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Abstract

Interest in neural machine translation has
grown rapidly as its effectiveness has
been demonstrated across language and
data scenarios. New research regu-
larly introduces architectural and algorith-
mic improvements that lead to significant
gains over “vanilla” NMT implementa-
tions. However, these new techniques
are rarely evaluated in the context of pre-
viously published techniques, specifically
those that are widely used in state-of-the-
art production and shared-task systems.
As a result, it is often difficult to de-
termine whether improvements from re-
search will carry over to systems deployed
for real-world use. In this work, we rec-
ommend three specific methods that are
relatively easy to implement and result in
much stronger experimental systems. Be-
yond reporting significantly higher BLEU
scores, we conduct an in-depth analysis of
where improvements originate and what
inherent weaknesses of basic NMT mod-
els are being addressed. We then com-
pare the relative gains afforded by several
other techniques proposed in the literature
when starting with vanilla systems versus
our stronger baselines, showing that exper-
imental conclusions may change depend-
ing on the baseline chosen. This indicates
that choosing a strong baseline is crucial
for reporting reliable experimental results.

1 Introduction

In the relatively short time since its introduction,
neural machine translation has risen to promi-
nence in both academia and industry. Neural mod-
els have consistently shown top performance in
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shared evaluation tasks (Bojar et al., 2016; Cet-
tolo et al., 2016) and are becoming the technology
of choice for commercial MT service providers
(Wu et al., 2016; Crego et al., 2016). New work
from the research community regularly introduces
model extensions and algorithms that show sig-
nificant gains over baseline NMT. However, the
continuous improvement of real-world translation
systems has led to a substantial performance gap
between the first published neural translation mod-
els and the current state of the art. When promis-
ing new techniques are only evaluated on very ba-
sic NMT systems, it can be difficult to determine
how much (if any) improvement will carry over
to stronger systems; is new work actually solving
new problems or simply re-solving problems that
have already been addressed elsewhere?

In this work, we recommend three specific tech-
niques for strengthening NMT systems and empir-
ically demonstrate how their use improves relia-
bility of experimental results. We analyze in depth
how these techniques change the behavior of NMT
systems by addressing key weaknesses and discuss
how these findings can be used to understand the
effect of other types of system extensions. Our
recommended techniques include: (1) a training
approach using Adam with multiple restarts and
learning rate annealing, (2) sub-word translation
via byte pair encoding, and (3) decoding with en-
sembles of independently trained models.

We begin the paper content by introducing a
typical NMT baseline system as our experimen-
tal starting point (§2.1). We then present and ex-
amine the effects of each recommended technique:
Adam with multiple restarts and step size anneal-
ing (§3), byte pair encoding (§4), and independent
model ensembling (§5). We show that combining
these techniques can lead to a substantial improve-
ment of over 5 BLEU (§6) and that results for sev-
eral previously published techniques can dramati-
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cally differ (up to being reversed) when evaluated
on stronger systems (§6.2). We then conclude by
summarizing our findings (§7).

2 Experimental Setup

2.1 Translation System

Our starting point for experimentation is a stan-
dard baseline neural machine translation system
implemented using the Lamtram' and DyNet?
toolkits (Neubig, 2015; Neubig et al., 2017). This
system uses the attentional encoder-decoder archi-
tecture described by Bahdanau et al. (2015), build-
ing on work by Sutskever et al. (2014). The trans-
lation model uses a bi-directional encoder with a
single LSTM layer of size 1024, multilayer per-
ceptron attention with a layer size of 1024, and
word representations of size 512. Translation
models are trained until perplexity convergence
on held-out data using the Adam algorithm with
a maximum step size of 0.0002 (Kingma and Ba,
2015; Wu et al., 2016). Maximum training sen-
tence length is set to 100 words. Model vocabulary
is limited to the top 50K source words and 50K tar-
get words by frequency, with all others mapped to
an unk token. A post-processing step replaces any
unk tokens in system output by attempting a dic-
tionary lookup? of the corresponding source word
(highest attention score) and backing off to copy-
ing the source word directly (Luong et al., 2015).
Experiments in each section evaluate this system
against incremental extensions such as improved
model vocabulary or training algorithm. Evalu-
ation is conducted by average BLEU score over
multiple independent training runs (Papineni et al.,
2002; Clark et al., 2011).

2.2 Data Sets

We evaluate systems on a selection of public data
sets covering a range of data sizes, language di-
rections, and morphological complexities. These
sets, described in Table 1, are drawn from shared
translation tasks at the 2016 ACL Conference on
Machine Translation (WMT16)* and the 2016 In-
ternational Workshop on Spoken Language Trans-
lation (IWSLT16)°.

'nttps://github.com/neubig/lamtram

https://github.com/clab/dynet

3Translation dictionaries are learned from the system’s
training data using fast_align (Dyer et al., 2013).

*nttp://statmt.org/wmt16 (Bojar et al., 2016)

‘https://workshop2016.iwslt.org, https:
//wit3. fbk.eu (Cettolo et al., 2012)
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Scenario Sources

WMT German-English

Size (sent)
4,562,102

Europarl,
Common Crawl,
news commentary

WMT English-Finnish 2,079,842 | Europarl,
Wikipedia titles
WMT Romanian-English 612,422 | Europarl, SETimes
IWSLT English-French 220,400 | TED talks
IWSLT Czech-English 114,390 | TED talks
Scenario | Validation (Dev) Set | Test Set
DE-EN News test 2015 News test 2016
EN-FI News test 2015 News test 2016
RO-EN News dev 2016 News test 2016
EN-FR TED test 2013+2014 | TED test 2015+2016
CS-EN TED test 2012+2013 | TED test 2015+2016

Table 1: Top: parallel training data available for
all scenarios. Bottom: validation and test sets.

3 Training Algorithms

3.1 Background

The first neural translation models were optimized
with stochastic gradient descent (Sutskever et al.,
2014). After training for several epochs with
a fixed learning rate, the rate is halved at pre-
specified intervals. This widely used rate “anneal-
ing” technique takes large steps to move parame-
ters from their initial point to a promising part of
the search space followed by increasingly smaller
steps to explore that part of the space for a good
local optimum. While effective, this approach
can be time consuming and relies on hand-crafted
learning schedules that may not generalize to dif-
ferent models and data sets.

To eliminate the need for schedules, subsequent
NMT work trained models using the Adadelta al-
gorithm, which automatically and continuously
adapts learning rates for individual parameters
during training (Zeiler, 2012). Model perfor-
mance is reported to be equivalent to SGD with
annealing, though training still takes a consider-
able amount of time (Bahdanau et al., 2015; Sen-
nrich et al., 2016b). More recent work seeks
to accelerate training with the Adam algorithm,
which applies momentum on a per-parameter ba-
sis and automatically adapts step size subject to a
user-specified maximum (Kingma and Ba, 2015).
While this can lead to much faster convergence,
the resulting models are shown to slightly under-
perform compared to annealing SGD (Wu et al.,
2016). However, Adam’s speed and reputation



of generally being “good enough” have made it
a popular choice for researchers and NMT toolkit
authors® (Arthur et al., 2016; Lee et al., 2016; Britz
et al., 2017; Sennrich et al., 2017).

While differences in automatic metric scores
between SGD and Adam-trained systems may be
relatively small, they raise the more general ques-
tion of training effectiveness. In the following sec-
tion, we explore the relative quality of the optima
found by these training algorithms.

3.2 Results and Analysis

To compare the behavior of SGD and Adam, we
conduct training experiments with all data sets
listed in §2.2. For each set, we train instances
of the baseline model described in §2.1 with both
optimizers using empirically effective initial set-
tings.” In the only departure from the described
baseline, we use a byte-pair encoded vocabulary
with 32K merge operations in place of a limited
full-word vocabulary, leading to faster training and
higher metric scores (see experiments in §4).

For SGD, we begin with a learning rate of 0.5
and train the model to convergence as measured
by dev set perplexity. We then halve the learn-
ing rate and restart training from the best previous
point. This continues until training has been run
a total of 5 times. The choice of training to con-
vergence is made both to avoid the need for hand-
crafted learning schedules and to give the optimiz-
ers a better chance to find good neighborhoods
to explore. For Adam, we use a learning rate
(maximum step size) of 0.0002. While Adam’s
use of momentum can be considered a form of
“self-annealing”, we also evaluate the novel ex-
tension of explicitly annealing the maximum step
size by applying the same halving and restarting
process used for SGD. It is important to note that
while restarting SGD has no effect beyond chang-
ing the learning rate, restarting Adam causes the
optimizer to “forget” the per-parameter learning
rates and start fresh.

For all training, we use a mini-batch size of
512 words.® For WMT systems, we evaluate dev

®Adam is the default optimizer for the Lamtram, Nema-
tus (https://github.com/rsennrich/nematus),
and Marian toolkits (https://github.com/amunmt/
marian).

"Learning rates of 0.5 for SGD and 0.0002 for Adam or
very similar are shown to work well in NMT implementations
including GNMT (Wu et al., 2016), Nematus, Marian, and
OpenNMT (http://opennmt.net).

8For each mini-batch, sentences are added until the word
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set perplexity every 50K training sentences for the
first training run and every 25K sentences for sub-
sequent runs. For IWSLT systems, we evaluate ev-
ery 25K sentences and then every 6,250 sentences.
Training stops when no improvement in perplexity
has been seen in 20 evaluations. For each experi-
mental condition, we conduct 3 independent opti-
mizer runs and report averaged metric scores. All
training results are visualized in Figure 1.

Our first observation is that these experiments
are largely in concert with prior work: Adam with-
out annealing (first point) is significantly faster
than SGD with annealing (last point) and often
comparable or slightly worse in accuracy, with
the exception of Czech-English where SGD under-
performs. However, Adam with just 2 restarts and
SGD-style rate annealing is actually both faster
than the fully annealed SGD and obtains signifi-
cantly better results in both perplexity and BLEU.
We conjecture that the reason for this is twofold.
First, while Adam has the ability to automatically
adjust its learning rate, like SGD it still bene-
fits from an explicit adjustment when it has be-
gun to overfit. Second, Adam’s adaptive learning
rates tend to reduce to sub-optimally low values
as training progresses, leading to getting stuck in
a local optimum. Restarting training when reduc-
ing the learning rate helps jolt the optimizer out of
this local optimum and continue to find parameters
that are better globally.

4 Sub-Word Translation
4.1 Background

Unlike phrase-based approaches, neural transla-
tion models must limit source and target vocab-
ulary size to keep computational complexity man-
ageable. Basic models typically include the most
frequent words (30K-50K) plus a single unk to-
ken to which all other words are mapped. As de-
scribed in §2.1, unk words generated by the NMT
system are translated in post-processing by dictio-
nary lookup or pass-through, often with signifi-
cantly degraded quality (Luong et al., 2015). Real-
world NMT systems frequently sidestep this prob-
lem with sub-word translation, where models op-
erate on a fixed number of word pieces that can
be chained together to form words in an arbitrar-
count is reached. Counting words versus sentences leads to
more uniformly-sized mini-batches. We choose the size of
512 based on contrastive experiments that found it to be the

best balance between speed and effectiveness of updates dur-
ing training.
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Figure 1: Results of training the NMT models with Adam and SGD using rate annealing. Each point
represents training to convergence with a fixed learning rate and translating the test set. The learning rate
is then halved and training resumed from the previous best point. Vertical dotted lines indicate 2 Adam
restarts. The table lists dev set perplexities for the final SGD model and the 2-restart Adam model. All
reported values are averaged over 3 independent training runs.

ily large vocabulary. In this section, we exam-
ine the impact of sub-words on NMT, specifically
when using the technique of byfe pair encoding
(Sennrich et al., 2016b). Given the full parallel
corpus (concatenation of source and target sides),
BPE first splits all words into individual characters
and then begins merging the most frequently adja-
cent pairs. Merged pairs become single units that
are candidates for further merging and the process
continues to build larger word pieces for a fixed
number of operations. The final result is an en-
coded corpus where the most frequent words are
single pieces and less frequent words are split into
multiple, higher frequency pieces. At test time,
words are split using the operations learned dur-
ing training, allowing the model to translate with
a nearly open vocabulary.” The model vocabulary
size grows with and is limited by the number of
merge operations. While prior work has focused
on using sub-words as a method for translating

°It is possible that certain intermediate word pieces will
not appear in the encoded training data (and thus the model’s
vocabulary) if all occurrences are merged into larger units.
If these pieces appear in test data and are not merged, they
will be true OOVs for the model. For this reason, we map
singleton word pieces in the training data to unk so the model
has some ability to handle these cases (dictionary lookup or
pass-through).
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WMT IWSLT
DE-EN EN-FI RO-EN | EN-FR CS-EN
Words 50K | 31.6 12.6 27.1 33.6 21.0
BPE 32K 33.5 14.7 27.8 34.5 22.6
BPE 16K 33.1 14.7 27.8 34.8 23.0

Table 2: BLEU scores for training NMT models
with full word and byte pair encoded vocabularies.
Full word models limit vocabulary size to 50K.
All models are trained with annealing Adam and
scores are averaged over 3 optimizer runs.

unseen words in morphologically rich languages
(Sennrich et al., 2016b) or reducing model size
(Wu et al., 2016), we examine how using BPE ac-
tually leads to broad improvement by addressing
inherent weaknesses of word-level NMT.

4.2 Results and Analysis

We measure the effects of byte pair encoding by
training full-word and BPE systems for all data
sets as described in §2.1 with the incremental
improvement of using Adam with rate annealing
(83). As Wu et al. (2016) show different levels
of effectiveness for different sub-word vocabulary
sizes, we evaluate running BPE with 16K and 32K



merge operations. As shown in Table 2, sub-word
systems outperform full-word systems across the
board, despite having fewer total parameters. Sys-
tems built on larger data generally benefit from
larger vocabularies while smaller systems perform
better with smaller vocabularies. Based on these
results, we recommend 32K as a generally effec-
tive vocabulary size and 16K as a contrastive con-
dition when building systems on less than 1 mil-
lion parallel sentences.

To understand the origin of these improvements,
we divide the words in each test set into classes
based on how the full-word and BPE models han-
dle them and report the unigram F-1 score for
each model on each class. We also plot the full-
word and BPE vocabularies for context. As shown
in Figure 2, performance is comparable for the
most frequent words that both models represent
as single units. The identical shapes on the left-
most part of each vocabulary plot indicate that
the two systems have the same number of train-
ing instances from which to learn translations. For
words that are split in the BPE model, perfor-
mance is tied to data sparsity. With larger data,
performance is comparable as both models have
enough training instances to learn reliable statis-
tics; with smaller data or morphologically rich lan-
guages such as Finnish, significant gains can be
realized by modeling multiple higher-frequency
sub-words in place of a single lower-frequency
word. This can be seen as effectively moving to
the left in the vocabulary plot where translations
are more reliable. In the next category of words
beyond the 50K cutoff, the BPE system’s ability
to actually model rare words leads to consistent
improvement over the full-word system’s reliance
on dictionary substitution.

The final two categories evaluate handling of
true out-of-vocabulary items. For OOVs that
should be translated, the full-word system will al-
ways score zero, lacking any mechanism for pro-
ducing words not in its vocabulary or dictionary.
The more interesting result is in the relatively low
scores for OOVs that should simply be copied
from source to target. While phrase-based sys-
tems can reliably pass OOVs through 1:1, full-
word neural systems must generate unk tokens
and correctly map them to source words using
attention scores. Differences in source and tar-
get true vocabulary sizes and frequency distribu-
tions often lead to different numbers of unk to-
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kens in source and target sentences, resulting in
models that are prone to over or under-generating
unks at test time. BPE systems address these
weaknesses, although their performance is not al-
ways intuitive. While some OOVs are success-
fully translated using word pieces, overall scores
are still quite low, indicating only limited success
for the notion of open vocabulary translation of-
ten associated with sub-word NMT. However, the
ability to learn when to self-translate sub-words'’
leads to significant gains in pass-through accuracy.

In summary, our analysis indicates that while
BPE does lead to smaller, faster models, it also
significantly improves translation quality. Rather
than being limited to only rare and unseen words,
modeling higher-frequency sub-words in place of
lower-frequency full words can lead to significant
improvement across the board. The specific im-
provement in pass-through OOV handling can be
particularly helpful for handling named entities
and open-class items such as numbers and URLs
without additional dedicated techniques.

5 Ensembles and Model Diversity

The final technique we explore is the combination
of multiple translation models into a single, more
powerful ensemble by averaging their predictions
at the word level. The idea of ensemble aver-
aging is well understood and widely used across
machine learning fields and work from the earli-
est encoder-decoder papers to the most recent sys-
tem descriptions reports dramatic improvements
in BLEU scores for model ensembles (Sutskever
et al., 2014; Sennrich et al., 2016a). While this
technique is conceptually simple, it requires train-
ing and decoding with multiple translation mod-
els, often at significant resource costs. However,
these costs are either mitigated or justified when
building real-world systems or evaluating tech-
niques that should be applicable to those systems.
Decoding costs can be reduced by using knowl-
edge distillation techniques to train a single, com-
pact model to replicate the output of an ensemble
(Hinton et al., 2015; Kuncoro et al., 2016; Kim
and Rush, 2016). Researchers can skip this time-
consuming step, evaluating the ensemble directly,
while real-world system engineers can rely on it
to make deployment of ensembles practical. To re-

19 earning a single set of BPE operations by concatenating
the source and target training data ensures that the same word
will always be segmented in the same way whether it appears
on the source or target side.
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Figure 2: Effects of using sub-
word units on model vocabulary
and translation accuracy for spe-
cific types of words.

Left figures: Source vocabulary
visualizations for NMT training
data using full words and byte-
pair encoded tokens. The number
of merge operations is set to ei-
ther 32K or 16K, chosen by best
BLEU score. BPE reduces vo-
cabulary size by 1-2 orders of
magnitude and allows models to
cover the entire training corpus.
Full-word systems for all scenar-
ios use a much larger vocabulary
size of 50K (labeled horizontal
line) that leaves much of the to-
tal vocabulary uncovered.

Right figures: Class-wise test set
unigram F1 scores for NMT sys-
tems using full words and byte-
pair encoded tokens. Scores are
reported separately for the fol-
lowing classes: words in the vo-
cabulary of both the full-word
and BPE models (Full), words
in the vocabulary of the full-
word model that are split in the
BPE model (Split), words outside
the vocabulary of the full-word
model but covered by its dictio-
nary (Dict), words outside the vo-
cabulary of the full-word model
and its dictionary that should be
translated (OOV-T), and words
outside the vocabulary of the full-
word model and its dictionary
that should be passed through
(OOV-P). All reported scores are
averaged over 3 independent op-
timizer runs.



WMT IWSLT EN-FR Adam +Annealing | +Ensemble

DE-EN EN-FI RO-EN |EN-FR CS-EN Word BPE | Word BPE BPE

Vanilla 302 118 264 (332 202 Baseline 332 337 33.6 348 37.3

Recommended | 33.5 147 27.8 34.5 22.6 Dropout 339 339 | 345 34.7 37.2

+Ensemble 35.8 17.3 303 37.3 25.5 Lexicon Bias 338 34.0 | 339 348 37.1

Pre-Translation - 34.0 - 34.9 36.6

Table 3: Test set BLEU scores for “vanilla” NMT | Bootstrapping | 33.7 34.1 | 344 35.2 374
(full words and standard Adam), and our recom-

. . CS-EN Adam +Annealing | +Ensemble
mended systems (byte pair encoding and anneal- Word BPE | Word BPE BPE
ing Adam, with and without ensembh.ng). Scores Baseline 02 211210 230 55
for single models are averaged over 3 independent Dropout 207 227 | 214 236 261
optimizer runs while scores for ensembles are the Lexicon Bias | 207 225 | 206 22.7 252
result of combining 3 runs. Pre-Translation | - 23.1| - 238 25.8

Bootstrapping | 20.7 23.2 | 21.6 23.6 26.2

duce training time, some work ensembles different
training checkpoints of the same model rather than
using fully independent models (Jean et al., 2015;
Sennrich et al., 2016a). While checkpoint ensem-
bling is shown to be effective for improving BLEU
scores under resource constraints, it does so with
less diverse models. As discussed in recent work
and demonstrated in our experiments in §6, model
diversity is a key component in building strong
NMT ensembles (Jean et al., 2015; Sennrich et al.,
2016a; Farajian et al., 2016). For these reasons,
we recommend evaluating new techniques on sys-
tems that ensemble multiple independently trained
models for the most reliable results. Results show-
ing both the effectiveness of ensembles and the
importance of model diversity are included in the
larger experiments conducted in the next section.

6 On Trustable Evaluation

6.1 Experimental Setup

In this section, we evaluate and discuss the ef-
fects that choice of baseline can have on experi-
mental conclusions regarding neural MT systems.
First, we build systems that include Adam with
rate annealing, byte pair encoding, and indepen-
dent model ensembling and compare them to the
vanilla baselines described in §2.1. As shown
in Table 3, combining these techniques leads to
a consistent improvement of 4-5 BLEU points
across all scenarios. These improvements are
the result of addressing several underlying weak-
nesses of basic NMT models as described in previ-
ous sections, leading to systems that behave much
closer to those deployed for real-world tasks.
Next, to empirically demonstrate the impor-
tance of evaluating new methods in the context
of these stronger systems, we select several tech-
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Table 4: Test set BLEU scores for several pub-
lished NMT extensions. Entries are evaluated with
and without Adam annealing, byte pair encoding,
and model ensembling. A bold score indicates im-
provement over the baseline while an italic score
indicates no change or degradation. Scores for
non-ensembles are averaged over 3 independent
optimizer runs and ensembles are the result of
combining 3 runs.

niques shown to improve NMT performance and
compare their effects as baseline systems are iter-
atively strengthened. Focusing on English-French
and Czech-English, we evaluate the following
techniques with and without the proposed im-
provements, reporting results in Table 4:
Dropout: Apply the improved dropout tech-
nique for sequence models described by Gal and
Ghahramani (2016) to LSTM layers with a rate of
0.2. We find this version to significantly outper-
form standard dropout.

Lexicon bias: Incorporate scores from a pre-
trained lexicon (fast_align model learned on
the same data) directly as additional weights when
selecting output words (Arthur et al., 2016). Tar-
get word lexicon scores are computed as weighted
sums over source words based on attention scores.
Pre-translation: Translate source sentences with
a traditional phrase-based system trained on the
same data. Input for the neural system is the orig-
inal source sentence concatenated with the PBMT
output (Niehues et al., 2016). Input words are
prefixed with either s_ or t_ to denote source or
target language. We improve performance with a
novel extension where word alignments are used
to weave together source and PBMT output so that
each original word is immediately followed by its



suggested translation from the phrase-based sys-
tem. As pre-translation doubles source vocabulary
size and input length, we only apply it to sub-word
systems to keep complexity reasonable.

Data bootstrapping: Expand training data by ex-
tracting phrase pairs (sub-sentence translation ex-
amples) and including them as additional training
instances (Chen et al., 2016). We apply a novel ex-
tension where we train a phrase-based system and
use it to re-translate the training data, providing a
near-optimal phrase segmentation as a byproduct.
We use these phrases in place of the heuristically
chosen phrases in the original work, improving
coverage and leading to more fine-grained trans-
lation examples.

6.2 Experimental Results

The immediately noticeable trend from Table 4
is that while all techniques improve basic sys-
tems, only a single technique, data bootstrapping,
improves the fully strengthened system for both
data sets (and barely so). This can be attributed
to a mix of redundancy and incompatibility be-
tween the improvements we’ve discussed in pre-
vious sections and the techniques evaluated here.

Lexicon bias and pre-translation both incorpo-
rate scores from pre-trained models that are shown
to improve handling of rare words. When NMT
models are sub-optimally trained, they can bene-
fit from the suggestions of a better-trained model.
When full-word NMT models struggle to learn
translations for infrequent words, they can learn
to simply trust the lexical or phrase-based model.
However, when annealing Adam and BPE allevi-
ate these underlying problems, the neural model’s
accuracy can match or exceed that of the pre-
trained model, making external scores either com-
pletely redundant or (in the worst case) harm-
ful bias that must be overcome to produce cor-
rect translations. While pre-translation fares bet-
ter than lexicon bias, it suffers a reversal in one
scenario and a significant degradation in the other
when moving from a single model to an ensem-
ble. Even when bias from an external model im-
proves translation, it does so at the cost of diversity
by pushing the neural model’s preferences toward
those of the pre-trained model. These results fur-
ther validate claims of the importance of diversity
in model ensembles.

Applying dropout significantly improves all
configurations of the Czech-English system and
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some configurations of the English-French sys-
tem, leveling off with the strongest. This trend
follows previous work showing that dropout com-
bats overfitting of small data, though the point of
inflection is worth noting (Sennrich et al., 2016a;
Wu et al., 2016). Even though the English-French
data is still relatively small (220K sentences),
BPE leads to a smaller vocabulary of more gen-
eral translation units, effectively reducing spar-
sity, while annealing Adam can avoid getting stuck
in poor local optima. These techniques already
lead to better generalization without the need for
dropout. Finally, we can observe a few key prop-
erties of data bootstrapping, the best performing
technique on fully strengthened systems. Unlike
lexicon bias and pre-translation, it modifies only
the training data, allowing “purely neural” mod-
els to be learned from random initialization points.
This preserves model diversity, allowing ensem-
bles to benefit as well as single models. Further,
data bootstrapping is complementary to annealing
Adam and BPE; better optimization and a more
general vocabulary can make better use of the new
training instances.

While evaluation on simple vanilla NMT sys-
tems would indicate that all of the techniques in
this section lead to significant improvement for
both data sets, only evaluation on systems using
annealing Adam, byte pair encoding, and indepen-
dent model ensembling reveals both the reversals
of results on state-of-the-art systems and nuanced
interactions between techniques that we have re-
ported. Based on these results, we highly recom-
mend evaluating new techniques on systems that
are at least this strong and representative of those
deployed for real-world use.

7 Conclusion

In this work, we have empirically demonstrated
the effectiveness of Adam training with multiple
restarts and step size annealing, byte pair encod-
ing, and independent model ensembling both for
improving BLEU scores and increasing the relia-
bility of experimental results. Out of four previ-
ously published techniques for improving vanilla
NMT, only one, data bootstrapping via phrase ex-
traction, also improves a fully strengthened model
across all scenarios. For these reasons, we recom-
mend evaluating new model extensions and algo-
rithms on NMT systems at least as strong as those
we have described for maximally trustable results.
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