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Abstract

Individuals on social media may reveal
themselves to be in various states of cri-
sis (e.g. suicide, self-harm, abuse, or eat-
ing disorders). Detecting crisis from social
media text automatically and accurately
can have profound consequences.

However, detecting a general state of cri-
sis without explaining why has limited ap-
plications. An explanation in this context
is a coherent, concise subset of the text
that rationalizes the crisis detection. We
explore several methods to detect and ex-
plain crisis using a combination of neu-
ral and non-neural techniques. We eval-
uate these techniques on a unique data set
obtained from Koko, an anonymous emo-
tional support network available through
various messaging applications. We anno-
tate a small subset of the samples labeled
with crisis with corresponding explana-
tions. Our best technique significantly out-
performs the baseline for detection and ex-
planation.

1 Introduction

Approximately one person dies by suicide every
40 seconds (WHO, 2016). It accounts for approxi-
mately 1.5 % of all deaths, and is the second lead-
ing cause of death among young adults (WHO,
2016). There are indications that for each adult
who dies of suicide there may have been more
than 20 others attempting suicide (WHO, 2016).
Closely tied to suicide are self-harm, eating disor-
ders, and physical abuse. 13 to 23% of adolescents
engage in self-injury at some point (Jacobson and
Gould, 2007). In the United States, about 7 mil-
lion females and 1 million males suffer from eat-
ing disorders annually (Simon, 2013) and an aver-

age of 20 people are physically abused by intimate
partners every minute (NCADV, 2015). Self-harm
victims are more likely to die by suicide by an or-
der of magnitude (Anthony Bateman, 2014). Ad-
ditionally, eating disorders and physical abuse in-
crease the risk of suicide (Simon, 2013; NCADV,
2015).

We identify all of these phenomena (suicide,
self-harm, eating disorders, physical abuse), with
the term crisis. Someone who is in crisis is likely
in need of some form of immediate support, be
it intervention, therapy, or emergency. Roughly
a third of people who think about suicide make
a plan; 72% of those who report making a sui-
cide plan actually make an attempt (Kessler et al.,
1999).

Accurate, automatic detection of someone in
crisis in social media, messaging applications, and
voice assistants has profound consequences. A
crisis classifier can enable positive outcomes by
enabling human outreach at earlier stages, and res-
cues at later stages.

In many ways, however, it can still fall short of a
human detector, by way of lacking an explanation
or rationale of why classifier detected crisis. The
factors that explain why someone is in crisis can
range from suicidal ideation to eating disorders,
from self-harm to sexual abuse.

In crisis situations, triage can improve if the de-
tection system can explain why the person is cri-
sis. Someone who is about to die by suicide via
overdose should receive a different response than
someone who is considering anorexia

due to self-image issues. Population level
surveillance, diagnostics, and statistics are much
improved due to factor based explanation. Fi-
nally, in human-in-the-loop crisis systems, the hu-
man responder can better sift through information
if the factors of crisis were visually highlighted
through automated means (Dinakar et al., 2014).
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With the rise of complex neural models in clas-
sification tasks, we’ve seen gains in accuracy at
the cost of transparency and interpretability (Kuhn
and Johnson, 2013). In this work, we present mod-
els that we validate both for their raw accuracy and
for the quality of their explanations. Validating a
model’s explanations, in addition to its detection
performance, can improve interpretability in the
model. In summation, automatically generating
explanations for crisis detection scales and pays
off in many ways.

While we evaluate our models’ explanations
against human reference explanations, it is not
practical to collect enough explanations to train
these models on such data. Collecting an expla-
nation requires an annotator to write free text or to
highlight text for every case of crisis, sometimes
more than once for a post (e.g. for a sexual abuse
victim considering suicide), while merely identi-
fying crisis is a simple binary decision task that
can be performed much more quickly and cheaply.

In this paper, we explore the problem of gener-
ating explanations for crisis without explicit super-
vision using modern representation learning tech-
niques. We demonstrate our success comparing
our proposed models with a variety of explana-
tory methods and models on a rationale-labeled
test set. We evaluate the generated explanations
through ROUGE metrics against human-produced
references. In addition, we show detection perfor-
mance that outperforms prior methods.

2 Related Work

Detecting Crisis Wood et al. (2016) identify
125 Twitter users who publicly state their suicide
attempt online on a specific date and have tweets
preceding the suicide attempt. They artificially
balance these tweets using data from random users
who are assumed to be neurotypical, acknowledg-
ing that this data will be contaminated with users
who also ideate and attempt suicide. They train
simple, linear classifiers that show promise in de-
tecting these suicidal users and discuss the diffi-
culties of realizing this technology, highlighting
privacy and intervention concerns. In our work,
we attempt detection and explanation on phenom-
ena that includes but is not limited to suicide on
a dataset that is significantly larger and not artifi-
cially balanced. However, we do not incorporate
the record of suicide attempt as signal when label-
ing.

Gkotsis et al. (2016) operate on a filtered sub-
set of mental health records to determine whether
a mention of suicide is affirmed or negated. They
do classification on mental health records, which
are filtered by the suicid* keyword. The goal
of their work was the development of improved
information retrieval systems for clinicians and re-
searchers, with a specific focus on suicide risk as-
sessment. Thus, the domain is constrained. Their
work also differs from ours significantly in its
technical execution. Rather than use neural net-
work classifiers, they use probabilistic context free
grammars to execute negation detection. This task
is quite different than ours, both in dataset and ap-
proach, and is most likely not applicable to open-
domain social media text. They also do not aim to
or need to provide explainable detections, as men-
tions of suicide are clearly present in all of their
data and negation detection is sufficient ’rationale’
for affirming or negating that mention.

Tong et al. (2014) annotate Twitter data for
suicide-risk with the level of distress as the label
and achieve high inter-annotator agreement. They
use a combination of specialized keyword search
and LIWC sadness scores (Pennebaker et al.,
2001) to filter 2.5 million tweets down to 2000 in
order to make the annotation task tractable. Our
source dataset, which we introduce in the next sec-
tion, has a significantly higher base rate of crisis;
thus, no filtering is necessary. They train SVM
classifiers on bag of n-grams to detect distress on
different subsets of annotations, but do not explore
neural classifiers, nor unsupervised explanations
of detections.

Lehrman et al. (2012) and O’Dea et al. (2015)
also detect distress on small datasets using sim-
ple classifiers. Lehrman et al. (2012) annotate 200
samples for distress level and discretize counts re-
lated to bag of word, part of speech, sentence com-
plexity and sentiment word features to train a va-
riety of multiclass classifiers. O’Dea et al. (2015)
annotated nearly 2000 tweets for different levels
of suicidality and used word counts as features,
filtered by document frequency. In our work, we
compare neural techniques against linear models
trained on word frequency counts both for detec-
tion and explanation as a baseline. Due to the rel-
atively large amount of data in our training set, we
do not use any custom features for the baseline.

Mowery et al. (2016) detect depression in Twit-
ter data in two stages: 1) detecting evidence of de-
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pression at all and 2) classify the specific depres-
sive symptom if depression was detected. This is a
kind of explanation in that it directly detects one of
three symptoms of depression (fatigue, disturbed
sleep, depressed mood). However, their data is
explicitly annotated for these sub-factors, whereas
our data is not. 1,656 tweets in their dataset were
annotated with specific depressive symptoms.

Interpretable Neural Networks In the past few
years, neural attention mechanisms over words
(Bahdanau et al., 2014) have led to improvements
in performance and interpretability in a range of
tasks, such as translation (Bahdanau) and natu-
ral language inference (Rocktäschel et al., 2015).
These models induce a soft alignment between
two sequences with the primary aim of using it to
remove an information bottleneck, but this align-
ment can be also be used quite effectively to visu-
alize which inputs drive model behavior.

Lei et al. (2016) present a more direct method
for training interpretable text classifiers. Their
model is also trained end-to-end, but instead of in-
ducing a soft weighting, it extracts a set of short
subspans of each input text that are meant to serve
as sufficient evidence for the final model decision.
In another work with similar goals, Ribeiro et al.
(2016) introduce a model agnostic framework for
intepretability, LIME, that learns an interpretable
model over a given sample input that is locally
faithful to the original trained model.

3 Methods

Our training set consists of N examples
{Xi, Y i}Ni=1 where the input Xi is a sequence
of tokens w1, w2, ..., wT , and the output Y i is a
binary indicator of crisis.

3.1 Word Embeddings

Each token in the input is mapped to an embed-
ding. We use reference GloVe embeddings trained
on Twitter data (Pennington et al., 2014). We used
the 200 dimensional embeddings for all our exper-
iments, so each word wt is mapped to xt ∈ R200.
We denote the full embedded sequence as x1:T .

3.2 Recurrent Neural Networks

A recurrent neural network (RNN) extends on a
traditional neural network to recursively encode a
sequence of vectors, x1:T , into a sequence of hid-
den states. The hidden state of the RNN at t− 1 is

fed back into the RNN for the next time step.

ht = f(xt, ht−1; Θ)

This allows the network to construct a representa-
tion incrementally as it reads the input sequence.
In particular, we encode the sequence using a
gated recurrent unit (GRU; Cho et al., 2014) RNN.
The GRU employs an update gate zt and reset gate
rt that are used to compute the next hidden state ht

ht = (1− zt)ht−1 + zth̃t

zt = σ(Wzxt + Uzht−1)

h̃t = tanh(Wxt + U(rt � ht−1))
rt = σ(Wrxt + Urht−1)

We use a bidirectional RNN (running one model in
each direction) and concatenate the hidden states
of each model for each word to obtain a contextual
word representation hbi

t .

3.3 Attention over Words

With attention, a scoring function scores the rele-
vance of each contextual word representation hbi

t .
We employ the unconditional attention mecha-
nism used to do document classification employed
by Yang et al. (2016).

ut = tanh(Wwh
bi
t + bw)

αt =
exput∑
t

exput

d =
∑

t

αtht

The attention mechanism serves two purposes.
d acts as a contextual document representation
which can be fed into a downstream model com-
ponent for detection. In addition, the score vec-
tor u1:N , can be utilized to seed our explanation,
which will be expanded on in a following sec-
tion. Optionally for detection, we encode the doc-
ument by using the last hidden state of a single for-
ward GRU, without the reverse GRU and attention
mechanism. Both encoding schemes are evaluated
in our experiments.

3.4 Training Objective

The final document encoding of each sample, d, is
fed into a sigmoid layer with one node to detect
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the probability of crisis. We minimize the logistic
loss objective during training.

l(y, p) = −ylog(p)− (1− y)log(1− p)

where y is the true value and p is the output of the
logistic output layer.

3.5 Seeding the Explanations
Our next goal is to generate explanations given the
inputs and outputs for our trained model. We do
this by building a subset of words which ‘seed’ the
explanation generation function. The explanation
generation function is fixed while testing across
all seeding techniques, thus allowing extensibility
by modularizing the seed function using a relevant
model. The seed function is meant to give a set
of tokens from the input that most influenced the
prediction, thus sewing the initial stitches of the
explanation. For the task of detecting crisis, de-
scriptive content words, such as adjectives, nouns,
and verbs, are desirable compared to stop words or
punctuation.

We test three techniques of seeding words for a
given input: (1) Using the magnitudes of activated
coefficients in a logistic regression model. This
acts as our baseline. (2) Using the distribution of
attention from our neural model. (3) Using LIME,
which can generate words that led to a prediction
for any model. Each seed function is passed in
the number of seed words to return, k. This al-
lows us to maintain similar output behavior for all
three techniques; it also allows us to extend the
seed functions to more complex models. We will
now detail how seeding works for each of these
mechanisms.

1. Logistic Coefficients: Logistic regression is
a linear model that learns a vector of weights
for a fixed set of features to detect in binary
classification. As a baseline, we train a lo-
gistic regression model on unigrams to learn
a vector of weights for each word in the vo-
cabulary. For our seed function, we find the
k most highly-weighted activated features ac-
cording to the model. A feature is activated if
the word occurs in the given input.

2. Neural Attention: In this setting, we select
seeds by sorting the words by their atten-
tion weights u. In order to get human inter-
pretable scores for attention, we introduced

a configurable dial to control how attention
was distributed over the input by introducing
an L2 penalty on the output of the attention.

3. LIME: The LIME API contains a
num features parameter in the
explain instance function. Each
explanation will then result in learning an
interpretable model, which can be used to
then seed the explanation. The LIME API is
applied to both models, the baseline logistic
and the neural model.

3.6 Explanation Generation Algorithm

We use a novel algorithm for producing expla-
nations that depends on seeds from a separately-
developed seeding module. The algorithm acts
on the input text and the k explanation seeds. It
works as follows. First, the sentence of impor-
tance is identified by taking the sentence with the
most seeds. The identified sentence is then parsed
with a dependency parser (Honnibal and Johnson,
2015), and traversed from the root to find the high-
est seed in the sentence. If the highest seed token
is not a verb and not the head of the entire sen-
tence, we then traverse to the seed’s head node.
Subsequently, the subtree phrase of the highest
seed is used for the explanation. Since the parse
is projective, the subtree is necessarily a contigu-
ous sequence of tokens.

4 Experiments

4.1 Training Data

Koko has an anonymous peer-to-peer therapy net-
work based on an clinical trial at MIT (Morris
et al., 2015), which is made available through
chatbots on a variety of social media platforms in-
cluding Facebook, Kik, and Tumblr. They pro-
vided us with our training data through a research
partnership. The posts on the platform gener-
ally come from users who are experiencing neg-
ative thoughts and need some form of emotional
support. Each post is on average 3.1 sentences
long with a standard deviation of 1.7 sentences.
The training set is roughly 106,000 binary labeled
posts (crisis or not).

Their data was annotated for crisis by crowd-
workers. During annotation, annotations were
given clear instructions on what consists of crisis,
examples, and common mistakes and helpful tips.
These instructions were revised over multiple iter-
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Figure 1: Visualizing Attention for crisis.

ations of small batches of data to improve inter-
annotator agreement. Using a minimum of three
labelers per sample, they achieve over 95% inter-
annotator agreement.

Because the platform is a support network, the
rates of depression and other mental disorders are
high: the annotation task identified roughly 20%
of the training data as crisis. This is in contrast to
previous work using Twitter data, where multiple
layers of filtering are required to get a reasonable
sample of distress (Tong et al., 2014). Our dataset
requires no filtering and estimates the natural dis-
tribution of the platform.

4.2 Explanation data
We have select a set of 1242 labeled posts as our
test set. Of these, 200 are labeled crisis. We anno-
tate the 200 crisis samples with their correspond-
ing explanations. An explanation is a phrase or
clause in the post that most strongly identifies the
rationale behind the crisis label. When selecting
the explanation, we aim for them to be accurate,
coherent, and concise.

4.3 Model Configuration and Training
We tokenize the data using Spacy (Honnibal and
Johnson, 2015). We do not fine-tune the pretrained
GloVe embeddings, but rather learn a simple em-
bedding transformation matrix that intervenes be-
tween the embeddings and the RNNs. We use 200
dimensional embeddings and 100 dimensional for-
ward and backward GRUs (yielding 200 dimen-
sional contextual representations). We apply an L2
penalty on the attention output using λ = .0001.
We pad each input to 150 words. We train us-
ing RMSprop with a learning rate of .001 and a
batch size of 256. We add dropout with a drop

rate of 0.1 in the final layer before detecting to re-
duce overfitting. We determined the dropout rate,
batch size, and input length empirically through
random hyperparameter search and determined λ
for the attention penalty using human evaluation.
We use the best model from 20 epochs of training
selected using a validation sample of 10% of the
source data (excluding the test data).

5 Results and Discussion

5.1 Detection Evaluation

The neural models significantly outperform the lo-
gistic model in detection accuracy (Table 1), with
the best neural model achieving a .80 F1 on the
crisis detections, compared to .66 for the logis-
tic model. The neural attention model achieves a
.76 F1 score, which is still significantly better than
the linear baseline. The best model does not have
an attention penultimate layer, bur rather a single
feedforward GRU layer.

5.2 Attention Visualization

We first validate that the attention mechanism
yields distributions that meet our expectations.
This is done by visualizing the attention using a
heat map, with each normalized attention weight
aligned with the corresponding token in the input.
Initially, we found that the attention distribution
had a very low entropy, placing the bulk of the
probability in a single token of the input. We pe-
nalized low entropy outputs using an L2 penalty,
controlled by a λ parameter. We did not fur-
ther tune it to boost explanation evaluation scores,
though we expect this could improve performance.
Figure 1 demonstrates the attention output for two
crisis samples. For the first sample, we see that
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Precision Recall F1

logistic 0.87 0.53 0.66
rnn+attention 0.85 0.69 0.76
best rnn 0.82 0.77 .80

Table 1: Crisis Detection Performance on Test
Data

attention is focused around the final clause, and
is not concentrated entirely on one word. As one
would expect, “i cut myself” fetches the highest
weight in the attention distribution. The second
visualization shows singular attention on the word
‘suicide’, thus placing markedly less importance
on the rest of the input. This differentiation be-
tween background information and crisis signal
provides a reassuring signal that the model is using
reasonable features.

5.3 Qualitative Explanation Results

Interestingly, all of the techniques resulted in sev-
eral high quality explanations. We surveyed about
20 samples and for each one, at least one of the
seeding functions contained the correct explana-
tion. Surprisingly, the logistic baseline performed
quite well in this capacity. In Table 2, we show
an example where all of the techniques got the
identical result. This is likely due to the predic-
tive power of the phrase ‘kill myself’. In many
cases, the generated explanation contained more
text than is necessary to accurately capture the
gold explanation. The second example (Table 2)
shows this in the neural+attention technique. This
may suggest room for improvement in the expla-
nation generation technique. The third example
shows a difficult case in which the majority of the
text is background information and only the last
word of the input is included in the gold explana-
tion. We see that both neural models and logis-
tic+LIME are successful in capturing roughly the
correct explanation.

5.4 Quantitative Explanation Results

We evaluate the generated explanations using
ROUGE-1 and ROUGE-2 (Lin, 2004), which
measure the overlapping units (unigrams and bi-
grams respectively) of the generated text and refer-
ence texts. In Table 3 and 4, the average ROUGE-
1 and ROUGE-2 scores for the generated expla-
nations are listed for each model and seed strat-

Text Im really lonely and i want
someone who loves me cares
for me and i love (ima guy) i
want to kill myself because i
cant get a girlfriend

Gold kill myself
logistic+coef to kill myself
logistic+LIME to kill myself
neural+attention to kill myself
neural+LIME to kill myself

Text I have to face many changes
in the next few months but
I’m not ready. Instead I hide
in fast food and tv shows.
I’m scared that my depres-
sion will come back and turn
to suicidal thoughts.. Big
changes ahead make me wor-
ried about suicidal thoughts
overwhelming me so I hide.

Gold suicidal thoughts
logistic+coef Big changes ahead
logistic+LIME I have to face many changes

in the next few months but
I’m not ready.

neural+attention about suicidal thoughts over-
whelming me so I hide

neural+LIME suicidal thoughts

Text My parents want me to be a
perfect child but I have de-
pression and anxiety. Suicide

Gold Suicide
logistic+coef me to be a perfect child
logistic+LIME me to be a perfect child
neural+attention I have depression and anxi-

ety. Suicide
neural+LIME I have depression and anxi-

ety.

Text Everyone at school is call-
ing me a nerd,bitch,loser
etc... The problem is that
I’m starting to believe them
and lately I’ve started cut-
ting..I’m gonna go insane or
lose myself

Gold I’ve started cutting
logistic+coef Everyone at school is calling

me a nerd, bitch, loser etc..
logistic+LIME cutting
neural+attention lately I’ve started cutting.
neural+LIME lately I’ve started cutting.

Table 2: Explanation Samples71



Precision Recall F1

logistic+coef 0.358 0.590 0.396
logistic+LIME 0.409 0.610 0.432
neural+attention 0.360 0.605 0.406
neural+LIME 0.492 0.745 0.536

Table 3: ROUGE-1 Scores

Precision Recall F1

logistic+coef 0.267 0.475 0.289
logistic+LIME 0.301 0.478 0.311
neural+attention 0.286 0.485 0.309
neural+LIME 0.397 0.615 0.413

Table 4: ROUGE-2 Scores

egy. By a large margin, the neural classifier1 in
conjunction with the LIME seed function outper-
formed the rest of the models. In ROUGE-2 eval-
uation, it beats the next best average F1 score by
a margin of 10 points and in ROUGE-1 evalua-
tion, it beats the next best average F1 by 12 points.
Since LIME directly determines which input most
influences the prediction, while attention does so
only indirectly, this result makes sense. However,
the LIME seeding function is the slowest approach
we consider, taking up to a minute to generate a
explanation. The neural attention seeding is neg-
ligible in contrast to this. In Table 3, the ROUGE
Metrics show similar performance for the baseline
logistic model and the neural model. However,
in Table 1, we see that detection output is much
better for the neural models. This suggests that
though the logistic regression is quite reasonable
in ranking features by weights, it fails to capture
subtleties and dependencies in a sequence that an
RNN captures. Thus, neural+attention is a better
choice between the two. The logistic+LIME out-
performs the baseline by 5 points in precision for
ROUGE-1 and around 3.5 points in precision for
ROUGE-2. This exemplifies the efficacy of LIME,
which is tuned for the individual example, rather
than the model coefficients, which are tuned for
the training data.

6 Conclusion

In this paper, we present and compare explanation-
oriented methods for the detection of crisis in so-

1We use the RNN with attention in this result. The for-
ward RNN in conjunction with LIME showed nearly identi-
cal ROUGE performance.

cial media text. We introduce a modular approach
to generating explanations and make use of neural
techniques that significantly outperform our base-
line. The best models presented are both effec-
tive at detection and produce explanations simi-
lar to those produced by human annotators. We
find this exciting for two reasons: Within the do-
main of crisis identification, successes in explana-
tion help to build the trust in trained models that is
necessary to deploy them in such a sensitive con-
text. Looking beyond this, we expect that our tech-
niques may generalize to text classification more
broadly. In the future experiments, we hope to ex-
plore human evaluation of the generated explana-
tions as an indicator of trust in the model, to in-
vestigate compression-based approaches to expla-
nation (Lei et al., 2016), and to consider richer ar-
chitectures for text classification.
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