure 1,
purple colored “〈/s〉” indicates the padded end-of-
sentence token.

Padding with these tokens makes it possible to
handle variably-lengthed sentences as if they were
of the same length. On the other hand, the com-
putational cost for a mini-batch increases in pro-
portion to the longest sentence therein, and ex-
cess padding can result in a significant amount of
wasted computation. One way to fix this prob-
lem is by creating mini-batches that include sen-
tences of similar length (Sutskever et al., 2014)

Algorithm 1 Create mini-batches
1: C ← Training corpus
2: C ← sort(C) or shuffle(C) . sort or shuffle

the whole corpus
3: B ← {} . mini-batches
4: i← 0, j ← 0
5: while i < C.size() do
6: B[j]← B[j] + C[i]
7: if B[j].size() ≥ max mini-batch size then
8: B[j]← padding(B[j]) .

Padding tokens to the longest sentence in the
mini-batch

9: j ← j + 1
10: end if
11: i← i+ 1
12: end while
13: B ← shuffle(B) . shuffle the order of the

mini-batches

to reduce the amount of padding required. Many
NMT toolkits implement length-based sorting of
the training corpus for this purpose. In the fol-
lowing section, we discuss several different mini-
batch creation strategies used in existing neural
MT toolkits.
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3 Mini-batch Creation Strategies

Specifically, we examine three aspects of mini-
batch creation: mini-batch size, word vs. sentence
mini-batches, and sorting strategies. Algorithm 1
shows the pseudo code of creating mini-batches.

3.1 Mini-batch Size
The first aspect we consider is mini-batch size for
which, of the three aspects we examine here, the
effect is relatively well known.

When we use larger mini-batches, more sen-
tences participate in the gradient calculation mak-
ing the gradients more stable. They also increase
efficiency with parallel computation. However,
they decrease the number of parameter updates
performed in a certain amount of time, which
can slow convergence at the beginning of train-
ing. Large mini-batches can also pose problems
in practice due to the fact that they increase mem-
ory requirements.

3.2 Sentence vs. Word Mini-batching
The second aspect that we examine, which has not
been examined in detail previously, is whether to
create mini-batches based on the number of sen-
tences or number of target words.

Most NMT toolkits create mini-batches with a
constant number of sentences. In this case, the
number of words included in each mini-batch dif-
fers greatly due to the variance in sentence lengths.
If we use the neural network library that constructs
graphs in a dynamic fashion (e.g. DyNet (Neubig
et al., 2017), Chainer (Tokui et al., 2015), or Py-
Torch1), this will lead to a large variance in mem-
ory consumption from mini-batch to mini-batch.
In addition, because the loss function for the mini-
batch is equal to the sum of the losses incurred for
each word, the scale of the losses will vary greatly
from mini-batch to mini-batch, which could be po-
tentially detrimental to training.

Another choice is to create mini-batches by
keeping the number of target words in each mini-
batch approximately stable, but varying the num-
ber of sentences. We hypothesize that this may
lead to more stable convergence, and test this hy-
pothesis in the experiments.

3.3 Corpus Sorting Methods
The final aspect that we examine, which has sim-
ilarly is not yet well understood, is the effect of

1http://pytorch.org

the method that we use to sort the corpus before
grouping consecutive sentences into mini-batches.

A standard practice in online learning shuffles
training samples to ensure that bias in the pre-
sentation order does not adversely affect the final
result. However, as we mentioned in Section 2,
NMT studies (Sutskever et al., 2014; Bahdanau
et al., 2015) prefer uniform length samples in the
mini-batch by sorting the training corpus, to re-
duce the amount of padding and increase per-word
calculation speed. In particular, in the encoder-
decoder NMT framework (Sutskever et al., 2014),
the computational cost in the softmax layer of the
decoder is much heavier than the encoder. Some
NMT toolkits sort the training corpus based on the
target sentence length to avoid unnecessary soft-
max computations on padded tokens in the tar-
get side. Another problem arises in the atten-
tional NMT model (Bahdanau et al., 2015; Luong
et al., 2015); attentions may give incorrect positive
weights to the padded tokens in the source side.
The problems above also motivate the mini-batch
creation with uniform length sentences with fewer
padded tokens.

Inspired by sorting methods in use in current
open source implementations, we compare the fol-
lowing sorting methods:

SHUFFLE: Shuffle the corpus randomly before
creating mini-batches, with no sorting.

SRC: Sort based on the source sentence length.
TRG: Sort based on the target sentence length.
SRC TRG: Sort using the source sentence length,

break ties by sorting by target sentence
length.

TRG SRC: Converse of SRC TRG.

Of established open-source toolkits, OpenNMT
(Klein et al., 2017) uses the SRC sorting method,
Nematus2 and KNMT (Cromieres, 2016) use
the TRG sorting method, and lamtram3 uses the
TRG SRC sorting method.

4 Experiments

We conducted NMT experiments with the strate-
gies presented above to examine their effects on
NMT training.

4.1 Experimental Settings
We carried out experiments with two language
pairs, English-Japanese using the ASPEC-JE cor-

2https://github.com/rsennrich/nematus
3https://github.com/neubig/lamtram
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ASPEC-JE WMT 2016
train 2,000,000 4,562,102
dev 1,790 2,169
test 1,812 2,999

Table 1: Number of sentences in the corpus

pus (Nakazawa et al., 2016) and English-German
using the WMT 2016 news task with news-
test2016 as the test-set (Bojar et al., 2016). Table
1 shows the number of sentences contained in the
corpora.

The English and German texts were tokenized
with tokenizer.perl4, and the Japanese texts
were tokenized with KyTea (Neubig et al., 2011).

As a testbed for our experiments, we used the
standard global attention model of Luong et al.
(2015) with attention feeding and a bidirectional
encoder with one LSTM layer of 512 nodes.
We used the DyNet-based (Neubig et al., 2017)
NMTKit5, with a vocabulary size of 65536 words
and dropout of 30% for all vertical connections.
We used the same random numbers as initial pa-
rameters for each experiment to reduce variance
due to initialization. We used Adam (Kingma and
Ba, 2015) (α = 0.001) or SGD (η = 0.1) as
the learning algorithm. After every 50,000 train-
ing sentences, we processed the test set to record
negative log likelihoods. In the testing, we set the
mini-batch size to 1, in order to calculate negative
log likelihood correctly. We calculated the case-
insensitive BLEU score (Papineni et al., 2002)
with multi-bleu.perl6 script.

Table 2 shows the mini-batch creation settings
compared in this paper, and we tried all sorting
methods discussed in Section 3.3 for each setting.
In method (e), we set the average number of target
words in 64 sentences: 2055 words for ASPEC-
JE, 1742 words for WMT. For all experiments, we
shuffled the processing order of the mini-batches.

4.2 Experimental Results and Analysis

Figure 2, 3, 4 and 5 show the transition of negative
log likelihoods and the BLEU scores according to
the number of processed sentences in ASPEC-JE

4https://github.com/moses-smt/
mosesdecoder/blob/master/scripts/
tokenizer/tokenizer.perl

5https://github.com/odashi/nmtkit We
used the commit number 566e9c2.

6https://github.com/moses-smt/
mosesdecoder/blob/master/scripts/
generic/multi-bleu.perl

mini-batch units learning algorithm
(a) 64 sentences Adam
(b) 32 sentences Adam
(c) 16 sentences Adam
(d) 8 sentences Adam
(e) 2055 or 1742 words Adam
(f) 64 sentences SGD

Table 2: Compared settings

sorting method average time (hour)
SHUFFLE 8.08

SRC 6.45
TRG 5.21

SRC TRG 4.35
TRG SRC 4.30

Table 3: Average time needed to train a whole
ASPEC-JE corpus using method (a). We used a
GTX 1080 GPU for this experiment.

and WMT2016 test sets. Table 3 shows the aver-
age time to process the whole ASPEC-JE corpus.

The learning curves show very similar tenden-
cies in different language pairs. We discuss the
results in detail on each strategy that we investi-
gated.

4.2.1 Effect of Mini-batch Size
We carried out the experiments with the mini-
batch size of 8 to 64 sentences.7

From the experimental results of the method (a),
(b), (c) and (d), in the case of using Adam, the
mini-batch size affects the training speed and it
also has an impact on the final accuracy of the
model. As we mentioned in Section 3.1, the gra-
dients can be stabler by increasing the mini-batch
size, and it seems to have a positive impact on the
model from the view of accuracy. Thus, we can
first note that mini-batch size is a very important
hyper-parameter for NMT training that should not
be ignored. In our case in particular, the largest
mini-batch size that could be loaded into the mem-
ory was the best for the NMT training.

4.2.2 Effect of Mini-batch Unit
Looking at the experimental results of the meth-
ods (a) and (e), we can see that perplexities drop
faster if we use SHUFFLE for method (a) and SRC

for method (e), but we couldn’t see any large dif-
ferences in terms of the training speed and the final

7We tried the experiments with larger mini-batch size, but
we couldn’t run it due to the GPU memory limitation.
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Figure 2: Training curves on the ASPEC-JE test set. The y- and x-axes shows the negative log likelihoods
and number of processed sentences. The scale of the x-axis in the method (f) is different from others.

Figure 3: Training curves on the WMT2016 test set. Axes are the same as Figure 2.

accuracy of the model. We hypothesize that the
large variance of the loss affects the final model
accuracy, especially when using the learning algo-
rithm that uses momentum such as Adam. How-
ever, these results indicate that these differences
do not significantly affect the training results. We
leave a comparison of memory consumption for
future research.

4.2.3 Effect of Corpus Sorting Method using
Adam

From all experimental results of the method (a),
(b), (c), (d) and (e), in the case of using SHUF-

FLE or SRC, perplexities drop faster and tend to
converge to lower perplexities than the other meth-
ods for all mini-batch sizes. We believe the main
reason for this is due to the similarity of the sen-
tences contained in each mini-batch. If the sen-
tence length is similar, the features of the sentence
may also be similar. We carefully examined the
corpus and found that at least this is true for the
corpus we used (e.g. shorter sentences tend to con-
tain the similar words). In this case, if we sort sen-
tences by their length, sentences that have similar
features will be gathered into the same mini-batch,
making training less stable than if all sentences
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Figure 4: BLEU scores on the ASPEC-JE test set. The y- and x-axes shows the BLEU scores and number
of processed sentences. The scale of the x-axis in the method (f) is different from others.

Figure 5: BLEU scores on the WMT2016 test set. Axes are the same as Figure 4.

in the mini-batch had different features. This is
evidenced by the more jagged lines of the TRG

method.
As a conclusion, the TRG and TRG SRC sorting

methods, which are used by many NMT toolkits,
have a higher overall throughput when just mea-
suring the number of words processed, but for con-
vergence speed and final model accuracy, it seems
to be better to use SHUFFLE or SRC.

Some toolkits shuffle the corpus first, then cre-
ate mini-batches by sorting a few consecutive sen-
tences. We think that this method may be effective
by combining the advantage of SHUFFLE and other

sorting methods, but an empirical comparison is
beyond the scope of this work.

4.2.4 Effect of Corpus Sorting Method using
SGD

By comparing the experimental results of the
methods (a) and (f), we found that in the case of
using Adam, the learning curves greatly depend
on the sorting method, but in the case of using
SGD there was little effect. This is likely because
SGD makes less bold updates of rare parameters,
improving its overall stability. However, we find
that only when using the TRG method, the nega-
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Figure 6: Training curves on the ASPEC test set
using lamtram toolkit. Axes are the same as Fig-
ure 2.

tive log likelihoods and the BLEU scores are not
stable. It can be conjectured that this is an effect
of gathering the similar sentences in a mini-batch
as we mentioned in Section 4.2.3. These results
indicate that in the case of SGD it is acceptable to
TRG SRC, which is the fastest method to process
the whole corpus (see Table 3), for SGD.

Recently, Wu et al. (2016) proposed a new
learning paradigm, which uses Adam for the ini-
tial training, then switches to SGD after several
iterations. If we use this learning algorithm, we
may be able to train the model more effectively by
using SHUFFLE or SRC sorting method for Adam,
and TRG SRC for SGD.

4.3 Experiments with a Different Toolkit

In the previous experiments, we conducted the ex-
periments with only one NMT toolkit, so the re-
sults may be dependent on the particular imple-
mentation provided therein. To ensure that these
results generalize to other toolkits with different
default parameters, we conducted the experiments
with another NMT toolkit.

4.3.1 Experimental Settings
In this section, we used lamtram8 as a NMT
toolkit. We carried out the Japanese-English trans-
lation experiments with ASPEC-JE corpus. We
used Adam (Kingma and Ba, 2015) (α = 0.001)
as the learning algorithm and tried the two sort-
ing algorithms: SHUFFLE which is the best sort-
ing method on previous experiments and TRG SRC

which is the default sorting method used by the

8https://github.com/neubig/lamtram

lamtram toolkit. Normally, lamtram creates mini-
batches based on the number of target words con-
tained in each mini-batch, but we changed it to
fix the mini-batch size to 64 sentences because we
find that larger mini-batch size seems to be bet-
ter in the previous experiments. Other experimen-
tal settings are the same as described in the Sec-
tion 4.1.

4.3.2 Experimental Results
Figure 6 shows the transition of negative log like-
lihoods using lamtram. We can see the tendency
of the training curves are similar to the Figure 2
(a), the combination with SHUFFLE drops negative
log likelihood faster than the TRG SRC one.

From this experiments, we could verify that our
experimental results in the Section 4 do not rely on
the toolkit and we think the observed behavior will
generalize to other toolkits and implementations.

5 Related Work

Recently, Britz et al. (2017) have released a pa-
per about exploring the hyper-parameters of NMT.
This work is similar to our paper in the terms
of finding the better hyper-parameters by doing
a large number of experiments and deriving em-
pirical conclusions. However, notably this paper
fixed the mini-batch size to 128 sentences and did
not treat mini-batch creation strategy as one of the
hyper-parameters of the model. With our experi-
mental results, we argue that the mini-batch cre-
ation strategies also have an impact on the NMT
training, and thus having solid recommendations
for how to adjust this hyper-parameter are also of
merit.

6 Conclusion

In this paper, we analyzed how mini-batch cre-
ation strategies affect the training of NMT models
for two language pairs. The experimental results
suggest mini-batch creation strategy is an impor-
tant hyper-parameter of the training process, and
commonly-used sorting strategies are not always
optimal. We sum up the results as follows:

• Mini-batch size can affect the final accuracy
of the model in addition to the training speed
and the larger mini-batch size seems to be
better.

• Mini-batch units do not effect to the train-
ing process, so it is possible to use either the
number of sentences or target words.
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• We should use SHUFFLE or SRC sorting
method for Adam, and it is sufficient to use
TRG SRC for SGD.

In the future, we plan to do experiments with
larger mini-batch sizes and compare the used
peak memory between making mini-batches by
the number of sentences or target words. We are
also interested in checking the effects of different
mini-batch creation strategies with other language
pairs, corpora and optimization functions.
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