
Proceedings of the First Workshop on Language Grounding for Robotics, pages 35–43,
Vancouver, Canada, July 30 - August 4, 2017. c©2017 Association for Computational Linguistics

Natural Language Grounding and Grammar Induction
for Robotic Manipulation Commands

M Alomari, P Duckworth, M Hawasly, D C Hogg, A G Cohn
{scmara, scpd, m.hawasly, d.c.hogg, a.g.cohn}@leeds.ac.uk,

School of Computing, University of Leeds, Leeds LS2 9JT, England

Abstract

We present a cognitively plausible system
capable of acquiring knowledge in lan-
guage and vision from pairs of short video
clips and linguistic descriptions. The aim
of this work is to teach a robot manipula-
tor how to execute natural language com-
mands by demonstration. This is achieved
by first learning a set of visual ‘concepts’
that abstract the visual feature spaces into
concepts that have human-level meaning.
Second, learning the mapping/grounding
between words and the extracted visual
concepts. Third, inducing grammar rules
via a semantic representation known as
Robot Control Language (RCL). We evalu-
ate our approach against state-of-the-art su-
pervised and unsupervised grounding and
grammar induction systems, and show that
a robot can learn to execute never seen-
before commands from pairs of unlabelled
linguistic and visual inputs.

1 Introduction

Understanding natural language commands is es-
sential for robotic systems to naturally and effec-
tively interact with humans. In this paper, we
present a framework for learning the linguistic and
visual components needed to enable a robot ma-
nipulator of executing new natural language com-
mands in a table-top environment. The learning
is divided into three steps: (i) learning of visual
concepts, (ii) mapping the words to the extracted
visual concepts (i.e. language grounding), and
(iii) inducing grammar rules to model the natu-
ral language sentences. Our system updates its
knowledge in language and vision incrementally,
by processing a pair of inputs at a time. The input
to our system consists of a short video clip of a

Figure 1: Human expert annotation of a natural lan-
guage command. The annotation includes ground-
ing for each word and an RCL tree.

robot performing a single action, e.g. a pick up or
a move action, paired with a natural language com-
mand corresponding to the action in the video. The
natural language commands were collected from
volunteers and online crowd-sourcing tools such as
Amazon Mechanical Turk with minimal amount of
supervision or constraints on the language structure
which annotators could use.

Generally, supervised language grounding and
grammar induction systems learn from sentences
that have been manually annotated by a human ex-
pert. As shown in Fig. 1, each word gets annotated
with a semantic category (e.g. colour, shape, etc.),
and the grammar structure gets annotated using a
tree that connects the different words together (e.g.
RCL trees) as presented by Dukes (2014) and Ma-
tuszek (2013). The manual annotation of data is
a labour intensive task that hinders learning from
large corpora, and such labels are not necessarily
available for all languages. Therefore, unsuper-
vised grounding and grammar induction systems

35



learn language models from unlabelled/raw linguis-
tic data by exploiting co-occurrences of words in
a corpus, which generally performs poorly. There-
fore, in this work we take a different approach to
learn words meanings and grammar rules by con-
necting natural language to extracted visual fea-
tures from video clips.

2 Related Work

Language acquisition has been a long standing
objective of AI and cognition research. Siskind
(1996) was one of the earliest researchers to try
to understand in a computational setting how chil-
dren learn their native language and map it to their
vision. Following his research, in the field of de-
velopmental robotics, researchers have connected
language and vision to teach their robots different
concepts; one of the earliest works in the field is a
system by Roy et al. (1999) where a robot capable
of learning audio-visual associations (e.g. objects’
names) using mutual information criterion was pre-
sented. Several robotic applications were devel-
oped subsequently, such as Steels (2001) where
language games for autonomous robots are used to
teach the meaning of words in a simple static world.
Further, researchers developed systems capable of
learning objects’ names and spatial relations by
interacting with a human or robot teacher, as by
Steels (2002), Bleys (2009) and Spranger (2015).
Providing machines with the ability to understand
natural language commands is a key component
for a natural human-robot interaction. For exam-
ple, “Back to the blocks world” (She et al., 2014)
and “Tell me Dave” (Misra et al., 2015) focused on
learning the natural language commands for simple
manipulation tasks. This is similar to our work,
but we improve on their work in three different as-
pects. First, their works use a pre-trained language
parser to extract relevant words from sentences for
learning, while we learn from raw (unprocessed)
linguistic inputs. Second, they assume the robot
knows the visual representations of shapes, spatial-
relations and actions beforehand, while we learn
these automatically from videos. Finally, we learn
the grammar rules along with word groundings.

Language grounding systems in robotic appli-
cations are usually trained in a supervised setting
on a corpus of labelled/tagged text as in Tellex
et al. (2011), Bollegal et al. (2015), and Cui et
al. (2016). The manual annotation of text is a
labour intensive task. Therefore, researchers de-

veloped unsupervised techniques that learn the se-
mantic categories of words from unlabelled data
by exploiting regularities in natural language as
in Schütze (1998), Biemann (2009), Socher et
al. (2012), and Houthooft et al. (2016). Simi-
larly, in grammar induction, parsers are com-
monly trained in a supervised setting on a cor-
pus of annotated grammar trees as presented by
Matuszek et al. (2013), and Dukes (2014). Other
researchers have tackled unsupervised grammar
induction from unlabelled sentences as presented
by Klein et al. (2002), Smith and Eisner (2005),
Barzilay et al. (2009), Chen et al. (2011), Ponvert
et al. (2011), and Søgaard (2012). While unsuper-
vised grounding and grammar induction techniques
enable learning from unlabelled data, their perfor-
mance is usually significantly worse than those of
the supervised techniques. In this work, we present
a novel technique capable of acquiring grounding
and grammar knowledge comparable to supervised
techniques from unlabelled data by mapping words
to automatically extracted visual concepts from
video clips.

3 Learning Visual Concepts (C)

In this section, we describe how we represent the
visual input data: we first extract a set of visual
features from each video clip; then, we show how
we abstract values from these features to form a set
of clusters (or visual concepts). These clusters are
used to learn the visual representation of words in
the language grounding section.

We start by processing the video clips to de-
tect and track the objects in each frame. The ob-
jects are detected using a table-top object detec-
tor (Muja and Ciocarlie, 2013), where each ob-
ject in a video is assigned a unique id (a number),
and its location is tracked using a particle filter
(Klank et al., 2009). Next, we obtain three sets of
observations from each video clip; (i) object fea-
tures: {colour, shape, location} of each object,
(ii) relational features: {direction, distance} of
each pair of objects in the scene, and (iii) the
{atomic actions} that the robot applies on each
object during the video. The features and atomic
actions are presented in Fig. 2. These features and
actions are obtained at every frame in each video. It
is worth noting that these features are not intended
to be exhaustive, but rather to demonstrate our ap-
proach; more features can be added as an extension
without changing the learning framework.

36



Figure 2: Predefined features and atomic actions.

Once the observations (objects, relations, ac-
tions) have been obtained for all objects in all
video clips, we process them to extract the unique
concepts, e.g. distinguishing the shape cube from
the shape prism, and the action pick up from put
down, etc. This is achieved by clustering the val-
ues of each feature space separately to obtain mul-
tiple clusters in the dataset. The extracted clus-
ters are used to construct a visual concept vector
(C) with length equal to the total number of clus-
ters. This forms the list of possible visual repre-
sentations of words. For instance, Dukes (2013)
dataset (intended to train semantic taggers in a
supervised setting), contains four unique shapes:
prism, cube, ball, and cylinder. We cluster the
shape values of all objects from all video clips and
are thus able to extract these clusters/shapes, e.g.
shape1 = cube, shape2 = prism, shape3 = ball,
and shape4 = cylinder. The clustering is per-
formed using a combination of Gaussian Mixture
Models and Bayesian Information Criterion to find
the optimal number of clusters representing the
data in each feature space. The same clustering
method is used on all observations (colours, loca-
tions, directions, distances, and atomic actions)
each of which is done separately, then the outputs
(or the clusters) are combined into a single vec-
tor C = {shape1, shape2, shape3, shape4, colour1, . . . ,

location1, . . . , direction1, . . . , distance1, . . . , action1,

. . .} to give the visual representations of words.
This is used in the next section for language ground-
ing. After generating the vector C, we go through

each of the video clips and represent the observed
contents of each clip (objects, relations, actions) as
a collection of entries or predicates. For example,
an object with id = 3 and shape shape1 (‘cube’)
is represented as the entry shape1(3). An exam-
ple from the dataset is shown in Fig. 3 where the
entries are shown on the right.

Figure 3: The initial and final frames of a scene
from the Dukes (2013) dataset represented in pred-
icates using the learned clusters in C.

4 Language Grounding (Φ)

Assigning a word to its correct visual represen-
tation is an essential preprocessing step for under-
standing and executing natural language commands
in robotics. In this section, we show how we con-
nect words to their visual representations that we
extracted in the previous section. The problem
statement of this section is: given (1) a corpus
of n sentences S = {s1, . . . , sn} that contains m
unique words W = {w1, . . . , wm}, and (2) corre-
sponding video clips V = {v1, . . . , vn} that con-
tain k extracted visual concepts C = {c1, . . . , ck},
find a partial function Φ that maps words from lan-
guage to their representations in vision, Φ : W →
C. This language grounding learning problem is
formulated as an assignment problem where words
wi ∈ W should be assigned to clusters cj ∈ C
subject to a cost function F : W × C that needs
to be minimised. We define the cost function as
Fw,c = (1− (Nw,c/Nw)), where Nw,c is the total
number of times a word w and a cluster c appear
together, and Nw is the total number of times the
word w appears in the entire dataset. This cost
function is equal to zero if w and c always appear
together, and equal to one if they are never seen to-
gether. This provides a clear indication of whether
a word w should be mapped to a cluster c or not.

Once the cost function is computed for all word-
cluster pairs, we create a cost matrix with words
W as rows and clusters C as columns, as shown in
Fig. 4 (left). We then use the Hungarian algorithm

37



(Kuhn, 1955) to find the grounding for each word
by assigning it to its most likely visual concept,
i.e. a word can only have one meaning (though
multiple words could have the same meaning), as
shown in Fig. 4 (right).

To simplify the learning of language grounding
in NLP applications, it is common to use a stop
word list to remove function words, such as ‘the’
and ‘as’, from all sentences. However, since we
learn from unlabelled data (i.e. avoiding human
annotation including stop word lists), we remove
such words by setting a threshold on the Hungar-
ian algorithm. This has the same effect as using
term frequency-inverse document frequency (tf-idf)
weighting to remove function words (Jones 1972).

Figure 4: (left:) The cost matrix. (right:) The
output of the Hungarian algorithm.

5 Generation of RCL Trees (Ω)

Robot Control Language (RCL) is a tree semantic
representation for natural language. As shown in
Fig. 1, a sentence is represented as an RCL tree
where leaf nodes align to the words in the sentence,
and non-leaves are tagged using a predefined set of
categories that a robot can understand/execute as
presented by Matuszek (2013) and Dukes (2013).
Although the RCL used in this work is designed to
operate within the context of robot manipulation
only, it can be extended to other domains such as
robot navigation, learning from YouTube how-to
videos (Alayrac et al., 2016), or learning cooking
instructions (Malmaud et al., 2015). Table 1 lists
the different types of RCL elements that are used
to compose natural language commands.

In the literature, the problem of transforming
sentences into RCL trees has been formulated as a
grammar induction one. A parser is trained on pairs
of sentences and corresponding human annotated
RCL trees, as shown in Fig. 1. The parser is then
used to parse new (previously unseen) sentences
into RCL trees. The human annotation of RCL
trees is labour-intensive, and it would prevent the

RCL element Description
event Specification of a single command. Takes

(action, entity, destination) as children.
action Aligned to a verbal group in NL, e.g.

‘place’.
entity Specification of a single entity. Takes

(colour, shape, location, sp-relation) as chil-
dren.

sp-
relation

Used to specify a spatial relation between
two entities or to describe a location. Takes
(direction, distance, entity) elements as chil-
dren.

destination A spatial destination. Takes (sp-relation,
location) as children.

colour Colour attribute of an entity, e.g. ‘red’.
shape Shape attribute of an entity, e.g. ‘pyramid’.
location Location attribute of an entity, e.g. ‘centre’.
direction Direction relation between two entities.
distance Distance relation between two entities.

Table 1: Universal semantic elements in RCL.

robot from learning without constant supervision.
In this paper, we automatically generate a vision

tree Ωi from each video clip vi ∈ V . We define a
vision tree as an event tree with only three elements
(action, entity, destination), as shown in the ex-
ample in Fig. 5. The action-element holds the ac-
tion feature extracted from the video vi, the entity-
element has the id of the object that is manipulated
by the robot in the video, and the destination-
element has the final (x, y, z) location feature of
that object. In the next section, we show how to
use the vision trees Ω = {Ω1, . . . ,Ωn} to automat-
ically generate language RCL trees analogous to
the one in Fig. 1.

Figure 5: An example of a vision tree from the
video clip shown in Fig. 3.

6 Grammar Induction (G)

Grammar induction refers to the process of learn-
ing a formal grammar (usually as a collection of
re-write rules or productions) from a set of obser-
vations. In this work, we show how we learn such
rules by mapping natural language commands to
visual features. The main contribution of our gram-
mar induction approach is that we automatically

38



generate training examples similar to those anno-
tated by a human expert shown in Fig. 1. This is
achieved by exploiting the learned groundings Φ
(shown in Fig 4) and the extracted vision trees Ω
(shown in Fig. 5) to successfully replace the human
annotator. We formulate the automatic generation
of language RCL trees into a search problem as
follows. Given (1) vision trees Ω = {Ω1, . . . ,Ωn},
(2) the learned grounding Φ : W → C, and (3) in-
put sentences S = {s1, . . . , sn}, we want to search
the space of all possible language RCL trees from a
sentence si ∈ S for one that matches the extracted
vision tree Ωi ∈ Ω. Given a match, we use that lan-
guage tree to learn grammar G. We say a language
RCL tree matches a vision tree if the values of all
corresponding elements are equal. The procedure
to perform the search is divided into five steps (sub-
stitute, connect, query, match, and learn) shown in
Algorithm 1. The following sections walk through
an example of the entire search process.

Algorithm 1 Automatic generation of language
RCL trees

1: procedure SEARCH ALGORITHM

2: Inputs Φ,Ω, S
3: Output G
4: for each sentence si ∈ S do
5: Substitute each word in si with its visual .

. concepts in Φ
6: Connect vision concepts to create language

. RCL elements.
7: Query the RCL elements with video vi.
8: Match RCL elements with the vision RCL

. tree Ωi.
9: if all RCL elements match with Ωi then

10: Use RCL elements to learn grammar G

6.1 Substituting words with visual concepts

For each sentence si ∈ S consisting of t words
si = {w1, . . . , wt}, we substitute each word with
its visual concept using the mapping function Φ
learned in the language grounding section. For in-
stance, a sentence si = 〈place, the, green, ball, above,

the, blue, block〉, is transformed using the mapping
function Φ into s′

i = 〈action1, None, colour2, shape3,

direction1, None, colour3, shape1〉, as shown in Fig. 6
(substitute).

Figure 6: Example for the generation of language
RCL tree.

6.2 Connecting concepts to generate RCL
elements

We group the visual concepts in s′
i to create all

possible entity, action, or sp-relation RCL ele-
ments (specified in Table. 1). Particularly, con-
secutive colour, shape, and location concepts
are grouped to form entity RCL elements, con-
secutive action concepts form action RCL ele-
ments, and consecutive direction and distance
concepts with entity elements are grouped to form
sp-relation RCL elements. For example, in the
sentence s′

i = 〈action1, colour2, shape3, direction1,

colour3, shape1〉 the visual concept colour2 and
shape3 are grouped together to generate an entity
element entity(colour2, shape3). The same pro-
cedure applies to action and sp-relation elements,
as shown in Fig. 6 (Connect).

6.3 Querying RCL elements

For each connected entity and sp-relation RCL
element from the previous step, we query the
observations in the scene to retrieve a corre-
sponding object id or an (x, y, z) location. For
instance, the element entity(colour2, shape3)
matches from the extracted observations shown
in Fig. 3 (right) a single object with id = 0,
as it is the only object that satisfies both query
properties colour2 and shape3 (‘green ball’
in this case). Similarly, querying the sp −
relation(direction1, entity(colour3, shape1))
returns (x = 4, y = 5, z = 3) referring to ‘above
blue block’. This is repeated for all connected
entities and spatial relations, as shown in Fig. 6
(Query).

If multiple objects in the scene satisfy a query,
a list of ids is returned, while if there are none
the query returns an empty list (this might happen

39



due to noise in vision and/or language). In the
results section we show that our system is capable
of learning using these connections, even in the
presence of noise from real-world data.

6.4 Matching RCL elements with vision RCL
trees Ω

Given the results of the previous process, we match
the returned query results to elements from the vi-
sion RCL trees in Ω. For example, the vision RCL
tree Ωi in Fig. 5 has an entity element with id = 0,
matching the query output in Fig. 6, thus matching
it with ‘green ball’. This is repeated for action and
destination elements in Ωi. This process grounds
linguistic descriptions to their visual counterparts
in RCL without human supervision as shown in
Fig. 6 (Match).

6.5 Learning grammar G

To provide a robot with the ability of understanding
natural language commands, we learn grammar G
from the automatically generated language RCL
trees. The grammar induction is performed us-
ing probabilistic context free grammar (Charniak,
1997), by training a semantic parser on the auto-
matically generated examples. The parser is then
used in the experiment section to parse new natural
language commands into Robot Control Language
(RCL) trees. This concludes the search process.

7 Experimental Procedure

We evaluate the performance of our system using
two datasets; a synthetic-world dataset, and a new,
simplified real-world dataset of table-top environ-
ment.

For the synthetic-world, we use the Train
Robots dataset1 which was designed to develop sys-
tems capable of understanding verbal spatial com-
mands described in a natural way (Dukes, 2013).
Non-expert users from Amazon Mechanical Turk
were asked to annotate appropriate natural lan-
guage commands to 1000 different scenes. A total
of 4850 commands were collected and later anno-
tated by human experts with appropriate RCL trees.
Examples from this synthetic dataset are shown in
Fig. 1 and 3.

For the real-world setup, we use a Baxter robot
as our test platform and attach a Microsoft Kinect2
sensor to its chest as shown in Fig. 7. The Kinect2

1Train Robots: http://doi.org/10.5518/32

device is used to collect RGBD videos as vol-
unteers controlled the robot arm to perform var-
ious manipulation tasks with real objects from the
robot’s point of view. The dataset consists of 204
videos with 17, 373 frames in total. The videos are
annotated with 1024 natural language commands
(5 per video in average) by a separate group of
volunteers2. A total of 51 different objects are ma-
nipulated in the videos such as basic block shapes,
fruit, cutlery, and office supplies. A detailed de-
scription of both datasets is presented in Table. 2.

Figure 7: Example scenes from our robotic dataset.

Dataset contents
features A B C D E F G

Synthetic 9 4 4 3 NA 4 24.8

Real-world 11 13 3 5 2 3 5.3

Table 2: Number of concepts in A-colour, B-shape,
C-location, D-direction, E-distance, and F-action
features in both datasets, and G-average number of
objects present in each scene.

7.1 Implementation Details
For the real-world dataset, objects are detected us-
ing a tabletop object detector on the first frame
in each video. These objects are then tracked
throughout the video using a six dimensional
(x, y, z, r, g, b) particle filter, as shown in Fig. 8.

Figure 8: Example of a video sequence “place the
orange in the bowl” when the objects are tracked
using a particle filter. (Best viewed in colour.)

During the learning process, we use atomic
actions (Fig. 2) to represent more complex ac-
tions in videos. For example a ‘pick up’ action is

2Baxter dataset: http://doi.org/10.5518/110

40



represented with the sequence (approach, grasp,
lift) as the robot approaches, grasps and lifts the
object, while a ‘drop’ action is represented with
just (discard) as the robot lets go of the object to
fall down on the table.

We automatically detect function words by set-
ting a threshold of σ = .6 on the Hungarian algo-
rithm. Thus a wordw is considered a function word
if it is not consistent with any cluster fj ∈ F by
more than 60% in the entire dataset. This threshold
detects all function words.

In our experiments, we divide each dataset ran-
domly into four equal parts, and perform four-fold
cross validation, where we train on three folds and
test on the fourth.

7.2 Evaluation
We evaluated the performance of our technique us-
ing two metrics: (i) the ability to correctly ground
words to the learned visual concepts using Φ, and
(ii) the ability to correctly parse previously un-
seen natural language commands to produce cor-
rect RCL trees using the learned grammar G.

To better demonstrate our results in language
grounding and grammar induction, we compare our
technique with (1) a supervised system that learns
from labelled data, and with (2) an unsupervised
system that learns from unlabelled linguistic data.
We consider our baseline as the performance of the
unsupervised system, i.e. our joint language and vi-
sion technique should outperform the unsupervised
system that learns from unlabelled linguistic inputs,
otherwise there is no benefit of the additional vision
component. On the other hand, an upper bound
on performance is the results of the supervised sys-
tem trained on human labelled (ground-truth) data.

7.3 Language Grounding Experiment
In this section, we evaluate the system’s ability to
acquire correct groundings for words from parallel
pairs of short video clips and linguistic descrip-
tions. The given task is to learn the partial function
Φ : W → C that maps words wi ∈ W to their
corresponding clusters cj ∈ C, e.g. the word ‘red’
should be mapped to the cluster colour-red.

The results for our language grounding exper-
iment are shown in Fig. 9. Here, ‘our-system’
is compared against (1) the supervised semantic
tagger (Fonseca and Rosa, 2013) that is trained
on human labelled data, and (2) the unsupervised
semantic tagger (Biemann, 2009) that is trained
on unlabelled linguistic data. The results are

calculated based on the total number of correct
tags/groundings assigned to each word in the test
fold (four fold cross validation). Note that for
the unsupervised system, the results are calculated
based on its ability to cluster words that belong to
the same category together, i.e. words that describe
colours should be given a unique tag different to
those that describe shapes, directions, etc. Also,
we assign new words in the test fold (words that
only exist in the test fold) with a function word tag.

Figure 9: The grounding results of (a) supervised,
(b) our system, and (c) unsupervised semantic tag-
gers, on both datasets.

Our system is able to correctly ground (85.6%)
of the total words in the synthetic, and (81.5%) in
the real-world datasets, compared to only (32.9%
and 31.2% respectively) using the unsupervised
system. This clearly shows that adding vision in-
puts produces more correct semantic representa-
tions for words, even though both systems use un-
labelled data for learning. Detailed analysis of how
the different techniques performed in each feature
space is shown in Fig. 10. Note that distance is
not a feature in the synthetic dataset and therefore
the corresponding row/column are left empty.

Figure 10: The grounding/tagging performance in
each feature space for the three systems on both
real-world and synthetic datasets.

7.4 Grammar Induction Experiment
In this experiment we test our system’s ability to ac-
quire correct grammar rules G from pairs of video

41



clips and unlabelled sentences (with no human-
annotated RCL trees). The learned grammar G is
then used to parse new (previously unseen) nat-
ural language commands. We compare our tech-
nique with (1) a supervised parser (Abney, 1996)
trained on labelled data, i.e. pairs of sentences
and human-annotated RCL trees, and (2) an unsu-
pervised parser (Ponvert et al. 2011) trained on
unlabelled sentences, i.e. a corpus of sentences
without RCL trees or semantic tags.

The results for (a) our approach, (b) the super-
vised parser, and (c) the unsupervised grammar
induction systems on both datasets are shown in
Fig. 11. The results were calculated based on the
number of correctly parsed RCL trees from sen-
tences in the test fold (in the four-fold cross valida-
tion). A score of 1 is given if the parsed sentence
completely matches the human annotation, while a
partial score in (0, 1) is given if it partially matches
the human annotation. The partial matching is
computed by matching subtrees in the both trees di-
vided by the total number of subtrees. For example,
if a tree contains 10 subtrees and only 8 of which
has a complete match in labels and links, then we
give a score of 0.8 to this tree.

Figure 11: The grammar induction results for (a)
supervised, (b) our system, and (c) unsupervised
parsers on both real-world and synthetic datasets.

The results in Fig. 11 clearly show that our ap-
proach outperforms the unsupervised grammar in-
duction system and achieves comparable results
to the supervised system by learning from both
language and vision as opposed to learning from
language alone. The number of grammar rules gen-
erated differs between techniques: our approach
generated (139 and 87) grammar rules from the syn-
thetic and real-world datasets respectively, while
the supervised system generated (182 and 114)
and the unsupervised system generated (45 and
38) grammar rules, respectively.

8 Conclusion and Discussion

We present a novel technique to simultaneously
learn the groundings of words and simple grammar

rules of natural language. Our learning framework
connects words from sentences to automatically-
extracted visual clusters from videos to enable au-
tomatic generation of RCL trees, which is a key
contribution of this paper. These trees act as an in-
termediary representation between the continuous
perceptual space and the purely symbolic linguistic
structures, thus provide robots with the ability to
automatically learn about language, actions and per-
ception. Our approach outperforms unsupervised
techniques in both semantic tagging and grammar
induction in learning from unlabelled data, and pro-
vides comparable performance to language-only
supervised approaches.

Our approach suffers from two main limitations
that hinder learning from longer videos (such as
YouTube videos). First, it requires the videos and
sentences to be temporally aligned beforehand,
and second, it requires the feature spaces (e.g.
colours, shapes, etc.) to be specified beforehand
(though not their discretisation, which is learned).
In order to allow learning from such data, our sys-
tem should be able to learn from continuous, un-
aligned videos and documents, and it should be
able to generate new feature spaces to cope with
new emerging concepts. We aim to address these
limitations in future work.

Acknowledgments

We acknowledge the financial support provided by
EU FP7 project 600623 (STRANDS), and the the
anonymous referees for their useful comments.

References
Steven Abney. 1996. Partial parsing via finite-state cas-

cades. Natural Language Engineering 2(04).

Jean-Baptiste Alayrac, Piotr Bojanowski, Nishant
Agrawal, Josef Sivic, Ivan Laptev, and Simon
Lacoste-Julien. 2016. Unsupervised learning from
narrated instruction videos .

Chris Biemann. 2009. Unsupervised part-of-speech
tagging in the large. Research on Language and
Computation 7(2-4):101–135.

Joris Bleys, Martin Loetzsch, Michael Spranger, and
Luc Steels. 2009. The grounded colour naming
game. Proceedings of Spoken Dialogue and Human-
Robot Interaction Workshop at the RoMan 2009
Conference .

Danushka Bollegala, Alsuhaibani Mohammed,
Takanori Maehara, and Ken-ichi Kawarabayashi.
2015. Joint word representation learning using

42



a corpus and a semantic lexicon. arXiv preprint
arXiv:1511.06438 .

Eugene Charniak. 1997. Statistical parsing with
a context-free grammar and word statistics.
AAAI/IAAI 2005(598-603):18.

David L Chen and Raymond J Mooney. 2011. Learn-
ing to interpret natural language navigation instruc-
tions from observations. In AAAI. volume 2.

Wanyun Cui, Xiyou Zhou, Hangyu Lin, Yanghua Xiao,
Haixun Wang, Seung-won Hwang, and Wei Wang.
2016. Verb pattern: A probabilistic semantic repre-
sentation on verbs .

Kais Dukes. 2013. Semantic annotation of robotic spa-
tial commands. In Language and Technology Con-
ference (LTC).

Kais Dukes. 2014. Semeval-2014 task 6: Supervised
semantic parsing of robotic spatial commands. Se-
mEval 2014 page 45.

Erick R Fonseca and Joao Luis G Rosa. 2013. A two-
step convolutional neural network approach for se-
mantic role labeling. In Neural Networks (IJCNN),
The 2013 International Joint Conference on. IEEE.

Rein Houthooft, Cedric De Boom, Stijn Verstichel,
Femke Ongenae, and Filip De Turck. 2016. Struc-
tured output prediction for semantic perception in
autonomous vehicles. In AAAI. AAAI Press.

Eric H Huang, Richard Socher, Christopher D Man-
ning, and Andrew Y Ng. 2012. Improving word
representations via global context and multiple word
prototypes. In ACL. ACL, pages 873–882.

Ulrich Klank, Dejan Pangercic, Radu Bogdan Rusu,
and Michael Beetz. 2009. Real-time CAD Model
Matching for Mobile Manipulation and Grasping.
In 9th IEEE-RAS International Conference on Hu-
manoid Robots. Paris, France, pages 290–296.

Dan Klein and Christopher D Manning. 2002. A gener-
ative constituent-context model for improved gram-
mar induction. In ACL. ACL, pages 128–135.

Harold W Kuhn. 1955. The Hungarian method for the
assignment problem. Naval research logistics quar-
terly 2(1-2):83–97.

Jonathan Malmaud, Jonathan Huang, Vivek Rathod,
Nick Johnston, Andrew Rabinovich, and Kevin Mur-
phy. 2015. What’s cookin’? interpreting cooking
videos using text, speech and vision. arXiv preprint
arXiv:1503.01558 .

Cynthia Matuszek, Evan Herbst, Luke Zettlemoyer,
and Dieter Fox. 2013. Learning to parse natural lan-
guage commands to a robot control system. In Ex-
perimental Robotics. Springer, pages 403–415.

Dipendra K Misra, Jaeyong Sung, Kevin Lee, and
Ashutosh Saxena. 2015. Tell me Dave: Context-
sensitive grounding of natural language to manipu-
lation instructions. JAIR page 0278364915602060.

Marius Muja and Matei Ciocarlie. 2013. tabletop ob-
ject detector - ROS Wiki. http://www.ros.
org/wiki/tabletopobjectdetector.

Elias Ponvert, Jason Baldridge, and Katrin Erk. 2011.
Simple unsupervised grammar induction from raw
text with cascaded finite state models. In Proceed-
ings of the 49th Annual Meeting of the ACL: Human
Language Technologies. ACL, Oregon, USA.

Deb Roy, Bernt Schiele, and Alex Pentland. 1999.
Learning Audio-Visual Associations using Mutual
Information. In Integration of Speech and Image Un-
derstanding, 1999. Proceedings. IEEE.

Hinrich Schütze. 1998. Automatic word sense discrim-
ination. Computational linguistics 24(1):97–123.

Lanbo She, Shaohua Yang, Yu Cheng, Yunyi Jia,
Joyce Y Chai, and Ning Xi. 2014. Back to the
blocks world: Learning new actions through situ-
ated human-robot dialogue. In 15th Annual Meet-
ing of the Special Interest Group on Discourse and
Dialogue. volume 89.

Jeffrey Mark Siskind. 1996. A Computational Study of
Cross-Situational Techniques for Learning Word-to-
Meaning Mappings. Cognition 61(1):39–91.

Noah A Smith and Jason Eisner. 2005. Contrastive es-
timation: Training log-linear models on unlabeled
data. In Proceedings of the 43rd Annual Meeting on
Association for Computational Linguistics. ACL.

Benjamin Snyder, Tahira Naseem, and Regina Barzi-
lay. 2009. Unsupervised multilingual grammar in-
duction. In Proceedings of the Joint Conference of
the 47th Annual Meeting of ACL. ACL, pages 73–81.

Anders Søgaard. 2012. Unsupervised dependency pars-
ing without training. Natural Language Engineer-
ing 18(02):187–203.

Karen Sparck Jones. 1972. A statistical interpretation
of term specificity and its application in retrieval.
Journal of documentation 28(1):11–21.

Michael Spranger and Luc Steels. 2015. Co-
acquisition of syntax and semantics - an investiga-
tion in spatial language. In Qiang Yang and Michael
Wooldridge, editors, IJCAI’15, AAAI Press, Palo
Alto, US, pages 1909–1905.

Luc Steels. 2001. Language Games for Autonomous
Robots. Intelligent Systems, IEEE 16(5):16–22.

Luc Steels and Frederic Kaplan. 2002. Aibo’s First
Words: The Social Learning of Language and Mean-
ing. Evolution of Communication 4(1):3–32.

Stefanie A Tellex, Thomas Fleming Kollar, Steven R
Dickerson, Matthew R Walter, Ashis Banerjee, Seth
Teller, and Nicholas Roy. 2011. Understanding nat-
ural language commands for robotic navigation and
mobile manipulation .

43


