
Proceedings of the First Workshop on Language Grounding for Robotics, pages 67–75,
Vancouver, Canada, July 30 - August 4, 2017. c©2017 Association for Computational Linguistics

A Tale of Two DRAGGNs:
A Hybrid Approach for Interpreting

Action-Oriented and Goal-Oriented Instructions

Siddharth Karamcheti, Edward C. Williams, Dilip Arumugam,
Mina Rhee, Nakul Gopalan, Lawson L.S. Wong, Stefanie Tellex

Department of Computer Science, Brown University, Providence, RI 02912
{siddharth karamcheti@, edward c williams@, dilip arumugam@,

mina rhee@, ngopalan@cs., lsw@, stefie10@cs.}brown.edu

Abstract

Robots operating alongside humans in di-
verse, stochastic environments must be
able to accurately interpret natural lan-
guage commands. These instructions of-
ten fall into one of two categories: those
that specify a goal condition or target state,
and those that specify explicit actions, or
how to perform a given task. Recent ap-
proaches have used reward functions as
a semantic representation of goal-based
commands, which allows for the use of
a state-of-the-art planner to find a policy
for the given task. However, these reward
functions cannot be directly used to rep-
resent action-oriented commands. We in-
troduce a new hybrid approach, the Deep
Recurrent Action-Goal Grounding Net-
work (DRAGGN), for task grounding and
execution that handles natural language
from either category as input, and gener-
alizes to unseen environments. Our robot-
simulation results demonstrate that a sys-
tem successfully interpreting both goal-
oriented and action-oriented task specifi-
cations brings us closer to robust natural
language understanding for human-robot
interaction.

1 Introduction

Natural language affords a convenient choice for
delivering instructions to robots, as it offers flex-
ibility, familiarity, and does not require users to
have knowledge of low-level programming. In the
context of grounding natural language instructions
to tasks, human-robot instructions can be inter-
preted as either high-level goal specifications or
low-level instructions for the robot to execute.

Figure 1: Sample configuration of the Cleanup
World mobile-manipulator domain (MacGlashan
et al., 2015), used throughout this work. A possi-
ble goal-based instruction could be “Take the chair
to the green room,” while a possible action-based
instruction could be “Go three steps south, then
two steps west.”

Goal-oriented commands define a particular tar-
get state specifying where a robot should end up,
whereas action-oriented commands specify a par-
ticular sequence of actions to be executed. For ex-
ample, a human instructing a robot to “go to the
kitchen” outlines a goal condition to check if the
robot is in the kitchen. Alternatively, a human pro-
viding the command “take three steps to the left”
defines a trajectory for the robot to execute. We
need to consider both forms of commands to un-
derstand the full space of natural language that
humans may use to communicate their intent to
robots. While humans also combine commands of
both types into a single instruction, we make the
simplifying assumption that a command belongs
entirely to a single type and leave the task of han-
dling mixtures and compositions to future work.

Existing approaches can be broadly divided into
one of two regimes. Goal-based approaches like

67

Figure 2: System for grounding both action-
oriented (left branch) and goal-oriented (right
branch) natural language instructions to exe-
cutable robot tasks. Our main contribution is
the hybrid interpretation system (blue box), for
which we present two novel models based on
the DRAGGN framework (J-DRAGGN and I-
DRAGGN) in Section 4.

MacGlashan et al. (2015) and Arumugam et al.
(2017) leverage some intermediate task represen-
tation and then automatically find a low-level tra-
jectory to achieve the goal using a planner. Other
approaches, in the action-oriented regime, directly
infer action sequences (Tellex et al., 2011; Ma-
tuszek et al., 2012; Artzi and Zettlemoyer, 2013;
Andreas and Klein, 2015) from the syntactic or se-
mantic parse structure of natural language. How-
ever, these approaches can be computationally in-
tractable for large state-action spaces or use ad-
hoc methods to execute high-level language rather
than relying on a planner. Furthermore, these
methods are unable to adapt to dynamic changes
in the environment; for example, consider an en-
vironment in which the wind, or some other force
moves an object that a robot has been tasked with
picking. Action sequence based approaches would
fail to handle this without additional user input,
while goal-based approaches would be able to re-
plan on the fly, and complete the task.

To address the issue of dealing with both
goal-oriented and action-oriented commands, we
present a new language grounding framework that,
given a natural language command, is capable of
inferring the latent command type. Recent ap-
proaches leveraging deep neural networks have
formulated the language grounding problem as

sequence-to-sequence learning or multi-label clas-
sification (Mei et al., 2016; Arumugam et al.,
2017). Inspired by the recent success of neu-
ral networks to model programs that are highly
compositional and sequential in nature, we present
the Deep Recurrent Action/Goal Grounding Net-
work (DRAGGN) framework, derived from the
the Neural Programmer-Interpreter (NPI) of Reed
and de Freitas (2016) and outlined in Section 4.2.
We introduce two instances of DRAGGN mod-
els, each with slightly different architectures. The
first, the Joint-DRAGGN (J-DRAGGN) is defined
in Section 4.3, while the second, the Independent-
DRAGGN (I-DRAGGN) is defined in Section 4.4.

2 Related Work

There has been a broad and diverse set of work
examining how best to interpret and execute natu-
ral language instructions on a robot platform (Vo-
gel and Jurafsky, 2010; Tellex et al., 2011; Artzi
and Zettlemoyer, 2013; Howard et al., 2014; An-
dreas and Klein, 2015; Hemachandra et al., 2015;
MacGlashan et al., 2015; Paul et al., 2016; Mei
et al., 2016; Arumugam et al., 2017). Vogel and
Jurafsky (2010) produce policies using language
and expert trajectories based rewards, which allow
for planning within a stochastic environment along
with re-planning in case of failure. (Tellex et al.,
2011) instead grounds language to trajectories sat-
isfying the language specification. (Howard et al.,
2014) chose to ground language to constraints
given to an external planner, which is a much
smaller space to perform inference over than tra-
jectories. MacGlashan et al. (2015) formulate lan-
guage grounding as a machine translation prob-
lem, treating propositional logic functions as both
a machine language and reward function. Reward
functions or cost functions can allow richer de-
scriptions of trajectories than plain constraints, as
they can describe preferential paths. Addition-
ally, Arumugam et al. (2017) simplify the prob-
lem from one of machine translation to multi-class
classification, learning a deep neural network to
map arbitrary natural language instructions to the
corresponding reward function.

Informing our distinction between action se-
quences and goal state representation is the di-
vision presented by Dzifcak et al. (2009), who
posited that natural language can be interpreted
as both a goal state specification and an action
specification. Rather than producing both from

68

each language command, our DRAGGN frame-
work makes the simplifying assumption that only
one representation captures the semantics of the
language; additionally, our framework does not re-
quire a manually pre-specified grammar.

Recently, deep neural networks have found
widespread success and application to a wide ar-
ray of problems dealing with natural language
(Bengio et al., 2000; Mikolov et al., 2010, 2011;
Cho et al., 2014; Chung et al., 2014; Iyyer et al.,
2015). Unsurprisingly, there have been some ini-
tial steps taken towards applying neural networks
to language grounding problems. Mei et al. (2016)
uses a recurrent neural network (RNN) with
long short-term memory (LSTM) cells (Hochre-
iter and Schmidhuber, 1997) to learn sequence-to-
sequence mappings between natural language and
robot actions. This model augments the standard
sequence-to-sequence architecture by learning pa-
rameters that represent latent alignments between
natural language tokens and robot actions. Aru-
mugam et al. (2017) used an RNN-based model
to produce grounded reward functions at multiple
levels of an Abstract Markov Decision Process hi-
erarchy (Gopalan et al., 2017), varying the abstrac-
tion level with the level of abstraction used in nat-
ural language.

Our DRAGGN framework is closely related to
the Neural Programmer-Interpreter (NPI) (Reed
and de Freitas, 2016). The original NPI model
is a controller trained via supervised learning
to interpret and learn when to call specific pro-
grams/subprograms, which arguments to pass into
the currently active program, and when to termi-
nate execution of the current program. We draw
a parallel between inferred NPI programs and our
method of predicting either lifted reward functions
or action trajectories.

3 Problem Setting

We consider the problem of mapping from natu-
ral language to robot actions within the context
of Markov decision processes. A Markov deci-
sion process (MDP) is a five-tuple 〈S,A, T ,R, γ〉
defining a state space S, action spaceA, state tran-
sition probabilities T , reward functionR, and dis-
count factor γ (Bellman, 1957; Puterman, 1994).
An MDP solver produces a policy that maps from
states to actions in order to maximize the total ex-
pected discounted reward.

While reward functions are flexible and expres-

sive enough for a wide variety of task specifica-
tions, they are a brittle choice for specifying an
exact sequence of actions, as enumerating every
possible action sequence as a reward function (i.e.
a specific reward function for the sequence Up 3,
Down 2) can quickly become intractable. This
paper introduces models that can produce desired
behavior by inferring either reward functions or
primitive actions. We assume that all available
actions A and the full space of potential reward
functions (i.e., the full space of possible tasks) are
known a priori. When a reward function is pre-
dicted by the model, an MDP planner is applied
to derive the resultant policy (see system pipeline
Figure 2).

We focus our evaluation of all models on the the
Cleanup World mobile-manipulator domain (Mac-
Glashan et al., 2015; Arumugam et al., 2017).
The Cleanup World domain consists of an agent
in a 2-D world with uniquely colored rooms and
movable objects. A domain instance is shown in
Figure 1. The domain itself is implemented as
an object-oriented Markov decision process (OO-
MDP) where states are denoted entirely by collec-
tions of objects, with each object having its own
identifier, type, and set of attributes (Diuk et al.,
2008). Domain objects include rooms and inter-
actable objects (e.g a chair, basket, etc.) all of
which have location and color attributes. Propo-
sitional logic functions can be used to identify
relevant pieces of an OO-MDP state and their
attributes; as in MacGlashan et al. (2015) and
Arumugam et al. (2017), we treat these proposi-
tional functions as reward functions. In Figure 1,
the goal-oriented command “take the chair to the
green room” may be represented with the reward
function blockInRoom block0 room1, where the
blockInRoom propositional function checks if the
location attribute of block0 is contained in room1.

4 Approach

We now outline the pipeline that converts natural
language input to robot behavior. We begin by first
defining the semantic task representation used by
our grounding models that comes directly from the
OO-MDP propositional functions of the domain.
Next, we examine our novel DRAGGN framework
for language grounding and, in particular, address
the separate paths taken by action-oriented and
goal-oriented commands through the system as
seen in Figure 2. Finally, we discuss two different

69

Action-Oriented Goal-Oriented

goUp(numSteps) agentInRoom(room)
goDown(numSteps) blockInRoom(room)
goLeft(numSteps)

goRight(numSteps)

Table 1: Set of action-oriented and goal-oriented
callable units that can be generated by our
DRAGGN models in the Cleanup World domain.

implementations of the DRAGGN framework that
make different assumptions about the relationship
between tasks and constraints. Specifically, we
introduce the Joint-DRAGGN (J-DRAGGN), that
assumes a probabilistic dependence between tasks
(i.e. goUp) and the corresponding arguments (i.e.
5 steps) based on a natural language instruction,
and the Independent-DRAGGN (I-DRAGGN) that
treats tasks and arguments as independent given a
natural language instruction.

4.1 Semantic Representation

In order to map arbitrary natural language instruc-
tions to either action trajectories or goal condi-
tions, we require a compact but sufficiently ex-
pressive semantic representation for both. To this
end, we define the callable unit, which takes the
form of a single-argument function. These func-
tions are paired with binding arguments whose
possible values depend on the callable unit type.
As in MacGlashan et al. (2015) and Arumugam
et al. (2017), our approach generates reward func-
tion templates, or lifted reward functions, for goal-
oriented tasks along with environment-specific
constraints. Once these templates and constraints
are resolved to get a grounded reward function,
the associated goal-oriented tasks can be solved by
an off-the-shelf planner thereby improving trans-
fer and generalization capabilities.

Goal-oriented callable units (lifted reward func-
tions) are paired with binding arguments that spec-
ify properties of environment entities that must be
satisfied in order to achieve the goal. These bind-
ing arguments are later resolved by the Ground-
ing Module (see Section 4.5) to produce grounded
reward functions (OO-MDP propositional logic
functions) that are handled by an MDP planner.

Action-oriented callable units directly corre-
spond to the primitive actions available to the
robot and are paired with binding arguments defin-
ing the number of sequential executions of that ac-
tion. The full set of callable units along with req-

uisite binding arguments is shown in Table 1.

4.2 Deep Recurrent Action/Goal Grounding
Network (DRAGGN)

While the Single-RNN model of Arumugam et al.
(2017) is effective, it cannot model the compo-
sitional argument structure of language. A unit-
argument pair not observed at training time will
not be predicted from input data, even if the con-
stituent pieces were observed separately. Addi-
tionally, the Single-RNN model requires every
possible unit-argument pair to be enumerated, to
form the output space. As the environment grows
to include more objects with richer attributes, this
output space becomes intractable.

To resolve this, we introduce the Deep Recur-
rent Action/Goal Grounding Network (DRAGGN)
framework. Unlike previous approaches, the
DRAGGN framework maps natural language in-
structions to separate distributions over callable
units and (possibly multiple) binding constraints,
generating either action sequences or goal condi-
tions. By treating callable units and binding argu-
ments as separate entities, we circumvent the com-
binatorial dependence on the size of the domain.

This unit-argument separation is inspired by the
Neural Programmer-Interpreter (NPI) of Reed and
de Freitas (2016). The callable units output by
DRAGGN are analogous to the subprograms out-
put by NPI. Additionally, both NPI and DRAGGN
allow for subprograms/callable units with an ar-
bitrary number of arguments (by adding a corre-
sponding number of Binding Argument Networks,
as shown at the top right of Figure 3a, each with
its own output space).

We assume that each natural language instruc-
tion can be represented by a single unit-argument
pair with only one argument. Consequently, in our
experiments, we assume that sentences specify-
ing sequences of commands have been segmented,
and each segment is given to the model one at
a time. The limitation to a single argument only
arises because of the domain’s simplicity; as men-
tioned above, it is straightforward to extend our
models to handle extra arguments by adding extra
Binding Argument Networks.

To formalize the DRAGGN objective, consider
a natural language instruction l. Our goal is to find
the callable unit ĉ and binding arguments â that

70

(a) Joint DRAGGN (b) Independent DRAGGN

Figure 3: Architecture diagrams for the two Deep Recurrent Action/Goal Grounding Network
(DRAGGN) models, introduced in Sections 4.3 and 4.4. Both architectures ground arbitrary natural
language instructions to callable units (either actions or lifted reward functions), and binding arguments.

maximize the following joint probability:

ĉ, â = arg max
c,a

Pr(c,a | l) (1)

Depending on the assumptions made about the
relationship between callable units c and bind-
ing arguments a, we can decompose the above
objective in two ways: preserving the depen-
dence between the two, and learning the relation-
ship between the units and arguments jointly, and
treating the two as independent. These two de-
compositions result in the Joint-DRAGGN and
Independent-DRAGGN models respectively.

Given the training dataset of natural language
and the space of unit-argument pairs, we train our
DRAGGN models end-to-end by minimizing the
sum of the cross-entropy losses between the pre-
dicted distributions and true labels for each sepa-
rate distribution (i.e. over callable units and bind-
ing arguments). At inference time, we first choose
the callable unit with the highest probability given
the natural language instruction. We then choose
the binding argument(s) with highest probability
from the set of valid arguments. The validity of
a binding argument given a callable unit is given
a priori, by the specific environment, rather than
being learned at training time.

Our models were trained using Adam (Kingma
and Ba, 2014), for 125 epochs, with a batch size
of 16, and a learning rate of 0.0001.

4.3 Joint DRAGGN (J-DRAGGN)
The Joint DRAGGN (J-DRAGGN) models the
joint probability in Equation 1, coupled via the
shared RNN state in the DRAGGN Core (as de-
picted in Figure 3a), but selects the optimizer se-
quentially, as follows:

ĉ, â = arg max
c,a

Pr(c,a | l) (2)

≈ arg max
a

[
arg max

c
Pr(c,a | l)

]
We first encode the constituent words of our nat-

ural language segment into fixed-size embedding
vectors. From there, the sequence of word em-
beddings is fed through an RNN denoted by the
DRAGGN Core1. After processing the entire seg-
ment, the current gated recurrent unit (GRU) hid-
den state is then treated as a representative vector
for the entire natural language segment. This sin-
gle hidden core vector is then passed to both the
Callable Unit Network and the Binding Argument
Network, allowing for both networks to be trained
jointly, enforcing a dependence between the two.

The Callable Unit Network is a two-layer feed-
forward network using rectified linear unit (ReLU)
activation. It takes the DRAGGN Core output

1We use the gated recurrent unit (GRU) as our RNN cell,
because of its effectiveness in natural language processing
tasks, such as machine translation (Cho et al., 2014), while
requiring fewer parameters than the LSTM cell (Hochreiter
and Schmidhuber, 1997).

71

vector as input to produce a softmax probability
distribution over all possible callable units. The
Binding Argument Network is a separate network
with an identical architecture and takes the same
input, but instead produces a probability distribu-
tion over all possible binding arguments. The two
models do not need to share the same architec-
ture; for example, callable units with multiple ar-
guments require multiple different argument net-
works, one for each possible binding constraint.

4.4 Independent DRAGGN (I-DRAGGN)
The Independent DRAGGN (I-DRAGGN), con-
trary to the Joint DRAGGN, decomposes the
objective from Equation 1 by treating callable
units and binding arguments as being indepen-
dent, given the original natural language instruc-
tion. More precisely, the I-DRAGGN objective is:

ĉ, â = arg max
c,a

Pr(c | l) Pr(a | l) (3)

The I-DRAGGN network architecture is shown
in Figure 3b. Beyond the difference in objective
functions, there is another key difference between
the I-DRAGGN and J-DRAGGN architectures.
Rather than encoding the constituent words of the
natural language instruction once, and feeding the
resulting embeddings through a DRAGGN Core
to generate a shared core vector, the I-DRAGGN
model embeds and encodes the natural language
instruction twice, using two separate embedding
matrices and GRUs, one each for the callable
unit and binding argument. In this way, the I-
DRAGGN model encapsulates two disjoint neural
networks, each with their own individual param-
eter sets that are trained independently. The lat-
ter half of each individual network (the Callable
Unit Network and Binding Argument Network)
remains the same as that of the J-DRAGGN.

4.5 Grounding Module
If a goal-oriented callable unit is returned (i.e.
a lifted reward function), we require an addi-
tional step of completing the reward function with
environment-specific variables. As described in
Arumugam et al. (2017), we use a Grounding
Module to perform this step. The Grounding Mod-
ule maps the inferred callable unit and binding ar-
gument(s) to a final grounded reward function that
can be passed to an MDP planner. In our imple-
mentation, the Grounding Module is a lookup ta-
ble mapping specific binding arguments to room

Natural Language Callable Unit Argument

Go to the red room. agentInRoom roomIsRed
Put the block in blockInRoom roomIsGreen

the green room.
Go up three spaces. goUp 3

Table 2: Examples of natural language phrases and
corresponding callable units and arguments.

ID tokens. A more advanced implementation of
the Grounding Module would be required in or-
der to handle domains with non-unique binding ar-
guments (e.g. resolving between multiple objects
with overlapping attributes).

5 Experiments

We assess the effectiveness of both our J-
DRAGGN and I-DRAGGN models via instruc-
tion grounding accuracy for robot navigation and
mobile-manipulation tasks. As a baseline, we
compare against the state-of-the-art Single-RNN
model introduced by Arumugam et al. (2017).

5.1 Procedure
To conduct our evaluation, we use the dataset of
natural language commands for the single instance
of Cleanup World domain seen in Figure 1, from
Arumugam et al. (2017). In the user study, Ama-
zon Mechanical Turk users were presented with
trajectory demonstrations of a robot completing
various navigation and object manipulation tasks.
Users were prompted to provide natural language
commands that they believed would have gener-
ated the observed behavior. Since the original
dataset was compiled for analyzing the hierarchi-
cal nature of language, we were easily able to filter
the commands down to only those using high-level
goal specifications and low-level trajectory speci-
fications. This resulted in a dataset of 3734 natural
language commands total.

To produce a dataset of action-specifying
callable units, experts annotated low-level tra-
jectory specifications from the Arumugam et al.
(2017) dataset. For example, the command “Down
three paces, then up two paces, finally left four
paces” was segmented into “down three spaces,”
“then up two paces,” “finally left four paces,”
and was given a corresponding execution trace of
goDown 3, goUp 2, goLeft 4. The existing set
of grounded reward functions in the dataset were
converted to callable units and binding arguments.
Examples of both types of language are presented

72

Action-Oriented Goal-Oriented Action-Oriented (Unseen) Overall

Single-RNN 95.8± 0.1% 87 .2 ± 0 .9% 0.0 + 0% 80.0± 0.2%
J-DRAGGN 96.6± 0.2% 87 .9 ± 1 .9% 20.2± 20.4% 83.7± 2.8%
I-DRAGGN 97.0± 0.2% 84.9± 1.8% 97.0 + 0.0% 94.7± 0.5%

Table 3: Action-oriented and goal-oriented accuracy results (mean and standard deviation across 3 ran-
dom initializations) on both the standard and unseen datasets. Bold indicates the singular model that
performed the best on the given task, whereas italics denotes the best models that were within the margin
of error of each other for the given task. The overall column was computed by taking an average of
individual task accuracies, weighted by the number of test examples per task.

in Table 2 with their corresponding callable unit
and binding arguments.

To fully show the capabilities of our model,
we tested on two separate versions of the dataset.
The first is the standard dataset, consisting of a
90-10 split of the collected action-oriented and
goal-oriented commands We also evaluated our
models on an “unseen” dataset, which consists of
a specific train-test split that evaluates how well
models can predict previously unseen action se-
quence combinations. For example, in this dataset
the training data might consist only of action se-
quences of the form goUp 3, and goDown 4,
while the test data would only consist of the “un-
seen” action sequence goUp 4. Note that in both
datasets, we assume that the test environment is
configured the same as the train environment.

5.2 Results

Language grounding accuracies for our two
DRAGGN models, as well as the baseline Single-
RNN, are presented in Table 3. All three mod-
els received the same set of training data, con-
sisting of 2660 low-level action-oriented segments
and 693 high-level goal-based sentences. All to-
gether, there are 17 unique combinations action-
oriented callable units and respective binding ar-
guments, and 6 unique combinations of goal-
oriented callable units and binding arguments
present in the data. Then, we evaluated all three
models on the same set of held-out data, which
consisted of 295 low-level segments and 86 high-
level sentences.

In aggregate, the models that use callable
units for both action- and goal-based language
grounding demonstrate superior performance to
the Single-RNN baseline, largely due to their abil-
ity to generalize, and output combinations unseen
at train time. We break down the performance on

each task in the following three sections.

5.3 Action Prediction
We evaluate the performance of our models on
low-level language that directly specifies an action
trajectory. An instruction is correctly grounded if
the output trajectory specification corresponds to
the ground-truth action sequence. To ensure fair-
ness, we augment the output space of Single-RNN
to include all distinct action trajectories found in
the training data (an additional 17 classes, as men-
tioned previously).

All models perform generally well on this task,
with Single-RNN correctly identifying the cor-
rect action callable unit on 95.8% of test samples,
while both DRAGGN models slightly outperform
with on 96.6% and 97.0% respectively.

5.4 Goal Prediction
In addition to the action-oriented results, we evalu-
ate the ability for each model to ground goal-based
commands. An instruction is correctly grounded if
the output of the grounding module corresponds to
the ground-truth (grounded) reward function.

In our domain, all models predict the correct
grounded reward function with an accuracy of
84.9% or higher, with the Single-RNN and J-
DRAGGN models being too close to call.

5.5 Unseen Action Prediction
The Single-RNN baseline model is completely
unable to produce unit-argument pairs that
were never seen during training, whereas both
DRAGGN models demonstrate some capacity for
generalization. The I-DRAGGN model in partic-
ular demonstrates a strong understanding of each
token within the original natural language utter-
ances which, in large part, comes from the sep-
arate embedding spaces maintained for callable
units and binding constraints respectively.

73

6 Discussion

Our experiments show that the DRAGGN mod-
els have a clear advantage over the existing state-
of-the-art in grounding action-oriented language.
Furthermore, due to the factored nature of the out-
put, I-DRAGGN generalizes well to unseen com-
binations of callable units and binding arguments.

Nevertheless, I-DRAGGN did not perform as
well as Single-RNN and J-DRAGGN on goal-
oriented language. This is possibly due to the
small number of goal types in the dataset and the
strong overlap in goal-oriented language. Whereas
the Single-RNN and J-DRAGGN architectures
may experience some positive transfer of infor-
mation (due to the shared parameters in each
of the two models), the I-DRAGGN model does
not because of its assumed independence between
callable units and binding arguments. This ability
to allow for positive information transfer suggests
that J-DRAGGN would perform best in environ-
ments where there is a strong overlap in the in-
structional language, with a relatively smaller but
complex set of possible action sequences and goal
conditions.

On action-oriented language, J-DRAGGN has
grounding accuracy of around 20.2% while I-
DRAGGN achieves a near-perfect 97.0%. Since
J-DRAGGN only encodes the input language in-
struction once, the resulting vector representation
is forced to characterize both callable unit and
binding argument features. While this can result in
positive information transfer and improve ground-
ing accuracy in some cases (e.g. goal-based lan-
guage), this enforced correlation heavily biases the
model towards predicting combinations it has seen
before. By learning separate representations for
callable units and binding arguments, I-DRAGGN
is able to generalize significantly better. This sug-
gests that I-DRAGGN would perform best in situ-
ations where the instructional language consists of
many disjoint words and phrases.

While our results demonstrate that the
DRAGGN framework is effective, more ex-
perimentation is needed to fully explore the
possibilities and weaknesses of such models. One
of the shortcomings in the DRAGGN models is
the need for segmented data. We found that all
evaluated models were unable to handle long,
compositional instructions, such as “Go up three
steps, then down two steps, then left five steps”.
Handling conjunctions of low-level commands

requires extending our model to learn how to
perform segmentation, or producing sequences of
callable units and arguments.

7 Conclusion

In this paper, we presented the Deep Recurrent
Action/Goal Grounding Network (DRAGGN), a
hybrid approach that grounds natural language
commands to either action sequences or goal con-
ditions, depending on the language. We presented
two separate neural network architectures that can
accomplish this task, both of which factor the out-
put space according to the compositional structure
of our semantic representation.

We show that overall the DRAGGN models sig-
nificantly outperform the existing state of the art.
Most notably, we show that the DRAGGN mod-
els are capable of generalizing to action sequences
unseen during training time.

Despite these successes, there are still open
challenges with grounding language to novel, un-
seen environment configurations. Furthermore,
we hope to extend our models to handle in-
structions that are a mixture of goal-oriented and
action-oriented language, as well as to long, se-
quential commands. An instruction such as “go
to the blue room, but avoid going through the
red hallway” does not map to either an action se-
quence or a traditional, Markovian reward func-
tion. We believe new tools and approaches will
need to be developed to handle such instructions,
in order to handle the diversity and complexity of
human natural language.

8 Acknowledgements

This material is based upon work supported by
the National Science Foundation under grant num-
ber IIS-1637614 and the National Aeronautics
and Space Administration under grant number
NNX16AR61G.

Lawson L.S. Wong was supported by a
Croucher Foundation Fellowship.

References
Jacob Andreas and Dan Klein. 2015. Alignment-based

compositional semantics for instruction following.
In Conference on Empirical Methods in Natural
Language Processing.

Yoav Artzi and Luke Zettlemoyer. 2013. Weakly su-
pervized learning of semantic parsers for mapping

74

instructions to actions. In Annual Meeting of the As-
sociation for Computational Linguistics.

Dilip Arumugam, Siddharth Karamcheti, Nakul
Gopalan, Lawson L.S. Wong, and Stefanie Tellex.
2017. Accurately and efficiently interpreting
human-robot instructions of varying granularities.
CoRR abs/1704.06616.

R. Bellman. 1957. A Markovian decision process. In-
diana University Mathematics Journal 6:679–684.

Yoshua Bengio, Réjean Ducharme, Pascal Vincent, and
Christian Janvin. 2000. A neural probabilistic lan-
guage model. Journal of Machine Learning Re-
search 3:1137–1155.

Kyunghyun Cho, Bart van Merrienboer, Çaglar
Gúlçehre, Dzmitry Bahdanau, Fethi Bougares, Hol-
ger Schwenk, and Yoshua Bengio. 2014. Learning
phrase representations using rnn encoder-decoder
for statistical machine translation. In Empirical
Methods in Natural Language Processing.

Junyoung Chung, Çaglar Gúlçehre, Kyunghyun Cho,
and Yoshua Bengio. 2014. Empirical evaluation of
gated recurrent neural networks on sequence model-
ing. CoRR abs/1412.3555.

Carlos Diuk, Andre Cohen, and Michael L. Littman.
2008. An object-oriented representation for efficient
reinforcement learning. In International Conference
on Machine Learning.

Juraj Dzifcak, Matthias Scheutz, Chitta Baral, and Paul
Schermerhorn. 2009. What to do and how to do it:
Translating natural language directives into tempo-
ral and dynamic logic representation for goal man-
agement and action execution. In IEEE Interna-
tional Conference on Robotics and Automation.

Nakul Gopalan, Marie desJardins, Michael L. Littman,
James MacGlashan, Shawn Squire, Stefanie Tellex,
John Winder, and Lawson L.S. Wong. 2017. Plan-
ning with abstract Markov decision processes. In
International Conference on Automated Scheduling
and Planning.

Sachithra Hemachandra, Felix Duvallet, Thomas M.
Howard, Nicholas Roy, Anthony Stentz, and
Matthew R. Walter. 2015. Learning models for fol-
lowing natural language directions in unknown en-
vironments. In IEEE International Conference on
Robotics and Automation.

Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long
short-term memory. Neural Computation 9:1735–
1780.

Thomas M. Howard, Stefanie Tellex, and Nicholas
Roy. 2014. A natural language planner interface for
mobile manipulators. In IEEE International Confer-
ence on Robotics and Automation.

Mohit Iyyer, Varun Manjunatha, Jordan L. Boyd-
Graber, and Hal Daumé. 2015. Deep unordered
composition rivals syntactic methods for text classi-
fication. In Conference of the Association for Com-
putational Linguistics.

Diederik P. Kingma and Jimmy Ba. 2014. Adam:
A method for stochastic optimization. CoRR
abs/1412.6980.

James MacGlashan, Monica Babeş-Vroman, Marie
desJardins, Michael L. Littman, Smaranda Muresan,
Shawn Squire, Stefanie Tellex, Dilip Arumugam,
and Lei Yang. 2015. Grounding english commands
to reward functions. In Robotics: Science and Sys-
tems.

Cynthia Matuszek, Evan Herbst, Luke Zettlemoyer,
and Dieter Fox. 2012. Learning to parse natural lan-
guage commands to a robot control system. In In-
ternational Symposium on Experimental Robotics.

Hongyuan Mei, Mohit Bansal, and Matthew R. Wal-
ter. 2016. Listen, attend, and walk: Neural mapping
of navigational instructions to action sequences. In
AAAI Conference on Artificial Intelligence.

Tomas Mikolov, Martin Karafiát, Lukás Burget, Jan
Cernocký, and Sanjeev Khudanpur. 2010. Recur-
rent neural network based language model. In Inter-
speech.

Tomas Mikolov, Stefan Kombrink, Lukás Burget, Jan
Cernocký, and Sanjeev Khudanpur. 2011. Exten-
sions of recurrent neural network language model.
In IEEE International Conference on Acoustics,
Speech, and Signal Processing.

Rohan Paul, Jacob Arkin, Nicholas Roy, and
Thomas M. Howard. 2016. Efficient grounding of
abstract spatial concepts for natural language inter-
action with robot manipulators. In Robotics: Sci-
ence and Systems.

Martin L. Puterman. 1994. Markov decision processes:
Discrete stochastic dynamic programming.

Scott E. Reed and Nando de Freitas. 2016. Neural
programmer-interpreters. In International Confer-
ence on Learning Representations.

Stefanie Tellex, Thomas Kollar, Steven Dickerson,
Matthew R. Walter, Ashis Gopal Banerjee, Seth
Teller, and Nicholas Roy. 2011. Understanding nat-
ural language commands for robotic navigation and
mobile manipulation. In AAAI Conference on Artifi-
cial Intelligence.

Adam Vogel and Dan Jurafsky. 2010. Learning to fol-
low navigational directions. In Annual Meeting of
the Association for Computational Linguistics.

75

