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Abstract

Experimenting with a new dataset of 1.6M
user comments from a Greek news portal
and existing datasets of English Wikipedia
comments, we show that an RNN outper-
forms the previous state of the art in mod-
eration. A deep, classification-specific at-
tention mechanism improves further the
overall performance of the RNN. We also
compare against a CNN and a word-list
baseline, considering both fully automatic
and semi-automatic moderation.

1 Introduction

User comments play a central role in social me-
dia and online discussion fora. News portals and
blogs often also allow their readers to comment
in order to get feedback, engage their readers,
and build customer loyalty. User comments, how-
ever, and more generally user content can also
be abusive (e.g., bullying, profanity, hate speech).
Social media are increasingly under pressure to
combat abusive content. News portals also suf-
fer from abusive user comments, which damage
their reputation and make them liable to fines, e.g.,
when hosting comments encouraging illegal ac-
tions. They often employ moderators, who are fre-
quently overwhelmed by the volume of comments.
Readers are disappointed when non-abusive com-
ments do not appear quickly online because of
moderation delays. Smaller news portals may be
unable to employ moderators, and some are forced
to shut down their comments sections entirely.1

We examine how deep learning (Goodfellow
et al., 2016; Goldberg, 2016) can be used to mod-
erate user comments. We experiment with a new
dataset of approx. 1.6M manually moderated user

1See, for example, http://niemanreports.org/
articles/the-future-of-comments/.
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Figure 1: Semi-automatic moderation.

comments from a Greek sports portal (Gazzetta),
which we make publicly available.2 Furthermore,
we provide word embeddings pre-trained on 5.2M
comments from the same portal. We also exper-
iment on the datasets of Wulczyn et al. (2017),
which contain English Wikipedia comments la-
beled for personal attacks, aggression, toxicity.

In a fully automatic scenario, a system directly
accepts or rejects comments. Although this sce-
nario may be the only available one, e.g., when
portals cannot afford moderators, it is unrealistic
to expect that fully automatic moderation will be
perfect, because abusive comments may involve
irony, sarcasm, harassment without profanity etc.,
which are particularly difficult for machines to
handle. When moderators are available, it is more
realistic to develop semi-automatic systems to as-
sist rather than replace them, a scenario that has
not been considered in previous work. Comments
for which the system is uncertain (Fig. 1) are
shown to a moderator to decide; all other com-
ments are accepted or rejected by the system. We
discuss how moderation systems can be tuned, de-
pending on the availability and workload of mod-
erators. We also introduce additional evaluation

2The portal is http://www.gazzetta.gr/. In-
structions to obtain the Gazzetta data will be posted at http:
//nlp.cs.aueb.gr/software.html.
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Dataset/Split Accepted Rejected Total
G-TRAIN-L 960,378 (66%) 489,222 (34%) 1,45M
G-TRAIN-S 67,828 (68%) 32,172 (32%) 100,000

G-DEV 20,236 (68%) 9,464 (32%) 29,700
G-TEST-L 20,064 (68%) 9,636 (32%) 29,700
G-TEST-S 1,068 (71%) 432 (29%) 1,500

G-TEST-S-R 1,174 (78%) 326 (22%) 1,500
W-ATT-TRAIN 61,447 (88%) 8,079 (12%) 69,526

W-ATT-DEV 20,405 (88%) 2,755 (12%) 23,160
W-ATT-TEST 20,422 (88%) 2,756 (12%) 23,178

W-TOX-TRAIN 86,447 (90%) 9,245 (10%) 95,692
W-TOX-DEV 29,059 (90%) 3,069 (10%) 32,128
W-TOX-TEST 28,818 (90%) 3,048 (10%) 31,866

Table 1: Statistics of the datasets used.

measures for the semi-automatic scenario.
On both Gazzetta and Wikipedia comments and

for both scenarios (automatic, semi-automatic),
we show that a recursive neural network (RNN)
outperforms the system of Wulczyn et al. (2017),
the previous state of the art for comment modera-
tion, which employed logistic regression (LR) or a
multi-layered Perceptron (MLP). We also propose
an attention mechanism that improves the over-
all performance of the RNN. Our attention differs
from most previous ones (Bahdanau et al., 2015;
Luong et al., 2015) in that it is used in text clas-
sification, where there is no previously generated
output subsequence to drive the attention, unlike
sequence-to-sequence models (Sutskever et al.,
2014). In effect, our attention mechanism detects
the words of a comment that affect mostly the clas-
sification decision (accept, reject), by examining
them in the context of the particular comment.

Our main contributions are: (i) We release a
new dataset of 1.6M moderated user comments.
(ii) We are among the first to apply deep learning
to user comment moderation, and we show that an
RNN with a novel classification-specific attention
mechanism outperforms the previous state of the
art. (iii) Unlike previous work, we also consider
a semi-automatic scenario, along with threshold
tuning and evaluation measures for it.

2 Datasets

We first discuss the datasets we used, to help ac-
quaint the reader with the problem.

2.1 Gazzetta dataset

There are approx. 1.45M training comments (cov-
ering Jan. 1, 2015 to Oct. 6, 2016) in the Gazzetta
dataset; we call them G-TRAIN-L (Table 1). Some
experiments use only the first 100K comments of

G-TRAIN-L, called G-TRAIN-S. An additional set
of 60,900 comments (Oct. 7 to Nov. 11, 2016)
was split to development (G-DEV, 29,700 com-
ments), large test (G-TEST-L, 29,700), and small
test set (G-TEST-S, 1,500). Gazzetta’s moderators
(2 full-time, plus journalists occasionally helping)
are occasionally instructed to be stricter (e.g., dur-
ing violent events). To get a more accurate view
of performance in normal situations, we manually
re-moderated (labeled as ‘accept’ or ‘reject’) the
comments of G-TEST-S, producing G-TEST-S-R.
The reject ratio is approximately 30% in all sub-
sets, except for G-TEST-S-R where it drops to 22%,
because there are no occasions where the modera-
tors were instructed to be stricter in G-TEST-S-R.

Each G-TEST-S-R comment was re-moderated
by 5 annotators. Krippendorff’s (2004) alpha was
0.4762, close to the value (0.45) reported by Wul-
czyn et al. (2017) for Wikipedia comments. Using
Cohen’s Kappa (Cohen, 1960), the mean pairwise
agreement was 0.4749. The mean pairwise per-
centage of agreement (% of comments each pair
of annotators agreed on) was 81.33%. Cohen’s
Kappa and Krippendorff’s alpha lead to moder-
ate scores, because they account for agreement by
chance, which is high when there is class imbal-
ance (22% reject, 78% accept in G-TEST-S-R).

We also provide 300-dimensional word em-
beddings, pre-trained on approx. 5.2M comments
(268M tokens) from Gazzetta using WORD2VEC

(Mikolov et al., 2013a,b).3 This larger dataset can-
not be used to train classifiers, because most of its
comments are from a period (before 2015) when
Gazzetta did not employ moderators.

2.2 Wikipedia datasets

Wulczyn et al. (2017) created three datasets con-
taining English Wikipedia talk page comments.

Attacks dataset: This dataset contains approx.
115K comments, which were labeled as personal
attacks (reject) or not (accept) using crowdsourc-
ing. Each comment was labeled by at least 10 an-
notators. Inter-annotator agreement, measured on
a random sample of 1K comments using Krippen-
dorff’s (2004) alpha, was 0.45. The gold label of
each comment is determined by the majority of an-
notators, leading to binary labels (accept, reject).
Alternatively, the gold label is the percentage of
annotators that labeled the comment as ‘accept’

3We used CBOW, window size 5, min. term freq. 5, nega-
tive sampling, obtaining a vocabulary size of approx. 478K.
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(or ‘reject’), leading to probabilistic labels.4 The
dataset is split in three parts (Table 1): training (W-
ATT-TRAIN, 69,526 comments), development (W-
ATT-DEV, 23,160), and test (W-ATT-TEST, 23,178
comments). In all three parts, the rejected com-
ments are 12%, but this ratio is artificial (in effect,
Wulczyn et al. oversampled comments posted by
banned users), unlike Gazzetta subsets where the
truly observed accept/reject ratios are used.

Toxicity dataset: This dataset was created like
the previous one, but contains more comments
(159,686), now labeled as toxic (reject) or not (ac-
cept). Inter-annotator agreement was not reported.
Again, binary or probabilistic gold labels can be
used. The dataset is split in three parts (Table 1):
training (W-TOX-TRAIN, 95,692 comments), de-
velopment (W-TOX-DEV, 32,128), and test (W-
TOX-TEST, 31,866). In all three parts, the rejected
(toxic) comments are 10%, again an artificial ratio.

Wikipedia comments are longer (median 38
and 39 tokens for attacks, toxicity) compared to
Gazzetta’s (median 25). Wulczyn et al. (2017)
also created an ‘aggression’ dataset containing the
same comments as the personal attacks one, but
now labeled as aggressive or not. The (proba-
bilistic) labels of the two datasets are very highly
correlated (0.8992 Spearman, 0.9718 Pearson) and
we do not consider the aggression dataset further.

3 Methods

We experimented with an RNN operating on word
embeddings, the same RNN enhanced with our at-
tention mechanism (a-RNN), several variants of
a-RNN, a vanilla convolutional neural network
(CNN) also operating on word embeddings, the
DETOX system of Wulczyn et al. (2017), and a
baseline that uses word lists with precision scores.

3.1 DETOX

DETOX (Wulczyn et al., 2017) was the previous
state of the art in comment moderation, in the
sense that it had the best reported results on the
Wikipedia datasets (Section 2.2), the largest previ-
ous publicly available datasets of moderated user
comments.5 DETOX represents each comment as a

4We also construct probabilistic gold labels (in addition to
binary ones) for G-TEST-S-R, where there are 5 annotators.

5Two of the co-authors of Wulczyn et al. (2017) are with
Jigsaw, who recently announced Perspective, a system to de-
tect ‘toxic’ comments. Perspective is not the same as DETOX
(personal communication), but we were unable to obtain sci-
entific articles describing it. We have applied for access to its

bag of word n-grams (n ≤ 2, each comment be-
comes a bag containing its 1-grams and 2-grams)
or a bag of character n-grams (n ≤ 5, each com-
ment becomes a bag containing character 1-grams,
. . . , 5-grams). DETOX can rely on a logistic regres-
sion (LR) or multi-layer Perceptron (MLP) clas-
sifier, and use binary or probabilistic gold labels
(Section 2.2) during training. We used the DETOX

implementation of Wulczyn et al. and the same
grid search to tune the hyper-parameters that se-
lect word or character n-grams, classifier (LR or
MLP), and gold labels (binary or probabilistic).
For Gazzetta, only binary gold labels were pos-
sible, since G-TRAIN-L and G-TRAIN-S have a
single gold label per comment. Unlike Wulczyn
et al., we tuned the hyper-parameters by evalu-
ating (computing AUC and Spearman, Section 4)
on a random 2% of held-out comments of W-ATT-
TRAIN, W-TOX-TRAIN, or G-TRAIN-S, instead of
the development subsets, to be able to obtain more
realistic results from the development sets while
developing the methods. The tuning always se-
lected character n-grams, as in the work of Wul-
czyn et al., and LR to MLP, whereas Wulczyn et al.
reported slightly higher performance for the MLP

on W-ATT-DEV.6 The tuning also selected proba-
bilistic labels when available (Wikipedia datasets),
as in the work of Wulczyn et al.

3.2 RNN-based methods
RNN: The RNN method is a chain of GRU

cells (Cho et al., 2014) that transforms the to-
kens w1 . . . , wk of each comment to hidden states
h1 . . . , hk, followed by an LR layer that uses hk
to classify the comment (accept, reject). Formally,
given the vocabulary V , a matrixE ∈ Rd×|V | con-
taining d-dimensional word embeddings, an initial
h0, and a comment c = 〈w1, . . . , wk〉, the RNN

computes h1, . . . , hk as follows (ht ∈ Rm):

h̃t = tanh(Whxt + Uh(rt � ht−1) + bh)
ht = (1− zt)� ht−1 + zt � h̃t
zt = σ(Wzxt + Uzht−1 + bz)
rt = σ(Wrxt + Urht−1 + br)

where h̃t ∈ Rm is the proposed hidden state at po-
sition t, obtained by considering the word embed-
ding xt of token wt and the previous hidden state

API (http://www.perspectiveapi.com/).
6Wulczyn et al. (2017) report results only on W-ATT-DEV.

We repeated the tuning by evaluating on W-ATT-DEV, and
again character n-grams with LR were selected.
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ht−1;� denotes element-wise multiplication; rt ∈
Rm is the reset gate (for rt all zeros, it allows the
RNN to forget the previous state ht−1); zt ∈ Rm

is the update gate (for zt all zeros, it allows the
RNN to ignore the new proposed h̃t, hence also
xt, and copy ht−1 as ht); σ is the sigmoid func-
tion; Wh,Wz,Wr ∈ Rm×d; Uh, Uz, Ur ∈ Rm×m;
bh, bz, br ∈ Rm. Once hk has been computed, the
LR layer estimates the probability that comment c
should be rejected, with Wp ∈ R1×m, bp ∈ R:

PRNN(reject|c) = σ(Wphk + bp)

a-RNN: When the attention mechanism is added,
the LR layer considers the weighted sum hsum of
all the hidden states, instead of just hk (Fig. 2):

hsum =
k∑
t=1

atht (1)

Pa−RNN(reject|c) = σ(Wphsum + bp)

The weights at are produced by an attention mech-
anism, which is an MLP with l layers:

a
(1)
t = ReLU(W (1)ht + b(1)) (2)

. . .

a
(l−1)
t = ReLU(W (l−1)a

(l−2)
t + b(l−1))

a
(l)
t = W (l)a

(l−1)
t + b(l)

at = softmax(a(l)
t ; a(l)

1 , . . . , a
(l)
k )

where a(1)
t , . . . , a

(l−1)
t ∈ Rr, a(l)

t , at ∈ R, W (1) ∈
Rr×m, W (2), . . . ,W (l−1) ∈ Rr×r, W (l) ∈ R1×r,
b(1), . . . , b(l−1) ∈ Rr, b(l) ∈ R. The softmax
operates across all the a(l)

t (t = 1, . . . , k), making
the attention weights at sum to 1. Our attention
mechanism differs from most previous ones (Mnih
et al., 2014; Bahdanau et al., 2015; Xu et al., 2015;
Luong et al., 2015) in that it is used in a classifi-
cation setting, where there is no previously gen-
erated output subsequence (e.g., partly generated
translation) to drive the attention (e.g., assign more
weight to source words to translate next), unlike
seq2seq models (Sutskever et al., 2014). It assigns
larger weights at to hidden states ht correspond-
ing to positions where there is more evidence that
the comment should be accepted or rejected.

Yang et al. (2016) use a similar attention mech-
anism, but ours is deeper. In effect they always
set l = 2, whereas we allow l to be larger (tuning
selects l = 4).7 On the other hand, the attention

7Yang et al. use tanh instead of ReLU in Eq. 2, which
works worse in our case, and no bias b(l) in the l-th layer.

α2
(l)α1

(l)

...

x1 x2 xk
...

acceptance 
probability

rejection 
probability

h0 h1 h2

... ... ...

αkα2α1 ×h1 h2 hk× × ...

hk

A
tte

nt
io

n 
M

LP

Logistic
Regression

RNN

softmax

αk
(l)

Figure 2: Illustration of a-RNN.

mechanism of Yang et al. is part of a classification
method for longer texts (e.g., product reviews).
Their method uses two GRU RNNs, both bidirec-
tional (Schuster and Paliwal, 1997), one turning
the word embeddings of each sentence to a sen-
tence embedding, and one turning the sentence
embeddings to a document embedding, which is
then fed to an LR layer. Yang et al. use their at-
tention mechanism in both RNNs, to assign atten-
tion scores to words and sentences. We consider
shorter texts (comments), we have a single RNN,
and we assign attention scores to words only.8

da-RNN: In a variant of a-RNN, called da-RNN (di-
rect attention), the input to the first layer of the at-
tention mechanism is the embedding xt of word
wt, rather than ht (cf. Eq. 2; W (1,x) ∈ Rr×d):

a
(1)
t = ReLU(W (1,x)xt + b(1)) (3)

Intuitively, the attention of a-RNN considers each
word embedding xt in its (left) context, modelled
by ht, whereas the attention of da-RNN considers
directly xt without its context, but hsum is still the
weighted sum of the hidden states (Eq. 1).

eq-RNN: In another variant of a-RNN, called eq-
RNN, we assign equal attention to all the hidden
states. The feature vector of the LR layer is now
the average hsum = 1

k

∑k
t=1 ht (cf. Eq. 1).

da-CENT: For ablation testing, we also experi-
ment with a variant, called da-CENT, that does not
use the hidden states of the RNN. The input to the
attention mechanism is now directly the embed-
ding xt instead of ht (as in da-RNN, Eq. 3), and

8We tried a bidirectional instead of unidirectional GRU
chain in our methods, also replacing the LR layer by a deeper
classification MLP, but there were no improvements.
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hsum is the weighted average (centroid) of word
embeddings hsum =

∑k
t=1 atxt (cf. Eq. 1).9

eq-CENT: For further ablation, we also experi-
ment with eq-CENT, which uses neither the RNN

nor the attention mechanism. The feature vector
of the LR layer is now simply the average of word
embeddings hsum = 1

k

∑k
t=1 xt (cf. Eq. 1).

We set l = 4, d = 300,m = r = 128,
having tuned the hyper-parameters of RNN and
a-RNN on the same 2% held-out training com-
ments used to tune DETOX; da-RNN, eq-RNN, da-
CENT, and eq-CENT use the same hyper-parameter
values as a-RNN, to make their results more di-
rectly comparable and save time. We use Glo-
rot initialization (Glorot and Bengio, 2010), cross-
entropy loss, and Adam (Kingma and Ba, 2015).10

Early stopping evaluates on the same held-out sub-
sets. For Gazzetta, word embeddings are initial-
ized to the WORD2VEC embeddings we provide
(Section 2.1). For the Wikipedia datasets, they
are initialized to GLOVE embeddings (Pennington
et al., 2014).11 In both cases, the embeddings are
updated during backpropagation. Out of vocabu-
lary (OOV) words, meaning words not encountered
in the training set and/or words we have no ini-
tial embeddings for, are mapped (during training
and testing) to a single randomly initialized em-
bedding, which is also updated during training.12

3.3 CNN

We also compare against a vanilla CNN operating
on word embeddings. We describe the CNN only
briefly, because it is very similar to that of of Kim
(2014); see also Goldberg (2016) for an introduc-
tion to CNNs, and Zhang and Wallace (2015).

For Wikipedia comments, we use a ‘narrow’
convolution layer, with kernels sliding (stride 1)
over (entire) embeddings of word n-grams of sizes
n = 1, . . . , 4. We use 300 kernels for each n
value, a total of 1,200 kernels. The outputs of
each kernel, obtained by applying the kernel to
the different n-grams of a comment c, are then
max-pooled, leading to a single output per ker-
nel. The resulting feature vector (1,200 max-

9We also tried tf-idf scores in the hsum of da-CENT, instead
of attention scores, but preliminary results were poor.

10We used Keras (http://keras.io/) with the Ten-
sorFlow back-end (http://www.tensorflow.org/).

11See https://nlp.stanford.edu/projects/
glove/. We use ‘Common Crawl’ (840B tokens).

12For Gazzetta, words encountered only once in the train-
ing set (G-TRAIN-L or G-TRAIN-S) are also treated as OOV.

ta : accept
threshold

tr : reject
threshold

0.0 1.0rejectgrayaccept

Figure 3: Illustration of threshold tuning.

pooled outputs) goes through a dropout layer (Hin-
ton et al., 2012) (p = 0.5), and then to an LR layer,
which provides PCNN(reject|c). For Gazzetta, the
CNN is the same, except that n = 1, . . . , 5, lead-
ing to 1,500 features per comment. All hyper-
parameters were tuned on the 2% held-out train-
ing comments used to tune the other methods.
Again, we use 300-dimensional word embeddings,
which are now randomly initialized, since tuning
indicated this was better than initializing to pre-
trained embeddings. OOV words are treated as in
the RNN-based methods. All embeddings are up-
dated. Early stopping evaluates on the held-out
subsets. Again, we use Glorot initialization, cross-
entropy loss, and Adam.13

3.4 LIST baseline
A baseline, called LIST, collects every wordw that
occurs in more than 10 (for W-ATT-TRAIN, W-
TOX-TRAIN, G-TRAIN-S) or 100 comments (for
G-TRAIN-L) in the training set, along with the pre-
cision of w, i.e., the ratio of rejected training com-
ments containing w divided by the total number
of training comments containing w. The resulting
lists contain 10,423, 11,360, 16,864, and 21,940
word types, when using W-ATT-TRAIN, W-TOX-
TRAIN, G-TRAIN-S, G-TRAIN-L, respectively. For
a comment c, PLIST(reject|c) is the maximum pre-
cision of all the words in c.

3.5 Tuning thresholds
All methods produce a p = P (reject|c) per com-
ment c. In semi-automatic moderation (Fig. 1), a
comment is directly rejected if its p is above a re-
jection threshold tr, it is directly accepted if p is
below an acceptance threshold ta, and it is shown
to a moderator if ta ≤ p ≤ tr (gray zone of Fig. 3).

In our experience, moderators (or their employ-
ers) can easily specify the approximate percentage
of comments they can afford to check manually
(e.g., 20% daily) or, equivalently, the approximate
percentage of comments the system should han-
dle automatically. We call coverage the latter per-
centage; hence, 1 − coverage is the approximate

13We implemented the CNN directly in TensorFlow.
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percentage of comments to be checked manually.
By contrast, moderators are baffled when asked to
tune tr and ta directly. Consequently, we ask them
to specify the approximate desired coverage. We
then sort the comments of the development set (G-
DEV, W-ATT-DEV, W-TOX-DEV) by p, and slide
ta from 0.0 to 1.0 (Fig. 3). For each ta value,
we set tr to the value that leaves a 1 − coverage
percentage of development comments in the gray
zone (ta ≤ p ≤ tr). We then select the ta (and
tr) that maximizes the weighted harmonic mean
Fβ(Preject, Paccept) on the development set:

Fβ(Preject, Paccept) =
(1 + β2) · Preject · Paccept

β2 · Preject + Paccept

where Preject is the rejection precision (correctly
rejected comments divided by rejected comments)
and Paccept is the acceptance precision (correctly
accepted divided by accepted). Intuitively, cover-
age sets the width of the gray zone, whereas Preject

and Paccept show how certain we can be that the
red (reject) and green (accept) zones are free of
misclassified comments. We set β = 2, emphasiz-
ing Paccept, because moderators are more worried
about wrongly accepting abusive comments than
wrongly rejecting non-abusive ones.14 The se-
lected ta, tr (tuned on development data) are then
used in experiments on test data. In fully auto-
matic moderation, coverage = 100% and ta = tr;
otherwise, threshold tuning is identical.

4 Experimental results

Following Wulczyn et al. (2017), we report
in Tables 2–3 AUC scores (area under ROC

curve), along with Spearman correlations be-
tween system-generated probabilities P (accept|c)
and human probabilistic gold labels (Section 2.2)
when probabilistic gold labels are available.15

A first observation is that increasing the size of
the Gazzetta training set (G-TRAIN-S to G-TRAIN-
L, Table 2) significantly improves the performance
of all methods; we do not report DETOX results
for G-TRAIN-L, because its implementation could
not handle the size of G-TRAIN-L. Tables 2–3

14More precisely, when computing Fβ , we reorder the de-
velopment comments by time posted, and split them into
batches of 100. For each ta (and tr) value, we compute Fβ
per batch and macro-average across batches. The resulting
thresholds lead to Fβ scores that are more stable over time.

15When computing AUC, the gold label is the majority la-
bel of the annotators. When computing Spearman, the gold
label is probabilistic (% of annotators that accepted the com-
ment). The decisions of the systems are always probabilistic.

Training dataset: G-TRAIN-S

System G-DEV G-TEST-L G-TEST-S G-TEST-S-R
AUC AUC AUC AUC Spearman

RNN 75.75 75.10 74.40 80.27 51.89
a-RNN 76.19 76.15 75.83 80.41 52.51

da-RNN 75.96 75.90 74.25 80.05 52.49
eq-RNN 74.31 74.01 73.28 77.73 45.77

da-CENT 75.09 74.96 74.20 79.92 51.04
eq-CENT 73.93 73.82 73.80 78.45 48.14

CNN 70.97 71.34 70.88 76.03 42.88
DETOX 72.50 72.06 71.59 75.67 43.80

LIST 61.47 61.59 61.26 64.19 24.33
Training dataset: G-TRAIN-L

System G-DEV G-TEST-L G-TEST-S G-TEST-S-R
AUC AUC AUC AUC Spearman

RNN 79.50 79.41 79.23 84.17 59.31
a-RNN 79.64 79.58 79.67 84.69 60.87

da-RNN 79.60 79.56 79.38 84.40 60.83
eq-RNN 77.45 77.76 77.28 82.11 55.01

da-CENT 78.73 78.64 78.62 83.53 57.82
eq-CENT 76.76 76.85 76.30 82.38 53.28

CNN 77.57 77.35 78.16 83.98 55.90
DETOX – – – – –

LIST 67.04 67.06 66.17 69.51 33.61

Table 2: Results on Gazzetta comments.

also show that RNN is always better than CNN and
DETOX; there is no clear winner between CNN and
DETOX. Furthermore, a-RNN is always better than
RNN on Gazzetta comments (Table 2), but not al-
ways on Wikipedia comments (Table 3). Another
observation is that da-RNN is always worse than
a-RNN (Tables 2–3), confirming that the hidden
states of the RNN are a better input to the attention
mechanism than word embeddings. The perfor-
mance of da-RNN deteriorates further when equal
attention is assigned to the hidden states (eq-RNN),
when the weighted sum of hidden states (hsum) is
replaced by the weighted sum of word embeddings
(da-CENT), or both (eq-CENT). Also, da-CENT

outperforms eq-CENT, indicating that the atten-
tion mechanism improves the performance of sim-
ply averaging word embeddings. The Wikipedia
subsets are easier (all methods perform better on
Wikipedia subsets, compared to Gazzetta).

Figure 4 shows F2(Preject, Paccept) on G-TEST-
L, G-TEST-S, W-ATT-TEST, W-TOX-TEST, when
ta, tr are tuned on the corresponding develop-
ment tests for varying coverage. For the Gazzetta
datasets, we show results training on G-TRAIN-S

(solid lines) and G-TRAIN-L (dashed). The differ-
ences between RNN and a-RNN are again small,
but it is now easier to see that a-RNN is overall
better. Again, a-RNN and RNN are better than CNN

and DETOX, and the results improve with a larger
training set (dashed). On W-ATT-TEST and W-
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Training dataset: W-ATT-TRAIN

System W-ATT-DEV W-ATT-TEST
AUC Spearman AUC Spearman

RNN 97.39 71.92 97.71 72.79
a-RNN 97.46 71.59 97.68 72.32
da-RNN 97.02 71.49 97.31 72.11
eq-RNN 92.66 60.77 92.85 60.16

da-CENT 96.73 70.13 97.06 71.08
eq-CENT 92.30 57.21 92.81 56.33

CNN 96.91 70.06 97.07 70.21
DETOX 96.26 67.75 96.71 68.09

LIST 93.05 55.39 92.91 54.55
Training dataset: W-TOX-TRAIN

System W-TOX-DEV W-TOX-TEST
AUC Spearman AUC Spearman

RNN 98.20 68.84 98.42 68.89
a-RNN 98.22 68.95 98.38 68.90
da-RNN 98.05 68.59 98.28 68.55
eq-RNN 94.72 55.48 95.04 55.86

da-CENT 97.83 67.86 97.94 67.74
eq-CENT 94.31 53.35 94.61 52.93

CNN 97.76 65.50 97.86 65.56
DETOX 97.16 63.57 97.13 63.24

LIST 93.96 51.35 93.95 51.18

Table 3: Results on Wikipedia comments.

TOX-TEST, a-RNN obtains Paccept, Preject ≥ 0.94
for all coverages (Fig. 4, call-outs). On the more
difficult Gazzetta datasets, a-RNN still obtains
Paccept, Preject ≥ 0.85 when tuned for 50% cov-
erage. When tuned for 100% coverage, comments
for which the system is uncertain (gray zone) can-
not be avoided and there are inevitably more mis-
classifications; the use of F2 during threshold tun-
ing places more emphasis on avoiding wrongly
accepted comments, leading to high Paccept (≥
0.82), at the expense of wrongly rejected com-
ments, i.e., sacrificing Preject (≥ 0.56). On the
re-moderated G-TEST-S-R (similar diagrams, not
shown), Paccept, Preject become 0.96, 0.88 for cov-
erage 50%, and 0.92, 0.48 for coverage 100%.

5 Related work

Napoles et al. (2017b) developed an annotation
scheme for online conversations, with 6 dimen-
sions for comments (e.g., sentiment, tone, off-
topic) and 3 dimensions for threads. The scheme
was used to label a dataset, called YNACC, of
9.2K comments (2.4K threads) from Yahoo News
and 16.6K comments (1K threads) from the Inter-
net Argument Corpus (Walker et al., 2012; Ab-
bott et al., 2016). Abusive comments were fil-
tered out, hence YNACC cannot be used for our
purposes, but it may be possible to extend the an-
notation scheme for abusive comments, to predict
more fine-grained labels, instead of ‘accept’ or ‘re-

(%) (%)

(%) (%)

Figure 4: F2 scores for varying coverage. Dashed
lines were obtained using a larger training set.

ject’. Napoles et al. also reported that up/down
votes, a form of social filtering, are inappropriate
proxies for comment and thread quality. Lee et al.
(2014) discuss social filtering in detail and propose
features (e.g., thread depth, no. of revisiting users)
to assess the quality of a thread without processing
the texts of its comments. Diakopoulos (2015) dis-
cusses how editors select high quality comments.

In further work, Napoles et al. (2017a) aimed to
identify high quality threads. Their best method
converts each comment to a comment embedding
using DOC2VEC (Le and Mikolov, 2014). An
ensemble of Conditional Random Fields (CRFs)
(Lafferty et al., 2001) assigns labels (from their an-
notation scheme, e.g., for sentiment, off-topic) to
the comments of each thread, viewing each thread
as a sequence of DOC2VEC embeddings. The de-
cisions of the CRFs are then used to convert each
thread to a feature vector (total count and mean
marginal probability of each label in the thread),
which is passed on to an LR classifier. Further
improvements were observed when additional fea-
tures were added, BOW counts and POS n-grams
being the most important ones. Napoles et al.
(2017a) also experimented with a CNN, similar to
that of Section 3.3, which was not however a top-
performer, presumably because of the small size
of the training set (2.1K YNACC threads).

Djuric et al. (2015) experimented with 952K
manually moderated comments from Yahoo Fi-
nance, but their dataset is not publicly available.
They convert each comment to a DOC2VEC em-
bedding, which is fed to an LR classifier. No-
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bata et al. (2016) experimented with approx. 3.3M
manually moderated comments from Yahoo Fi-
nance and News; their data are also not avail-
able.16 They used Vowpal Wabbit17 with char-
acter n-grams (n = 3, . . . , 5) and word n-grams
(n = 1, 2), hand-crafted features (e.g., com-
ment length, number of capitalized or black-listed
words), features based on dependency trees, aver-
ages of WORD2VEC embeddings, and DOC2VEC-
like embeddings. Character n-grams were the
best, on their own outperforming Djuric et al.
(2015). The best results, however, were obtained
using all features. By contrast, we use no hand-
crafted features and parsers, making our methods
easily portable to other domains and languages.

Wulczyn et al. (2017) experimented with char-
acter and word n-grams, based on the findings of
Nobata et al. (2016). We included their dataset and
moderation system (DETOX) in our experiments.
Wulczyn et al. also used DETOX (trained on W-
ATT-TRAIN) as a proxy (instead of human anno-
tators) to automatically classify 63M Wikipedia
comments, which were then used to study the
problem of personal attacks (e.g., the effect of
allowing anonymous comments, how often per-
sonal attacks were followed by moderation ac-
tions). Our methods could replace DETOX in stud-
ies of this kind, since they perform better.

Waseem et al. (2016) used approx. 17K tweets
annotated for hate speech. Their best method
was an LR classifier with character n-grams (n =
1, . . . , 4) and a gender feature. Badjatiya et al.
(2017) experimented with the same dataset us-
ing LR, SVMs (Cortes and Vapnik, 1995), Ran-
dom Forests (Ho, 1995), Gradient Boosted Deci-
sion Trees (GBDT) (Friedman, 2002), CNN (similar
to that of Section 3.3), LSTM (Greff et al., 2015),
FastText (Joulin et al., 2017). They also consid-
ered alternative feature sets: character n-grams, tf-
idf vectors, word embeddings, averaged word em-
beddings. Their best results were obained using
GBDT with averaged word embeddings learned by
the LSTM, starting from random embeddings.

Warner and Hirschberg (2012) aimed to detect
anti-semitic speech, experimenting with 9K para-
graphs and a linear SVM. Their features consider
windows of up to 5 tokens, the tokens of each win-
dow, their order, POS tags, Brown clusters etc., fol-
lowing Yarowsky (1994).

16According to Nobata et al., their clean test dataset (2K
comments) would be made available, but it is currently not.

17See http://hunch.net/˜vw/.

Cheng et al. (2015) predict which users would
be banned from on-line communities. Their best
system uses a Random Forest or LR classifier, with
features examining readability, activity (e.g., num-
ber of posts daily), community and moderator re-
actions (e.g., up-votes, number of deleted posts).

Lukin and Walker (2013) experimented with
5.5K utterances from the Internet Argument Cor-
pus (Walker et al., 2012; Abbott et al., 2016) an-
notated with nastiness scores, and 9.9K utterances
from the same corpus annotated for sarcasm.18 In
a bootstrapping manner, they manually identified
cue words and phrases (indicative of nastiness or
sarcasm), used the cue words to obtain training
comments, and extracted patterns from the train-
ing comments. Xiang et al. (2012) also employed
bootstrapping to identify users whose tweets fre-
quently or never contain profane words, and col-
lected 381M tweets from the two user types. They
trained decision tree, Random Forest, or LR clas-
sifiers to distinguish between tweets from the two
user types, testing on 4K tweets manually labeled
as containing profanity or not. The classifiers
used topical features, obtained via LDA (Blei et al.,
2003), and a feature indicating the presence of at
least one of approx. 330 known profane words.

Sood et al. (2012a; 2012b) experimented with
6.5K comments from Yahoo Buzz, moderated via
crowdsourcing. They showed that a linear SVM,
representing each comment as a bag of word bi-
grams and stems, performs better than word lists.
Their best results were obtained by combining the
SVM with a word list and edit distance.

Yin et al. (2009) used posts from chat rooms
and discussion fora (<15K posts in total) to train
an SVM to detect online harassment. They used
TF-IDF, sentiment, and context features (e.g., sim-
ilarity to other posts in a thread).19 Our methods
might also benefit by considering threads, rather
than individual comments. Yin et al. point out that
unlike other abusive content, spam in comments
or discussion fora (Mishne et al., 2005; Niu et al.,
2007) is off-topic and serves a commercial pur-
pose. Spam is unlikely in Wikipedia discussions
and extremely rare so far in Gazzetta comments.

Mihaylov and Nakov (2016) identify comments
posted by opinion manipulation trolls. Dinakar et

18For sarcasm, see Davidov et al. (2010), Gonzalez-Ibanez
et al. (2011), Joshi et al. (2015), Oraby et al. (2016).

19Sentiment features have been used by several methods,
but sentiment analysis (Pang and Lee, 2008; Liu, 2015) is
typically not directly concerned with abusive content.
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al. (2011) and Dadvar et al. (2013) detect cyber-
bullying. Chandrinos et al. (2000) detect porno-
graphic web pages, using a Naive Bayes classifier
with text and image features. Spertus (1997) flag
flame messages in Web feedback forms, using de-
cision trees and hand-crafted features. A Kaggle
dataset for insult detection is also available.20 It
contains 6.6K comments (3,947 train, 2,647 test)
labeled as insults or not. However, abusive com-
ments that do not directly insult other participants
of the same discussion are not classified as insults,
even if they contain profanity, hate speech, insults
to third persons etc.

6 Conclusions

We experimented with a new publicly available
dataset of 1.6M moderated user comments from a
Greek sports news portal and two existing datasets
of English Wikipedia talk page comments. We
showed that a GRU RNN operating on word em-
beddings outperforms the previous state of the art,
which used an LR or MLP classifier with char-
acter or word n-gram features. It also outper-
forms a vanilla CNN operating on word embed-
dings, and a baseline that uses an automatically
constructed word list with precision scores. A
novel, deep, classification-specific attention mech-
anism improves further the overall results of the
RNN. The attention mechanism also improves the
results of a simpler method that averages word em-
beddings. We considered both fully automatic and
semi-automatic moderation, along with threshold
tuning and evaluation measures for both.

We plan to consider user-specific information
(e.g., ratio of comments rejected in the past) and
thread statistics (e.g., thread depth, number of re-
visiting users) (Dadvar et al., 2013; Lee et al.,
2014; Cheng et al., 2015; Waseem and Hovy,
2016). We also plan to explore character-level
RNNs or CNNs (Zhang et al., 2015), for example
to produce embeddings of unknown or obfuscated
words from characters (dos Santos and Zadrozny,
2014; Ling et al., 2015). We are also exploring
how the attention scores of a-RNN can be used
to highlight ‘suspicious’ words or phrases when
showing gray comments to moderators.

20See http://www.kaggle.com/, data description
of the competition ‘Detecting Insults in Social Commentary’.
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