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Introduction

After the remarkable successes of recent work visually grounded models of language, the embodied and
task-oriented aspects of language learning stand as a natural next challenge. As autonomous robotic
agents become increasingly capable and are deployed to progressively more complex environments,
expressive, accessible interfaces are becoming essential to realizing the potential of such technologies.
Natural language is immediately available to non-expert users and expressive enough to represent
complex actions and plans. Can we give instructions to robotic agents to assist with navigation and
manipulation tasks in remote settings? Can we talk to robots about the surrounding visual world, and
help them interactively learn the language needed to finish a task? To build robots that we can converse
with in our homes, offices, hospitals, and warehouses, it is essential that we develop new techniques for
linking language to action in the real world.

While the opportunity is clear, enabling effective interaction between users and autonomous agents
requires addressing some of the core open challenges in NLP while studying new domains and tasks.
This workshop aims to explore these challenges, bringing together members of the NLP, robotics, and
vision communities to focus on language grounding in robots and other interactive goal-driven systems.
The program features twelve new articles and seven cross-submissions from related areas, to be presented
as both posters and talks. We are also excited to host remarkable invited speakers, including Regina
Barzilay, Joyce Chai, Karl Moritz Hermann, Hadas Kress-Gazit, Terence Langendoen, Percy Liang, Ray
Mooney, Nicholas Roy, Stefanie Tellex and Jason Weston.

We thank the program committee, the ACL workshop chairs Wei Xu and Jonathan Berant, the invited
speakers, and our sponsors DeepMind and Facebook.

—Mohit Bansal, Cynthia Matuszek, Jacob Andreas, Yoav Artzi and Yonatan Bisk, organizers
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Abstract 

This paper describes how language is 

grounded by a comprehension system 

called Lucia within a robotic agent called 

Rosie that can manipulate objects and nav-

igate indoors. The whole system is built 

within the Soar cognitive architecture and 

uses Embodied Construction Grammar 

(ECG) as a formalism for describing lin-

guistic knowledge. Grounding is per-

formed using knowledge from the gram-

mar itself, from the linguistic context, 

from the agent's perception, and from an 

ontology of long-term knowledge about 

object categories and properties and ac-

tions the agent can perform. The paper al-

so describes a benchmark corpus of 200 

sentences in this domain, along with test 

versions of the world model and ontology, 

and gold-standard meanings for each of 

the sentences. The benchmark is contained 

in the supplemental materials. 

1 Introduction 

This paper considers language grounding within 

the context of Interactive Task Learning (ITL; 

Laird et al., 2017), where the goal is to teach an 

intelligent agent new tasks and extend existing 

tasks through natural language instruction by a 

human teacher. This kind of instruction has been 

done with an agent called Rosie (Mohan and 

Laird, 2014). Rosie has been interfaced to a tab-

letop robot arm and a mobile robot that can navi-

gate and perform tasks in an indoor environment. 

We discuss the techniques and strategies used to 

ground the natural language input to the 

knowledge the agent has about the world and its 

own capabilities. 

Rosie can perform simple manipulation tasks 

like ‘Pick up the green sphere.’ or ‘Put that in the 

pantry.’, simple navigation tasks like ‘Go to the 

kitchen.’ or ‘Follow the right wall.’ and more 

complex tasks like ‘Fetch a soda.’ or ‘Deliver the 

package to the main office.’ It can also understand 

descriptions of objects and answer simple ques-

tions about its world. 

In the work described here, the language com-

prehension is performed by a system called Lucia. 

Lucia runs as a part of Rosie, and is under contin-

uing development. Previous work (Lindes and 

Laird, 2016; 2017a; 2017b) described some as-

pects of Lucia, but here we describe in some detail 

how Lucia does language grounding within Rosie. 

We also provide a benchmark that may be useful 

for comparing language grounding systems for 

robots. 

1.1 Research Context 

Our research is embedded in a cognitive model-

ling approach (Laird et al., 2012). This affects our 

goals and methods in three ways. First, we attempt 

to implement all aspects of Rosie’s intelligence, 

including language comprehension, task planning, 

dialog interaction, etc., within a single agent built 

on an architecture designed to model general prin-

ciples of human cognition. Specifically, we use 

the Soar cognitive architecture (Laird, 2012). 

Second, we wish to apply a theory of linguistic 

or grammatical knowledge, based on cognitive 

linguistics research, that combines syntactic and 

semantic knowledge in a single integrated gram-

mar. Lucia uses Embodied Construction Grammar 

(ECG; Feldman et al., 2009; Bergen and Chang, 

2013) as that theory. This theory has the potential 

to scale to cover much variation in human lan-

guage use, as well as relating to the complexities 

of human conceptual models of the world. 

Third, with Lucia we seek to build a language 

comprehension process that conforms to psycho-

linguistic research on incremental human pro-

cessing (Christiansen and Chater, 2016) and draws 

directly on all the contextual knowledge the agent 

has. This approach may have an advantage in 

meeting human expectations of how natural lan-

guage will be understood by the agent. 

This cognitive modeling approach differs from 

many other approaches to language comprehen-

sion and language grounding for robots found in 

the literature. For example, a number of research-
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ers have built systems to satisfy the need for 

grounded language in a robot, including Steels 

and Hild (2012), Tellex et al. (2014), and Eppe et 

al. (2016). However, none of those systems con-

forms to the three aspects of a cognitive modeling 

approach outlined above. Our work is beginning 

to explore whether the cognitive approach can 

provide more robust language understanding.  

Lucia could be characterized as a semantic par-

ser using textual and visual context since it takes 

natural language utterances in, uses knowledge of 

the surrounding text and the objects seen by the 

agent, and produces semantic representations as 

its output. However, it differs in many respects 

from many other “semantic parsers.” 

For example, Zettlemoyer and colleagues 

(Zettlemoyer and Collins, 2007; Artzi and Zettle-

moyer, 2013) have built systems for learning 

mappings from utterances to logical forms. Berant 

et al. (2013) learn a system to map questions to 

answers in relation to a large database. Wang et al. 

(2016) report on a system for learning the lan-

guage needed to instruct a computer to perform 

certain tasks. 

All these systems have produced impressive re-

sults.  Our results with Lucia are complementary 

in two important ways. The meaning representa-

tions they produce are not just logical forms but 

are connected to the perception and action 

knowledge of a fully embodied agent. Lucia also 

satisfies the cognitive modelling constraints we 

outlined above, which none of these other systems 

attempt to do. The richness of this variety of dif-

ferent approaches should help advance future re-

search. Our contribution is to show something of 

what is possible using a cognitive model embod-

ied in a robotic agent. 

1.2 Theoretical Background 

Rosie is built within the Soar cognitive archi-

tecture. The Soar architecture has a working 

memory with information about its current per-

ception of the world as well as its internal goals 

and state. A procedural memory contains produc-

tion rules that represent knowledge of how to per-

form internal and external actions. A long-term 

semantic memory holds knowledge of the catego-

ries of objects the agent knows about, what prop-

erties these objects can have, and the actions the 

agent knows how to perform. Dynamic operation 

in Soar consists of a series of decision cycles, 

where in each cycle a single operator is selected 

and applied, and that operator influences which 

production rules fire to make changes in working 

memory or initiate external actions during that cy-

cle. 

In order to learn new tasks from instruction, 

Rosie must have a natural language understanding 

capability. That capability must be able to produce 

a meaning structure for each input utterance that is 

grounded to the agent’s perception, action capa-

bilities, and general world knowledge. By ground-

ed we mean that the resulting meaning structure 

refers directly to the agent’s internal representa-

tion of objects, of the actions it knows how to per-

form, and of any other relevant knowledge the 

agent has, such as spatial relations between ob-

jects. 

Several approaches to language comprehension 

in Soar have been used previously (Lehman et al., 

1991; Mohan et al., 2012; Mohan and Laird, 

2014; Kirk et al. 2016). More recently a language 

comprehension system in Soar called Lucia 

(Lindes and Laird, 2016; 2017a) has been devel-

oped. In addition to the general cognitive abilities 

inherent in Soar, Lucia uses a cognitive theory of 

language called Embodied Construction Grammar 

(ECG; Feldman et al., 2009; Bergen and Chang, 

2013). 

The ECG grammar formalism (Bryant, 2008) 

defines a grammar in terms of two kinds of items: 

constructions and schemas. A construction is a 

pairing of form and meaning. Some constructions 

match individual lexical items and others match 

one or more constituents in a recursive hierarchy. 

Each construction describes its meaning in terms 

of schemas. 

A schema can be thought of as a feature bundle. 

It defines a data structure that has a type name and 

one or more roles, or slots, to hold information. A 

construction defines what schema is to be evoked 

when it is recognized and how to fill the roles of 

that schema. Roles can be filled with constants 

provided in a construction or from the meaning 

structures of the constituents of a construction, 

gradually building a complex hierarchical mean-

ing structure as each sentence is comprehended. 

As an example of Lucia’s comprehension, con-

sider the sentence ‘Pick up the green sphere.’ Fig-

ure 1 shows the data structures Lucia builds to 

comprehend this sentence. The blue rectangles 

represent the constructions that were recognized, 

the green ovals are the meaning schemas that were 
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instantiated, and the orange and red items repre-

sent information derived from grounding. 

In the example in Figure 1, there are five word 

cycles, one for each word in the input sentence. 

The circled numbers in the figure indicate during 

which word cycle each construction or schema 

was instantiated or each grounding link formed. 

Figure 2 shows the ECG form of the construc-

tion for TransitiveCommand, which produc-

es the blue rectangle with the same name in the 

figure, along with the schemas used to build its 

meaning. The construction specifies the types of 

constituents needed to trigger the instantiation of 

this construction, the type of the schema to be 

evoked, and constraints for mapping the meanings 

of its constituents to the slots in the meaning 

structure. 

Lucia stores all its linguistic knowledge in 

Soar’s procedural memory, thus avoiding the 

overhead of retrieving this knowledge from se-

mantic memory as the earlier systems generally 

do. 

1.3 Overview 

This paper concentrates on the methods used for 

grounding language in the Lucia system. Supple-

mental materials describe a benchmark to enable 

evaluating other systems against the same sen-

tence corpus we have used for testing and a set of 

gold-standard meanings for those sentences. We 

have found a lack of published material to com-

pare systems for language grounding in robots, 

and our intention is that this benchmark can be 

one attempt to fill this gap. 

The following sections discuss our approach to 

grounding, give some examples of language used 

for ITL, and describe the grounding processes in 

Lucia. Finally we describe the files contained in 

the benchmark, which are submitted as supple-

mental material with this paper. 

Transitive
Command

PickUp RefExpr

PICK UP THE GREEN SPHERE

Pick up the green sphere.

Action
Descriptor

pick-up1 @A1001

Reference
Descriptor

Property
Descriptor

Entity

block sphere1

color green1

ActOnIt object

large-green-sphere1

block sphere1green1 large1

1 2 3 4 5

1

2

4

5

5 5

5

5

5

@P1004

 

Figure 1: Comprehension of a simple sentence. (Adapted from Lindes and Laird, 2016.) 

 

   

Figure 2: ECG example. (Adapted from Lindes and Laird, 2016.) 
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2 Grounded Meanings 

Human interaction with robots using natural lan-

guage often needs language to be grounded to the 

agent’s perceptions of the physical world and its 

knowledge of its own action capabilities.  

Several projects have used the Rosie system to 

explore ITL. Mohan et al. (2012) discuss interac-

tive methods for learning words that are grounded 

in the agent's physical environment and actions 

with a table-top robotic arm. Kirk and Laird 

(2016) report using interactive instruction to teach 

Rosie to understand and play new games. The ap-

plication to games raises many issues with 

grounding language in hypothetical settings, but 

this paper does not consider this aspect. Mininger 

and Laird (2016) extend the table-top version of 

Rosie to one that can navigate in an indoor envi-

ronment and comprehend language about objects 

that are unseen or unknown. These projects have 

contributed much to task learning, but their lan-

guage comprehension systems are ad-hoc. 

Lucia (Lindes and Laird, 2016; 2017a; 2017b) 

is a comprehension system built within the same 

Rosie agent and using the Soar architecture, but it 

also is built around the ECG theory of language. 

Its linguistic knowledge is written by hand in the 

ECG formalism (Bryant, 2008) and translated au-

tomatically into Soar production rules. Since all 

this knowledge is procedural and does not have to 

be retrieved dynamically from long-term memory, 

Lucia simulates skilled comprehension in simulat-

ed time close to human real-time performance. It 

uses a human-like incremental processing system, 

distinct from the best-fit over a whole sentence 

approach used by other ECG systems (Bryant, 

2008). In what follows we look at how well Lucia 

succeeds in grounding language within the con-

straints imposed by ECG and incremental pro-

cessing. 

What does it mean to ground natural language 

in this context? The comprehension of each input 

sentence must produce a meaning structure in 

working memory that is sufficient for the agent to 

use its knowledge of perception and action to per-

form the internal and external actions the instruc-

tor intended. In ITL the interaction process may 

include requests from the agent for additional in-

formation or clarification. 

In this paper we do not consider the details of 

how the agent's perception and action work. Ra-

ther we assume that before trying to comprehend a 

given input utterance, the agent already has 

knowledge about what its vision system currently 

perceives in the world. It also has knowledge in 

long-term memory about what actions it can per-

form. Knowledge of actions can be either built in-

to the agent or learned through interaction. In ei-

ther case, the perception and action concepts 

which the agent grounds to physical percepts or 

motor control programs are represented by inter-

nal symbols shared by the linguistic and robotic 

parts of the agent. Thus we are concerned here 

with grounding the natural language to these in-

ternal symbols and compositions of them. 

In order to ground the meaning of a sentence, 

each linguistic unit involved must be grounded, 

including words, phrases, clauses, and complete 

sentences. To comprehend ‘Pick up the green 

sphere.’ as shown in Figure 1, pick up must be 

grounded to an action the agent knows how to 

perform, the green sphere must be grounded to a 

specific object that the agent sees in its current 

environment, and these two meanings must be 

composed into a sentence-level meaning that can 

produce an actionable “message'' which tells Ro-

sie what action to take. Along the way the mean-

ings of individual words like green and sphere 

must be grounded to the corresponding properties 

in the agent’s long-term knowledge that are re-

quired to find the object in its perceived scene. 

3 Language Used for Interactive Task 

Learning  

In ITL the agent starts with sufficient linguistic 

and operational knowledge to perform some tasks, 

but then needs to learn new tasks and extensions 

to known tasks through interaction with a human 

instructor (Laird et al., 2012; Mohan et al., 2012; 

Mininger and Laird, 2016). In this section we give 

some examples of the language input involved in 

learning a few example tasks. Although the inter-

action also involves requests from Rosie to the in-

structor, we consider only language comprehen-

sion and not production here. 

Assume that at first the agent knows the primi-

tive manipulation command to pick up an object 

in its visual field and another to put or put down 

that object in one of its known locations. Now we 

can instruct it to learn the verb move with an in-

teraction that includes the following sequence of 

instructions, interspersed with agent responses 

that are not shown. 
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(1) Sentences for teaching the verb move 
a. Move the red block to the left 

of the orange block. 

b. The goal is that the red block 

is to the left of the orange 

block. 

c. Pick up the red block. 

d. Put the red block to the left 

of the orange block. 

e. The task is done. 
 

In (1a) a command to perform an unknown task 

is given, and the agent asks for help. Then the in-

structor states the end goal of the task (1b). In 

some cases this may be sufficient, and the agent 

may be able to perform the reasoning needed to 

plan a sequence of actions to perform the task. In 

(1) we show a case where the agent asks for more 

help after (1b), and the instructor gives a sequence 

of known commands needed to complete the task 

(1c-e). Rosie can then remember the goal, its rela-

tion to the original move command, and the se-

quence of steps so that if given another move 

command in the future it can perform it unaided. 

Other examples of similar interactions are given 

in (2) through (4). 
 

(2) Sentences for teaching the discard task 
a. Discard the green box. 

b. The goal is that the green box 

is in the trash. 

c. Pick up the green box. 

d. Put the green box in the trash. 

e. The task is finished. 
 

(3) Sentences for teaching a deliver task 
a. Deliver the box to the main of-

fice. 

b. The goal is that the box is in 

the office. 

c. Pick up the box. 

d. Go to the main office. 

e. Put down the box. 

f. You are done. 
 

(4) Sentences for teaching a fetch task 
a. Fetch a stapler. 

b. The goal is that the stapler is 

in the starting location. 

c. Remember the current location 

as the starting location. 

d. Find the stapler. 

e. Pick up the stapler. 

f. Go to the starting location. 

g. Put down the stapler. 

h. The task is over. 
 

These examples illustrate the kinds of sequenc-

es involved in ITL, but do not represent the full 

linguistic range of the system. The benchmark de-

scribed below contains a corpus of 200 sentences 

that apply to the object manipulation and indoor 

navigation domains, as well as to learning com-

plex tasks in these domains. These sentences have 

been designed by hand to accomplish three pur-

poses: provide the information needed to achieve 

our ITL goals, say things in a way that seems nat-

ural to humans, and experiment with different lin-

guistic forms. 

The entire corpus includes declarative sentenc-

es to describe objects or relations, commands for 

object manipulation and indoor navigation, condi-

tional if/then commands, commands with until 

clauses, sentences about goals and task progress, 

and questions to Rosie about its knowledge of the 

world. Unrestricted human interaction with the 

agent might well produce many additional linguis-

tic forms we have not yet considered. As a group, 

the 200 sentences provide a number of compre-

hension challenges, including lexical, syntactic, 

and semantic ambiguities (Lindes and Laird, 

2017b). 

4 The Grounding Process in Lucia 

This section examines how Lucia grounds words, 

phrases, clauses, and sentences, eventually pro-

ducing a message to the operational part of Rosie 

for each sentence it comprehends. We describe the 

knowledge sources used to provide information 

for the grounding, give an overview of the com-

prehension process in Lucia, and describe the var-

ious grounding processes. 

4.1 Knowledge Sources 

Information for grounding the various linguistic 

units comes from four sources: the ECG grammar, 

the current state of the comprehension, the current 

perceived visual scene, and an ontology of clas-

ses, properties, and actions. 

The ECG grammar: Lucia uses a grammar 

built by hand in the ECG language. An off-line 

program translates the constructions and schemas 

in the grammar into Soar production rules (Lindes 

and Laird, 2016). As the comprehension proceeds, 

these rules fire at appropriate times to instantiate 

constructions and schemas and fill the schema 
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roles whose fillers are defined in the grammar. 

Additional Soar rules not built from the grammar 

fill in grounding information from the other 

knowledge sources. 

The comprehension state: The Lucia compre-

hension system works incrementally, doing as 

much processing as possible as each individual 

word comes in (Lindes and Laird, 2017a). In do-

ing so it recognizes lexical and phrasal construc-

tions and builds a hierarchy of their instances. 

Schemas are also instantiated and filled as soon as 

possible and attached to the constructions. At any 

point in time the comprehender has a stack of 

construction instances built so far that have not 

yet been incorporated as constituents in higher 

level constructions, and each of these has its at-

tached meaning. Thus the rules that are trying to 

ground any new meaning being constructed can 

draw on the knowledge contained in this compre-

hension state as one of their information sources. 

The world model: Rosie has a scene graph is 

brought into Soar's working memory by its visual 

perception system and thus is available to Lucia 

and to the part of Rosie that implements actions. 

Each object is identified by a unique identifier and 

has category, color, size, and shape properties set 

by the visual perception system. In addition to ob-

jects, the world model contains information about 

spatial relations between objects, an indicator of 

which object the instructor is currently pointing 

to, and a special object to represent the robot it-

self. This world model is a key source of 

knowledge for grounding language. 

The ontology: The objects and relations in the 

world model are in working memory and can 

change as Rosie proceeds through a task. We also 

need fixed knowledge to represent categories, 

property values, and actions. The source for this 

kind of knowledge is an ontology stored in Soar's 

long-term semantic memory. This knowledge, like 

the world model, is shared between Lucia and the 

operational rules in Rosie. 

4.2 Lucia Comprehension Overview 

Lucia processes a sentence word-by-word and 

left-to-right. A number of Soar operators are se-

lected and applied during each word cycle. By the 

end of the word cycle, the comprehension state 

will have the lexical construction for that word, 

larger phrasal constructions that combine it as ap-

propriate with items previously on the stack, and 

grounded meaning schemas corresponding to 

these new constructions. 

Each word known to the system has one or 

more lexical constructions in the grammar. If a 

word has multiple senses, each of these construc-

tions is instantiated at first, and later processes se-

lect the correct one for the current context (Lindes 

and Laird, 2017b). Phrasal constructions combine 

constituents into higher level constructions. As 

each construction is instantiated, it evokes a 

schema to represent its meaning. Along the way, 

the various forms of grounding are performed. 

4.3 Grounding Referring Expressions 

We define a referring expression as a linguistic 

unit meant to describe some object that the system 

can know about. The general construction for a re-

ferring expression is called a RefExpr, and its 

meaning is represented by a RefDesc, or refer-

ence descriptor. These are built up as words are 

being processed. A RefExpr can consist of a 

simple pronoun, like it or this, a noun phrase like 

the green sphere, or a more complex expression 

like the green rectangle to the left of the large 

green rectangle or a green block that is on the 

stove. As the individual words in the expression 

are processed, the complete RefExpr and its 

RefDesc meaning are gradually built up. 

A common noun generates a schema that repre-

sents some class of object, and sets the roles of 

this schema to identifiers for the category and/or 

shape of that class of objects. An adjective gener-

ates a schema to describe a property class and a 

value for that property, such as the color green. A 

determiner sets whether the expression is definite 

or indefinite. At this lexical level, part of the 

grounding is performed by instantiating the 

grammatical knowledge incorporated in the lexi-

cal constructions. Then an operator is selected to 

retrieve information about categories and proper-

ties from the ontology. 

As soon as a complete noun phrase has been 

built, an operator takes the RefDesc that has 

been assembled and searches in the world model 

for one or more objects that match the description. 

Similarly, a pronoun is grounded by an operator 

that deals with pronouns. The object that is found 

from this grounding is then set as the referent of 

the RefDesc. 

More complex referring expressions are 

grounded in several steps. For instance, the green 

rectangle to the left of the large green rectangle 
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causes several phrase-level grounding operations 

in addition to the lexical ones. The phrase the 

green rectangle will be grounded to the set of two 

green rectangles in our test world model, while 

the large green rectangle will be grounded to a 

single object. The preposition to the left of is 

looked up in the ontology to see what kind of rela-

tion it represents. Finally that relation is used to 

select from the possible green rectangles the one 

which satisfies the complete expression. 

A complex referring expression like a green 

block that is on the stove also requires several 

grounding steps. First when a green block is 

grounded, a set of several objects that match is 

formed. Next that is recognized as a relative pro-

noun, and connected to the preceding noun 

phrase. The phrase on the stove finds the stove 

and a relation to it, which is then applied to the set 

of objects found for the noun phrase that that is at-

tached to, resulting in a single object that satisfies 

the whole expression. 

4.4 Grounding and Attaching Prepositional 

Phrases 

Consider the full sentence: ‘Move the green rec-

tangle to the left of the large green rectangle to 

the pantry.’ Above we looked at grounding the 

green rectangle to the left of the large green rec-

tangle as an isolated expression. Within the com-

plete sentence, however, things get more compli-

cated. The prepositional phrase with to the left of 

could attach to the previous noun phrase, but it 

could also attach to the verb as its target location. 

Then later on, as the incremental processing pro-

ceeds, we get to the phrase to the pantry. Where 

should this be attached? 

Lucia has a strategy for resolving issues of this 

sort within its incremental, single-path parsing 

strategy context (Lindes and Laird, 2017a). When 

the first prepositional phrase has been assembled, 

two attachment sites are considered: the immedi-

ately preceding noun phrase or the previous verb. 

If the verb is one that requires a target location, 

such as put or move, the prepositional phrase will 

be attached to the verb. If the verb is one like pick 

up that does not require a target location, the 

phrase will be attached to the preceding noun 

phrase. 

When the second prepositional phrase has been 

processed, however, we have a problem. The verb 

already has a target location attached, and the 

noun phrase before that has been hidden under the 

construction that makes that attachment. Here Lu-

cia uses a strategy called local repair. A snip op-

eration disconnects the first prepositional phrase 

from the verb, and then it is reattached to the 

green rectangle, and that complete expression is 

regrounded. Now the phrase to the pantry can be 

attached to the verb as its target location. This lo-

cal repair operation is described more fully by 

Lindes and Laird (2017b). 

4.5 Grounding Full Sentences 

The ECG grammar provides constructions that 

combine the lexical items for verbs with the refer-

ring expressions that form the verb’s arguments to 

form complete sentences. These are often called 

argument structure constructions. Verbs describing 

actions are grounded by looking up their identifi-

ers in the ontology to connect to the actions the 

agent knows how to perform. This lookup pro-

vides the referring link to the agent’s knowledge 

of how to perform the given action. 

Once the comprehension process has recog-

nized a complete sentence as a single construc-

tion, an interpretation process is performed. This 

process converts the top-level meaning structure 

produced by the language comprehension system 

into a grounded, actionable message for Rosie to 

act on. Every message has a type field, plus other 

arguments depending on its type. Here we give 

brief descriptions of these messages; more detail 

can be found in the supplemental materials. 

In the example in Figure 1, the ActOnIt 

schema is interpreted to form a message of type 

command with arguments pick-up1 and 

large-green-sphere1. 

Declarative sentences produce object-

description messages. This message type has 

an object argument to indicate the object being 

described and a property argument showing the 

property to be assigned to the object. All action 

commands produce command messages. Each 

command message has an action argument, most 

have an object argument, and others have varying 

arguments. 

The command ‘If you see the soda then pick it 

up.’ illustrates a conditional command which pro-

duces a “conditional'' message an action for the 

then clause and a condition for the if clause. The 

condition must be met first, and the action will be 

performed when the condition is met. A command 

can also have an until clause describing a condi-
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tion to terminate the action, as in ‘Explore until 

you see a soda.’ 

Lucia and Rosie understand several types of 

questions, as shown in (5). 
 

(5) Some questions that Rosie can understand 
a. Is the large sphere green? 

b. Is the small orange triangle 

behind the green sphere? 

c. What is inside the pantry? 

d. Where is the red triangle? 

e. What color is the large sphere? 

f. What shape is this? 
 

Such questions produce various forms of ques-

tion messages, with arguments to define the ob-

jects, properties, or relations being asked about. 

5 Benchmark 

We have assembled various data items discussed 

in this paper into a package to be submitted as 

supplementary material. We hope this package, 

which we are calling The University of Michigan 

Robot Language Benchmark #1, will be useful to 

other researchers as a benchmark against which to 

evaluate their systems for robot language ground-

ing as we are using it to evaluate and continue to 

develop Lucia. 

The supplementary materials are contained in a 

file called UMRLB-1_v0.1.zip containing the files 

listed in Table 1. The “-1'' indicates that we expect 

there to be others in the future, and the “_v0.1'' in-

dicates the specific version. The files containing 

data structures are in the industry standard JSON 

format to make them easily machine-readable 

across many systems. 
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File Name  Description 

UMRLB-1 

.pdf 

A document describing in detail 

the files in the benchmark and 

their meanings. 

Sentences.txt The corpus of 200 sentences, 

grouped by their linguistic types. 

World.json A definition of a particular snap-

shot of the world perceived by a 

robot that can be used to ground 

linguistic expressions. 

Ontology.json An ontology defining properties 

of perceived objects and robot 

actions. 

GoldStandard 

.json 

A file giving the gold-standard 

meaning for each sentence in the 

corpus, along with other metada-

ta. 

Table 1: Files included in the Benchmark 
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Abstract

We present an optimised multi-modal dia-
logue agent for interactive learning of vi-
sually grounded word meanings from a
human tutor, trained on real human-human
tutoring data. Within a life-long interac-
tive learning period, the agent, trained us-
ing Reinforcement Learning (RL), must
be able to handle natural conversations
with human users, and achieve good learn-
ing performance (i.e. accuracy) while min-
imising human effort in the learning pro-
cess. We train and evaluate this system in
interaction with a simulated human tutor,
which is built on the BURCHAK corpus –
a Human-Human Dialogue dataset for the
visual learning task. The results show that:
1) The learned policy can coherently in-
teract with the simulated user to achieve
the goal of the task (i.e. learning visual at-
tributes of objects, e.g. colour and shape);
and 2) it finds a better trade-off between
classifier accuracy and tutoring costs than
hand-crafted rule-based policies, includ-
ing ones with dynamic policies.

1 Introduction
As intelligent systems/robots are brought out of
the laboratory and into the physical world, they
must become capable of natural everyday conver-
sation with their human users about their physi-
cal surroundings. Among other competencies, this
involves the ability to learn and adapt mappings
between words, phrases, and sentences in Natural
Language (NL) and perceptual aspects of the ex-
ternal environment – this is widely known as the
grounding problem.

The grounding problem can be categorised into
two distinct, but interdependent types of prob-
lem: 1) agent as a second-language learner: the

Image Human-Human Dialogue
T(utor): do you know this object?
L(earner): a suzuli ... wait no ... sako wakaki?
T: the color is right, but the shape is not.
L: oh, okay, so?
T: a burchak, burchak, sako burchak.
L: cool, got it.
L: what is this?
T: en ... a aylana suzili.
L: is aylana for color?
T: no, it’s a shape.
L: so it is an suzili aylana, right?
T: yes.

Figure 1: Human-Human Example Dialogues in
the BURCHAK Corpus (Yu et al., 2017)
(‘sako’ for ‘red’, ‘burchak’ for ‘square’, ‘suzuli’ for ‘green’,

‘aylana’ for ‘circle’, ‘wakaki’ for ‘triangle’)

agent needs to learn to ground (map) NL symbols
onto their existing perceptual and lexical knowl-
edge (e.g. a dictionary of pre-trained classifiers)
as in e.g. Silberer and Lapata (2014); Thoma-
son et al. (2016); Kollar et al. (2013); Matuszek
et al. (2014); and 2) the agent as a child: with-
out any prior knowledge of perceptual categories,
the agent must learn both the perceptual categories
themselves and also how NL expressions map to
these (Skocaj et al., 2016; Yu et al., 2016c). Here,
we concentrate on the latter scenario, where a sys-
tem learns to identify and describe visual attributes
(colour and shape in this case) through interaction
with human tutors, incrementally, over time.

Previous work has approached the grounding
problem using a variety of resources and ap-
proaches, for instance, either using annotated vi-
sual datasets (Silberer and Lapata, 2014; Socher
et al., 2014; Naim et al., 2015; Al-Omari et al.,
2016; Tellex et al., 2014; Matuszek et al., 2012,
2014), or through interactions with other agents
or real humans (Kollar et al., 2013; Tellex et al.,
2013; Thomason et al., 2015, 2016; Skocaj et al.,
2016; Yu et al., 2016c), where feedback from other
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agents is used to learn new concepts.

However, most of these systems, which ground
NL symbols through interaction have two com-
mon, important drawbacks: 1) in order to achieve
better performance (i.e. high accuracy), these sys-
tems require a high level of human involvement –
they always request feedback from human users,
which might affect the quality of human answers
and decrease the overall user experience in a life-
long learning task; 2) Most of these approaches are
not built/trained based on real human-human con-
versations, and therefore can’t handle them. Natu-
ral human dialogue is generally more messy than
either machine-machine or human-machine dia-
logue, containing natural dialogue phenomena that
are notoriously difficult to capture, e.g. self- cor-
rections, repetitions and restarts, pauses, fillers,
interruptions, and continuations (Purver et al.,
2009; Hough, 2015). Furthermore, they often ex-
hibit much more variation than in their synthetic
counterparts (see dialogue examples in Fig. 1).

In order to cope with the first problem, recent
prior work (Yu et al., 2016b,c) has built multi-
modal dialogue systems to investigate the effects
of different dialogue strategies and capabilities on
the overall learning performance. Their results
have shown that, in order to achieve a good trade-
off between learning performance and human in-
volvement, the agent must be able to take initiative
in dialogues, take into account uncertainty of its
predictions, as well as cope with natural human
conversation in the learning process. However,
their systems are built based on hand-crafted, syn-
thetic dialogue examples rather than real human-
human dialogues.

In this paper, we extend this work to intro-
duce an adaptive visual-attribute learning agent
trained using Reinforcement Learning (RL). The
agent, trained with a multi-objective policy, is ca-
pable not only of properly learning novel visual
objects/attributes through interaction with human
tutors, but also of efficiently minimising human in-
volvement in the learning process. It can achieve
equivalent/comparable learning performance (i.e.
accuracy) to a fully-supervised system, but with
less tutoring effort. The dialogue control policy
is trained on the BURCHAK Human-Human Dia-
logue dataset (Yu et al., 2017), consisting of con-
versations between a human ‘tutor’ and a human
‘learner’ on a visual attribute learning task. The
dataset includes a wide range of natural, incre-

mental dialogue phenomena (such as overlapping
turns, self-correction, repetition, fillers, and con-
tinuations), as well as considerable variation in
the dialogue strategies used by the tutors and the
learners.

Here we compare the new optimised learning
agent to rule-based agents with and without adap-
tive confidence thresholds (see section 3.2.1). The
results show that the RL-based learning agent out-
performs the rule-based systems by finding a bet-
ter trade-off between learning performance and the
tutoring effort/cost.

2 Related Work

In this section, we review some of the work that
has addressed the language grounding problem
generally. The problem of grounding NL in per-
ception has received very considerable attention in
the computational literature recently. On the one
hand, there is work that only addresses the ground-
ing problem implicitly/indirectly: in this category
of work is the large literature on image and video
captioning systems that learn to associate an im-
age or video with NL descriptions (Silberer and
Lapata, 2014; Bruni et al., 2014; Socher et al.,
2014; Naim et al., 2015; Al-Omari et al., 2016).
This line of work uses various forms of neural
modeling to discover the association between in-
formation from multiple modalities. This often
works by projecting vector representations from
the different modalities (e.g. vision and language)
into the same space in order to retrieve one from
the other. Importantly, these models are holistic
in that they learn to use NL symbols in specific
tasks without any explicit encoding of the symbol-
perception link, so that this relationship remains
implicit and indirect.

On the other hand, other models assume a much
more explicit connection between symbols (ei-
ther words or predicate symbols of some logi-
cal language) and perceptions (Kennington and
Schlangen, 2015; Yu et al., 2016c; Skocaj et al.,
2016; Dobnik et al., 2014; Matuszek et al., 2014).
In this line of work, representations are both com-
positional and transparent, with their constituent
atomic parts grounded individually in perceptual
classifiers. Our work in this paper is in the spirit
of the latter.

Another dimension along which work on
grounding can be compared is whether groundings
are learned offline (e.g. from images or videos an-
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notated with descriptions or definite reference ex-
pressions as in (Kennington and Schlangen, 2015;
Socher et al., 2014)) or from live interaction as
in, e.g. (Skocaj et al., 2016; Yu et al., 2015,
2016c; Das et al., 2017, 2016; de Vries et al., 2016;
Thomason et al., 2015, 2016; Tellex et al., 2013).
The latter, which we do here, is clearly more ap-
propriate for multimodal systems or robots that are
expected to continuously, and incrementally learn
from the environment and their users.

Multi-modal, interactive systems that involve
grounded language are either: (1) rule-based as
in e.g. Skocaj et al. (2016); Yu et al. (2016b);
Thomason et al. (2015, 2016); Tellex et al. (2013);
Schlangen (2016): in such systems, the dialogue
control policy is hand-crafted, and therefore these
systems are static, cannot adapt, and are less ro-
bust; or (2) optimised as in e.g. Yu et al. (2016c);
Mohan et al. (2012); Whitney et al. (fcmng); Das
et al. (2017): in contrast such systems are learned
from data, and live interaction with their users;
they can thus adapt their behaviour dynamically
not only to particular dialogue histories, but also
to the specific information they have in another
modality (e.g. a particular image or video).

Ideally, such interactive systems ought to be
able to handle natural, spontaneous human dia-
logue. However, most work on interactive lan-
guage grounding learn their systems from syn-
thetic, hand-made dialogues or simulations which
lack both in variation and the kinds of dialogue
phenomena that occur in everyday conversation;
they thus lead to systems which are not robust and
cannot handle everyday conversation (Yu et al.,
2016c; Skocaj et al., 2016; Yu et al., 2016a). In
this paper, we try to change this by training an
adaptive learning agent from human-human dia-
logues in a visual attribute learning task.

Given the above, what we achieve here is: we
have trained an adaptive attribute-learning dia-
logue policy from realistic human-human conver-
sations that learns to optimise the trade-off be-
tween a learning/grounding performance (Accu-
racy) and costs form human tutors,in effect doing
a form of active learning.

3 Learning How to Learn Visual
Attributes: an Adaptive Dialogue
Agent

We build a multimodal and teachable system that
supports a visual attribute (e.g. colour and shape)
learning process through natural conversational in-

teraction with human tutors (see Fig. 1 for exam-
ple dialogues), where the tutor and the learner in-
teractively exchange information about the visual
attributes of an object they can both see. Here we
use Reinforcement Learning for policy optimisa-
tion for the learner side (see below Section 3.2).
The tutor side is simulated in a data-driven fash-
ion using human-human dialogue data (see below,
Sections 4 & 5.2).

3.1 Overall System Architecture

The system architecture loosely follows that of Yu
et al. (2016c), and employs two core modules:

Vision Module produces visual attribute predic-
tions, using two base feature categories, i.e. the
HSV colour space for colour attributes, and a ‘bag
of visual words’ (i.e. PHOW descriptors) for the
object shapes/class. It consists of a set of binary
classifiers - Logistic Regression SVM classifiers
with Stochastic Gradient Descent (SGD) (Zhang,
2004) – to incrementally learn attribute predic-
tions. The visual classifiers ground visual attribute
words such as ‘red’, ‘circle’ etc. that appear as pa-
rameters of the Dialogue Acts used in the system.

Dialogue Module that implements a dialogue
system with a classical architecture, com-
posed of Dialogue Management (DM), Natu-
ral Language Understanding (NLU) and Gen-
eration (NLG) components. The components
interact via Dialogue Act representations (e.g.
inform(color=red),ask(shape)). It is
these action representations that are grounded in
the visual classifiers that reside in the vision mod-
ule. The DM relies on an adaptive policy that
is learned using RL. The policy is trained to: 1)
handle natural interactions with humans and to
produce coherent dialogues; and 2) optimise the
trade-off between accuracy of visual classifiers
and the cost of the dialogue to the tutor.

3.2 Adaptive Learning Agent with
Hierarchical MDP

Given the visual attribute learning task, the smart
agent must learn novel visual objects/attributes
as accurately as possible through natural interac-
tions with real humans, but meanwhile it should
attempt to minimise the human involvement as
much as possible in this life-long learning pro-
cess. We formulate this interactive learning task
into two sub-tasks, which are trained using Re-
inforcement Learning with a hierarchical Markov
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Decision Process (MDP), consisting of two inter-
dependent MDPs (sections 3.2.1 and 3.2.2):

3.2.1 Adaptive Confidence Threshold
Following previous work (Yu et al., 2016c), we
also here use a positive confidence threshold: this
is a threshold which determines when the agent
believes its own predictions. This threshold plays
an essential role in achieving the trade-off be-
tween the learning performance and the tutoring
cost, since the agent’s behaviour, e.g. whether
to seek feedback from the tutor, is dependent on
this threshold. A form of active learning is taking
place: the learner only asks a question about an
attribute if it isn’t confident enough already about
that attribute.

Here, we learn an adaptive strategy that aims at
maximising the overall learning performance si-
multaneously, by properly adjusting the positive
confidence threshold in the range of 0.65 to 0.95.
We train the optimization using a RL library –
Burlap (MacGlashan, 2015) as follows, in detail:

State Space The adaptive-threshold MDP ini-
tialises a 3-dimensional state space defined by
NumInstance, Thresholdcur, and deltaAcc,
where NumInstance represents how many visual
objects/images have been seen (the number of in-
stances will be clustered into 50 bins, each bin
contains 10 visual instances); Thresholdcur rep-
resents the positive threshold the agent is currently
applying; and deltaAcc represents, after seeing
each 10 instances, whether the classifier accuracy
increases, decreases or keep constant comparing
to the previous bin. The deltaAcc is configured
into three levels, (see Eq.1)

deltaAcc =


1, if ∆Acc > 0
0, else if ∆Acc = 0
−1, otherwise

(1)

Action Selection the actions were either to in-
crease or decrease the confidence threshold by
0.05, or keep it the same.

Reward signal The reward function for the
learning tasks is given by a local function Rlocal.
This local reward signal was directly proportional
to the agents delta accuracy over the previous
Learning Step (10 training instances, see above).
The single training episode will be terminated
once the agent goes through 500 instances.

3.2.2 Natural Interaction
The second sub-task aims at learning an optimised
dialogue strategy that allows the system to achieve
the learning task (i.e. learn new visual attributes)
through natural, human-like conversations.

State Space The dialogue agent initialises a 4-
dimensional state space defined by (Cstate, Sstate,
preDAts, preContext), where Cstate and Sstate

are the status of visual predictions for the colour
and shape attributes respectively (where the status
is determined by the prediction score (conf.) and
the adaptive confidence threshold (posThd.) de-
scribed above (see Eq.2)), the preDAts represents
the previous dialogue actions from the tutor re-
sponse, and the preContext represents which at-
tribute categories (e.g. colour, shape or both) were
talked about in the context history.

State =


2, if conf. ≥ posThd
1, else if 0.5 < conf. < posThd.

0, otherwise
(2)

i.e. Cstate or Sstate will be updated to 2 also when
the related knowledge has been provided by the
tutor.

Action Selection The actions were chosen based
on the statistics of the dialog action frequency
occurred from the BURCHAK corpus, including
question-asking(for WH questions or polar ques-
tions), inform, acknowledgment, as well as listen-
ing. These actions can be applied for either spe-
cific single attribute or both. The action of inform
can be separated into two sub-actions according
to whether the prediction score is greater than 0.5
(i.e. polar question) or not (i.e. doNotKnow).

Reward signal The reward function for the
learning tasks is given by a global function Rglobal

(see Eq.3). The dialogue will be terminated when
both colour and shape knowledge are either taught
by human tutors or known with high confidence
scores.

Rglobal = 10− Cost − penal.; (3)

where Cost represents the cumulative cost by
the tutor (see more details about this setup in Sec-
tion 5.1) in a single dialogue, and penal. penalizes
all performed actions which cannot respond to the
user properly.
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Dialogue Capability Speaker Annotation Tag
Listen Tutor/Learner Listen()
Inform Tutor/Leaner Inform(colour:sako&shape:burchak)
Question asking Tutor/Leaner Ask(colour), Ask(shape), Ask(colour&shape)
Question-answering Tutor/Leaner Inform(colour:sako), Polar(shape:burchak)
Acknowledgement Tutor/Learner Ack(), Ack(colour)
Rejection Tutor Reject(), Reject(shape)
Focus Tutor Focus(colour), Focus(shape)
Clarification Tutor CLr()
Clarification-request Learner CLrRequest()
Help-offer Tutor Help()
Help-request Learner HelpRequest()
Checking Tutor Check()
Repetition-request Tutor Repeat()
Retry-request Tutor Retry()

Table 1: List of Dialogue Capabilities/Actions and Corresponding Annotations in the Corpus

i.e. we applied the SARSA algorithm (Sutton and
Barto, 1998) for learning the multi-MDP learning
agent with each episode defined as a complete di-
alogue for an object. It was configured with a
ξ−Greedy exploration rate of 0.2 and a discount
factor of 1.

4 Human-Human Dialogue Corpus:
BURCHAK

BURCHAK (Yu et al., 2017) is a freely available
Human-Human Dialogue dataset consisting of 177
dialogues between real human users on the task of
interactively learning visual attributes.

The DiET experimental toolkit These dialogue
were collected using a new incremental varia-
tion of the DiET chat-tool developed by (Healey
et al., 2003; Mills and Healey, submitted), which
allows two or more participants to communicate
in a shared chat window. It supports live, fine-
grained and highly local experimental manipula-
tions of ongoing human-human conversation (see
e.g. (Eshghi and Healey, 2015)). The chat-tool
is designed to support, elicit, and record at a fine-
grained level, dialogues that resemble face-to-face
dialogue in that turns are: (1) constructed and dis-
played incrementally as they are typed; (2) tran-
sient; (3) potentially overlapping; (4) not editable,
i.e. deletion is not permitted.

Task The learning/tutoring task given to the par-
ticipants involves a pair of participants who talk
about visual attributes (e.g. colour and shape)
through a series of visual objects. The overall goal

of this task is for the learner to discover ground-
ings between visual attribute words and aspects in
the physical world through interaction. However,
since humans have already known all groundings,
such as “red” and “square”, the task is assumed in
a second-language learning scenario, where each
visual attribute, instead of standard English words,
is assigned to a new unknown word in a made-up
language (see examples in Fig. 1). (see more de-
tails in (Yu et al., 2017))

Dialogue Phenomena As the chat-tool is de-
signed to resemble face-to-face dialogue, the most
important challenge of this BURCHAK is that
it refers to a wide range of natural, incremental
dialogue phenomena, such as overlapping, self-
correction and repetition, filler as well as contin-
uation (Fig. 1). On the other hand, BURCHAK,
which focuses on the visual attribute learning task,
offers a list of interesting task-oriented dialogue
strategies (e.g. initiative, context-dependency and
knowledge-acquisition) and capabilities, such as
inform, question-asking and answering, listen (no
act), as well as acknowledgement and rejection.
Each dialogue action contains a huge variations in
the realistic conversation. All dialogue actions are
tagged in the dataset (as shown in Table 1).

i.e. we have trained and evaluated the optimised
learning agents on the cleaned-up version of this
corpus, in which spelling mistakes, emoticons, as
well as some snippets of conversations where the
participant misunderstood the task have been cor-
rected or removed.
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5 Experiment Setup

In this section, we follow previous work (Yu et al.,
2016c) to compare the trained RL-based learning
agent with a rule-based system with the best per-
formance (i.e. an agent which takes the initiative
in dialogues, takes into account its changing con-
fidence about its predictions, and is also able to
process natural, human-like dialogues) from previ-
ous work. Instead of using hand-crafted dialogue
examples as before, both the RL-based system
and the rule-based system are trained/developed
against a simulated user, itself trained from the
BURCHAK dialogue data set as above. For
learning simple visual attributes (e.g. “red” and
“square”), we use the same hand-made visual ob-
ject dataset from Yu et al. (2016c).

In order to further investigate the effects of
the optimised adaptive confidence threshold on
the learning performance, we build the rule-based
system under three different settings, i.e. with a
constant threshold (0.95) (see blue curve in Fig.
2), with a hand-crafted adaptive threshold which
drops by 0.05 after each 10 instances (grey curve
in Fig. 2), and with a hand-crafted adaptive thresh-
old which drops by 0.01 after each 10 instances
(orange curve in Fig. 2).

5.1 Evaluation Metrics
To compare the optimised and the rule-based
learning agents, and also further investigate how
the adaptive threshold affect the learning process,
we follows the evaluate metrics from the pre-
vious work (see (Yu et al., 2016c)) considering
both the cost to the tutor and the accuracy of the
learned meanings, i.e. the classifiers that ground
our colour and shape concepts.

Cost The cost measure reflects the effort needed
by a human tutor in interacting with the sys-
tem. Skocaj et. al. (2009) point out that a com-
prehensive teachable system should learn as au-
tonomously as possible, rather than involving the
human tutor too frequently. There are several pos-
sible costs that the tutor might incur: Cinf refers
to the cost (i.e. 5 points) of the tutor providing in-
formation on a single attribute concept (e.g. “this
is red” or “this is a square”); Cack is the cost
(i.e. 0.5) for a simple confirmation (like “yes”,
“right”) or rejection (such as “no”); Ccrt is the cost
of correction for a single concept (e.g. “no, it is
blue” or “no, it is a circle”). We associate a higher
cost (i.e. 5) with correction of statements than that

of polar questions. This is to penalise the learning
agent when it confidently makes a false statement
– thereby incorporating an aspect of trust in the
metric (humans will not trust systems which con-
fidently make false statements).
i.e. differently to the previous evaluation metrics,
we do not take into account the costs of parsing
and producing utterances

Learning Performance As mentioned above,
an efficient learner dialogue policy should con-
sider both classification accuracy and tutor effort
(Cost). We thus define an integrated measure –
the Overall Performance Ratio (Rperf ) – that we
use to compare the learner’s overall performance
across the different conditions:

Rperf =
∆Acc
Ctutor

i.e. the increase in accuracy per unit of the cost, or
equivalently the gradient of the curve in Fig. 2c.
We seek dialogue strategies that maximise this.

5.2 User Simulation

In order to train and evaluate these learning agents,
we build an user simulation using a generic n-gram
framework (see (Yu et al., 2017)) on the BUR-
CHAK corpus. This user framework takes as in-
put the sequence of N most recent words in the
dialogue, as well as some optional additional con-
ditions, and then outputs the next user response on
multiple levels as required, e.g. full utterance, a
sequence of dialogue actions, or even a sequence
of single word outputs for incremental dialogue.
Differently to other existing user simulations, this
framework aims at not only resembling user strate-
gies and capabilities in realistic conversations, but
also at simulating incremental dialogue phenom-
ena, e.g. self-repair and repetition, and pauses,
as well as fillers. In this paper, we created an
action-based user model that predict the next user
response in a sequence of dialogue actions. The
simulator then produces a full utterance by follow-
ing the statistics of utterance templates for each
predicted action.

5.3 Results

Table 2 shows example interactions between the
learned RL agent and the simulated tutor on the
learning task. The dialogue agent learned to take
the initiative and constantly produces coherent
conversations through the learning process.
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Dialogue Example (a)
T: what is this object called?
L: a red square?
T: the shape is correct, but the colour is wrong.
L: so what colour is this?
T: green.
L: okay, get it.

Dialogue Example (b)
L: blue?
T: yes, blue is for the colour. and shape?
L: sorry, i don’t know the shape.
T: the shape is circle.
L: okay, got it.

Table 2: User Simulation Examples for (a) Tutor
takes the initiative (b) Learner takes the initiative

Fig. 2a and 2b plot the progression of average
Accuracy and (cumulative) Tutoring Cost for each
of the 4 learning agents in our experiment, as the
system interacts over time with the tutor about
each of the 500 training instances.

As noted in passing, the vertical axes in these
graphs are based on averages across the 20 folds -
recall that for Accuracy the system was tested, in
each fold, at every learning step, i.e. after every 10
training instances.

Fig. 2c, on the other hand, plots Accuracy
against Tutoring Cost directly. Note that it is to
be expected that the curves should not terminate
in the same place on the x-axis since the differ-
ent conditions incur different total costs for the tu-
tor across the 500 training instances. The gradi-
ent of this curve corresponds to increase in Accu-
racy per unit of the Tutoring Cost. It is the gra-
dient of the line drawn from the beginning to the
end of each curve (tan(β) on Fig. 2c) that con-
stitutes our main evaluation measure of the sys-
tem’s overall performance in each condition, and it
is this measure for which we report statistical sig-
nificance results: there are significant differences
in accuracy between the RL-based policy and two
rule-based policies with the hand-crafted threshold
(p < 0.01 for both). The RL-based policy shows
significantly less tutoring cost than the rule-based
system with a constant threshold (p < 0.01). The
mean gradient of the yellow, RL curve is actually
slightly higher than the constant-threshold policy
blue curve - discussed below.

5.4 Discussion
Accuracy As can be seen in Fig. 2a, the rule-
based system with a constant threshold (0.95)
shows the fastest increase in accuracy and finally
reaches around 0.87 at the end of the learning pro-
cess (i.e. after seeing 500 instances) – the blue
curve. Both systems with a hand-crafted adap-
tive threshold, with an incremental decrease of
0.01 (grey curve) and 0.05 (orange curve), have
shown an unexpected trend in accuracy across 500
instances, where the orange curve flattens out at
about 0.76 after seeing only 50 instances, and the
grey curve shows a good increase in the begin-
ning but later drops down to about 0.77 after 150
instances. This is because the thresholds were
decreased too fast, so that the agent cannot hear
enough feedback (i.e. corrective attribute labels)
from tutors to improve its predictions. In contrast
to this, the optimised RL-based agent achieves
much better accuracy (i.e. about 0.85) by the end
of the experiment.

Tutoring Cost As mentioned above, there is a
form of active learning taking place in the exper-
iment: the agent can only hear feedback from the
tutor if it is not confident enough about its own
predictions. This also explains the slight decrease
in the gradients of the curves (i.e. the cumulative
cost for the tutor) (see Fig. 2b) as the agent is
exposed to more and more training instances: its
subjective confidence about its own predictions in-
creases over time, and thus there is progressively
less need for tutoring. In detail, the tutoring cost
progresses much more slowly while the system
was applying a hand-crafted adaptive threshold
(i.e. incrementally decreases by either 0.01 or 0.05
after each bin). This is still because there were not
interactions taking place at all once the threshold
is lower than a certain value (for instance, 0.65),
where the agent might be highly confident on all
its predictions. In contrast, the RL-based agent
shows a faster progress in the cumulative tutoring
cost, but achieves higher accuracy.

Overall Performance Here, we only compare
the gradients of the curves between the optimised
learning agent (yellow curve) and the rule-based
system with a constant threshold (blue curve) in
Fig. 2c, because others with the incremental de-
creased threshold cannot achieve an acceptable
learning performance. The agent with an adaptive
threshold (yellow) achieves slightly better over-
all gradient (tan(β1)) than the rule-based system
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(a) Accuracy (b) Tutoring Cost

(c) Overall Performance

Figure 2: Evolution of Learning Performance

(tan(β2)), it achieves a comparable accuracy and
does it faster. We therefore conclude that the op-
timised learning agent, which finds a better trade-
off between the learning accuracy and the tutoring
cost, is more desirable.

6 Conclusion & Future Work

We have introduced a multi-modal learning agent
that can incrementally learn grounded word mean-
ings through interaction with human tutors over
time, and deploys an adaptive dialogue policy (op-
timised using Reinforcement Learning). We ap-
plied a human-human dialogue dataset (i.e. BUR-
CHAK) to train and evaluate the optimised learn-
ing agent. We evaluated the system by comparing
it to a rule-based system, and results show that:
1) the optimised policy has learned to coherently
interact with the simulated user to learn visual at-
tributes of an object (e.g. colour and shape); 2)
it achieves comparable learning performance to a
rule-based systems, but with less tutoring effort
needed from humans.

Ongoing work further applies Reinforcement

Learning at the word level to learn a complete, in-
cremental dialogue policy, i.e. which chooses sys-
tem output at the lexical level (Eshghi and Lemon,
2014; Kalatzis et al., 2016). In addition, instead of
acquiring visual concepts for toy objects (i.e. with
simple colour and shape), the system has recently
been extended to interactively learn about real ob-
ject classes (e.g. shampoo, apple). The lat-
est system integrates with a Self-Organizing Incre-
mental Neural Network and a deep Convolutional
Neural Network to learn object classes through in-
teraction with humans incrementally, over time.
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Abstract

Multi-modal grounded language learning
connects language predicates to physical
properties of objects in the world. Sensing
with multiple modalities, such as audio,
haptics, and visual colors and shapes while
performing interaction behaviors like lift-
ing, dropping, and looking on objects en-
ables a robot to ground non-visual predi-
cates like “empty” as well as visual pred-
icates like “red”. Previous work has es-
tablished that grounding in multi-modal
space improves performance on object
retrieval from human descriptions. In
this work, we gather behavior annotations
from humans and demonstrate that these
improve language grounding performance
by allowing a system to focus on relevant
behaviors for words like “white” or “half-
full” that can be understood by looking
or lifting, respectively. We also explore
adding modality annotations (whether to
focus on audio or haptics when performing
a behavior), which improves performance,
and sharing information between linguis-
tically related predicates (if “green” is a
color, “white” is a color), which improves
grounding recall but at the cost of preci-
sion.

1 Introduction

Connecting human language predicates like “red”
and “heavy” to machine perception is part of the
symbol grounding problem (Harnad, 1990), ap-
proached in machine learning as grounded lan-
guage learning. For many years, grounded lan-
guage learning has been performed primarily in
visual space (Roy and Pentland, 2002; Liu et al.,
2014; Malinowski and Fritz, 2014; Mohan et al.,

2013; Sun et al., 2013; Dindo and Zambuto, 2010;
Vogel et al., 2010). Recently, researchers have
explored grounding in audio (Kiela and Clark,
2015), haptic (Alomari et al., 2017), and multi-
modal (Thomason et al., 2016) spaces. Multi-
modal grounding allows a system to connect lan-
guage predicates like “rattles”, “empty”, and “red”
to their audio, haptic, and color signatures, respec-
tively.

Past work has used human-robot interaction to
gather language predicate labels for objects in the
world (Parde et al., 2015; Thomason et al., 2016).
Using only human-robot interaction to gather la-
bels, a system needs to learn effectively from
only a few examples. Gathering audio and haptic
perceptual information requires doing more than
looking at each object. In past work, multiple in-
teraction behaviors are used to explore objects and
add this audio and haptic information (Sinapov
et al., 2014).

In this work, we gather annotations on what ex-
ploratory behaviors humans would perform to de-
termine whether language predicates apply to a
novel object. A robot could gather such informa-
tion by asking human users which action would
best allow it to test a particular property, e.g. “To
tell whether something is ‘heavy’ should I look
at it or pick it up?” Figure 1 shows some of the
behaviors used by our robot in previous work to
perceive objects and their properties. In this pa-
per, we show that providing a language ground-
ing system with behavior annotation information
improves classification performance on whether
predicates apply to objects, despite having sparse
predicate-object labels.

We additionally explore adding modality anno-
tations (e.g. is a predicate more auditory or more
haptic), drawing on previous work in psychology
that gathered modality norms for many words (Ly-
nott and Connell, 2009). Finally, we explore using
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grasp lift lower

drop press push

Figure 1: Behaviors the robot used to explore ob-
jects. In addition, the hold behavior (not shown)
was performed after the lift behavior by holding
the object in place for half a second. The look
behavior (not shown) was also performed for all
objects.

word embeddings to help with infrequently seen
predicates by sharing information with more com-
mon ones (e.g. if “thin” is common and “narrow”
is rare, we can exploit the fact that they are lin-
guistically related to help understand the latter).

2 Dataset and Methodology

Previous work provides sparse annotations of 32
household objects (Figure 2) with language pred-
icates derived during an interactive “I Spy” game
with human users (Thomason et al., 2016). Each
predicate p ∈ P from that work is associated
with objects as applying or not applying, based
on dialog with human users. For example, pred-
icate “red” applies to several objects and not to
others, but for many objects its label is not ex-
plicitly known. Objects are represented by fea-
tures gathered during several interaction behav-
iors (Figure 1) as detailed in past work (Sinapov
et al., 2016). In this work, we focus on improv-
ing the language grounding performance of multi-
modal classifiers that predict whether each predi-
cate p ∈ P applies to each object o ∈ O.

In previous work, decisions about a predicate
and an object are made for each sensorimotor con-
text (a combination of a behavior and sensory
modality) with an SVM using the feature space
for that context (Thomason et al., 2016). A sum-
mary of sensorimotor contexts is given in Table 1.

Figure 2: Objects explored via interaction behav-
iors and for which we have sparse predicate anno-
tations.

Behaviors Modalities
look color, fpfh
drop, grasp, hold, lift
lower, press, push audio, haptics

Table 1: The contexts (combinations of robot be-
havior and perceptual modality) we use for multi-
modal language grounding. The color modality
is color histograms, fpfh is fast-point feature his-
tograms, audio is fast Fourier transform frequency
bins, and haptics is averages over robot arm joint
forces (detailed in (Sinapov et al., 2016)).

For example, a classifier is trained from the pos-
itive and negative object examples for “red” in
look/color space as well as in the less relevant
drop/audio space. These decisions are then av-
eraged together, each weighted by its Cohen’s-κ
agreement with human labels using leave-one-out
cross validation on the training data. In this way,
the look/color space for “red” is expected to have
high κ and a large influence on the decision, while
drop/audio would have low κ and not influence the
decision much.

The decision d(p, o) ∈ [−1, 1] for predicate p
and object o is defined as:

d(p, o) =
∑
c∈C

κp,cGp,c(o), (1)

for Gp,c a supervised grounding classifier trained
on labeled objects for predicate p in the feature
space of sensorimotor context c that returns in
{−1, 1} with κp,c its agreement with human la-
bels. If d(p, o) ≤ 0, we say p does not apply to o,
else that it does. We use SVMs with linear kernels
as grounding classifiers.

We extend the weighting scheme between sen-
sorimotor SVMs to include behavior information.
For each predicate derived from the “I Spy” game
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Figure 3: The distribution over annotator-chosen
behaviors (left) gathered in this work, as well as
the distribution over modality norms (right) de-
rived from previous work (Lynott and Connell,
2009), for the predicates “white” and “round”.
The fpfh modality is fast-point feature histograms.

in previous work, we gather relevant behaviors
from human annotators. Annotators were asked
to mark which among the 8 exploratory behav-
iors (Table 1) they would engage in to determine
whether a given predicate applied to a novel ob-
ject. Annotators could mark as many behaviors as
they wanted for each predicate, but were required
to choose at least one.

We gathered annotations from 14 people, then
discarded the annotations from those whose av-
erage κ agreement with all other annotators was
less than 0.4 (the poor-fair agreement range). This
left us with 8 annotators whose average κ = .475
(moderate agreement). We release the full set
of gathered annotations on 81 perceptual predi-
cates across 8 behaviors as a corpus for commu-
nity use.1

Then, for each p ∈ P , we induce a distribution
over behaviors b ∈ B based on the ratio of an-
notators that marked that behavior relevant, such
that

∑
b∈B A

B
p,b = 1, with AB

p,b equal to the pro-
portion of annotators who marked behavior b rel-
evant for understanding predicate p. Some predi-
cates, like “white”, have single behavior distribu-
tions. For other predicates, like “metal”, annota-
tors chose more complex combinations of behav-
iors. Figure 3 (Left) gives some examples of be-
havior distributions from our annotations.

1http://jessethomason.com/publication_
supplements/robonlp_thomason_mooney_
behavior_annotations.csv

The decision dB(p, o) considering behavior an-
notations is calculated as

dB(p, o) =
∑
c∈C

AB
p,cb

κp,cGp,c(o), (2)

where cb is the behavior for sensorimotor context
c.

We also experiment with adding modality an-
notations (Table 1). In particular, we derive a
modality distribution for each p ∈ P such that∑

m∈M AM
p,m = 1 from modality exclusivity

norms gathered by past work for auditory, gusta-
tory, haptic, olfactory, and visual modalities (Ly-
nott and Connell, 2009). We ignore gustatory
and olfactory modalities, which have no counter-
part in our sensorimotor contexts, and create AM

p,m

scores from the auditory, haptic, and visual modal-
ity norm means. The visual modality norm is
split evenly between relevance scores AM

p,color and
AM

p,fpfh, our visual color and shape modalities.
The decision dM (p, o) considering modality an-

notations is calculated as

dM (p, o) =
∑
c∈C

AM
p,cb

κp,cGp,c(o) (3)

When the predicate p does not appear in the norm-
ing dataset from past work2, a uniform AM

p,m =
1/|M | is used. Figure 3 (Right) gives some exam-
ples of modality distributions from these norms.

The data sparsity inherent in language ground-
ing from limited human interaction means some
predicates have just a handful of positive and
negative examples, while more common predi-
cates may have many. If we have few exam-
ples for “narrow” but many for “thin,” we can
share some information between them. For ex-
ample, if κthin,grasp/haptic is high, we should trust
the grasp/haptic sensorimotor context for “nar-
row” more than “narrow”s κ estimates alone sug-
gest.

We explore sharing κ information between
related predicates by calculating their cosine
distance in word embedding space by using
Word2Vec (Mikolov et al., 2013) vectors derived
from Google News.3 For every pair of predicates
p, q ∈ P with word embedding vectors vp, vq we
calculate similarity as

w(p, q) =
1
2
(1 + cos(vp, vq)), (4)

2About half the predicates have norming information.
3https://github.com/mmihaltz/

word2vec-GoogleNews-vectors
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p r f1
mc .282 .355 .311
κ .406 .460 .422
B+κ .489 .489 .465
M+κ .414 .466 .430
W+κ .373 .474 .412

Table 2: Precision (p), recall (r), and f1 (f1)
of predicate classifiers across weighting schemes.
mc gives majority class baseline. Weighting
schemes consider only validation confidence (κ,
as in previous work), confidence and behavior an-
notations (B+κ), confidence and modality anno-
tations (M+κ), and confidence and word similar-
ity (W+κ). Note that we show the average per-
predicate f -measure, not the f -measure of the av-
erage per-predicate precision and recall.

which falls in [0, 1], and subsequently take a
weighted average of κ values using these similari-
ties as weights to get decisions dW (p, o) as

dW (p, o) =
∑
c∈C

|P |−1
∑
q∈P

κq,cw(p, q)

Gp,c(o)

(5)

3 Experimental Evaluation

We calculated precision, recall, and f -measure be-
tween human labels and predicate decisions when
weighting constituent sensorimotor context classi-
fiers by the schemes described above: kappa confi-
dence only (Eq 1, κ), adding behavior annotations
(Eq 2, B+κ), adding modality annotations (Eq 3,
M+κ), and sharing kappas across predicates using
word similarity (Eq 5, W+κ).

We calculated these metrics for each predicate4

and averaged scores across all predicates. We
use leave-one-object-out cross validation to obtain
performance statistics for each weighting scheme.

Table 2 gives the results for predicates that have
at least 3 positive and 3 negative training object
examples.5

We observe that adding behavior annotations or
modality annotations improves performance over

4Decisions were made for each testing object and marked
correct or incorrect against human labels that object, if avail-
able for the predicate.

5The trends are similar when considering all predicates,
but the scores and differences in performance are lower due
to many predicates having only a single positive or negative
example.

using kappa confidence alone, as was done in past
work. Sharing kappa confidences across similar
predicates based on their embedding cosine simi-
larity improves recall at the cost of precision.

Adding behavior annotations helps more than
adding modality norms, but we gathered behav-
ior annotations for all predicates, while modal-
ity annotations were only available for a subset
(about half). Adding behavior annotations helped
the f -measure of predicates like “pink”, “green”,
and “half-full”, while adding modality annotations
helped with predicates like “round”, “white”, and
“empty”.

Sharing confidences through word similarity
helped with some predicates, like “round”, at the
expense of domain-specific meanings of predi-
cates like “water”. In the “I Spy” paradigm from
which these data were gathered, the authors noted
that “water” correlated with object weight because
all of their water bottle objects were partially or
completely full (Thomason et al., 2016). Thus, in
that domain, “water” is synonymous with “heavy”.
In a less restricted domain, word similarity may
add less real world “noise” to the problem.

4 Conclusions and Future Work

In this work, we have demonstrated that behavior
annotations can improve language grounding for
a platform with multiple interaction behaviors and
modalities. In the future, we would like to apply
this intuition in an embodied dialog agent. If a per-
son asks a service robot to “Get the white cup.”,
the robot should be able to ask “What should I
do to tell if something is ‘white’?”, a behavior an-
notation prompt. A human-robot POMDP dialog
policy could be learned, as in previous work (Pad-
makumar et al., 2017), to know when this kind of
follow-up question is warranted.

Additionally, we will explore other methods of
sharing information between predicates from lex-
ical information. For example, choosing a maxi-
mally similar neighboring word, rather than doing
a weighted average across all known words, may
yield better results (e.g. the best neighbor of “nar-
row” is “thin”, so don’t bother considering things
like “green” at all).
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Abstract

Service robots are expected to operate in
specific environments, where the presence
of humans plays a key role. A major fea-
ture of such robotics platforms is thus the
ability to react to spoken commands. This
requires the understanding of the user ut-
terance with an accuracy able to trigger the
robot reaction. Such correct interpretation
of linguistic exchanges depends on physi-
cal, cognitive and language-dependent as-
pects related to the environment. In this
work, we present the empirical evaluation
of an adaptive Spoken Language Under-
standing chain for robotic commands, that
explicitly depends on the operational en-
vironment during both the learning and
recognition stages. The effectiveness of
such a context-sensitive command inter-
pretation is tested against an extension of
an already existing corpus of commands,
that introduced explicit perceptual knowl-
edge: this enabled deeper measures prov-
ing that more accurate disambiguation ca-
pabilities can be actually obtained.

1 Introduction

In recent years, one of the most challenging issues
that Service Robotics is facing is the automation of
high level and collaborative interactions between
humans and robots. In such a robotic context, hu-
man language is the most natural way of commu-
nication as for its expressiveness and flexibility.
However, an effective communication in natural
language between humans and robots is challeng-
ing mostly for the different cognitive abilities it in-
volves. For a robot to react to a simple command
like “take the mug in the kitchen”, a number of
implicit assumptions should be met. First, at least

two entities, a mug and a kitchen, must exist in
the environment and the speaker must be aware of
such entities. Accordingly, the robot must have
access to an inner representation of its world, e.g.,
an explicit map of the environment. Second, map-
pings from lexical references to real world entities
must be developed or made available. In this re-
spect, the Grounding process (Harnad, 1990) links
symbols (e.g., words) to the corresponding percep-
tual information. Hence, robot interactions need
to be grounded, as meaning depends on the state
of the physical world and the interpretation cru-
cially interplays with perception, as pointed out
by psycho-linguistic theories (Tanenhaus et al.,
1995). The integration of perceptual information
derived from the robot’s sensors with an onto-
logically motivated description of the world has
been adopted as an augmented representation of
the environment, in the so-called semantic maps
(Nüchter and Hertzberg, 2008). In these maps, the
existence of real world objects can be associated
to lexical information, in the form of entity names
given by a knowledge engineer or spoken by a
user for a pointed object, as in Human-Augmented
Mapping (Diosi et al., 2005; Gemignani et al.,
2016). While Command Interpretation for Inter-
active Robotics has been mostly carried out over
the only evidence specific to the linguistic level
(see, for example, (Chen and Mooney, 2011; Ma-
tuszek et al., 2012)), we argue that a proper Spo-
ken Language Understanding (SLU) for Human-
Robot Interaction should be context-aware, in the
sense that both the user and the robot live in and
make references to a shared environment. For ex-
ample, in the above command, “taking” is the in-
tended action whenever a mug is actually in the
kitchen, so that “the mug in the kitchen” refers to
a single argument. On the contrary, the command
may refer to a “bringing” action, when no mug
is in the kitchen and the mug and in the kitchen
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correspond to different semantic roles. We are in-
terested in an approach for the interpretation of
robotic spoken commands that is consistent with
(i) the world (with all the entities composing it),
(ii) the Robotic Platform (with its inner represen-
tations and capabilities), and (iii) the linguistic in-
formation derived from the user’s utterance.

In this paper, we foster machine learning
methodologies for Spoken Language Understand-
ing that force the above research perspective: this
is obtained by extending the linguistic evidence
that can be extracted from the uttered commands
with perceptual evidence directly derived by the
semantic map of a robot. In particular, the in-
terpretation process is modeled as a sequence la-
beling problem where the final labeler is trained
by applying Structured Learning methods over re-
alistic commands expressed in domestic environ-
ments, as in (Bastianelli et al., 2017). The re-
sulting interpretations adhere to Frame Seman-
tics (Fillmore, 1985): this well-established the-
ory provides a strong linguistic foundations to the
overall process while enforcing its applicability,
as it is made independent of the vast plethora of
existing robotic platforms. Such methodologies
have been implemented in a free and ready-to-use
framework, here presented, whose name is LU4R
- an adaptive spoken Language Understanding
framework for(4) Robots. LU4R is entirely coded
in Java and, thanks to its Client/Server architec-
tural design, it is completely decoupled from the
robot, enabling for an easy and fast deployment
on every platform1.

As the aforementioned approaches rely on re-
alistic data, in this work we also present an
extended version of HuRIC - a Human Robot
Interaction Corpus, originally introduced in (Bas-
tianelli et al., 2014) This resource is a collection
of realistic spoken commands that users might
express towards generic service robots. In this
resource, each sentence is labeled with morpho-
syntactic information (e.g., dependency relations,
POS tags, . . . ), along with its correct interpretation
in terms of semantic frames (Baker et al., 1998). In
our extension, each annotated sentence is paired
with a semantic representation of the world, that
justifies the command itself. To the best of our
knowledge this is the first corpus providing such a
rich representation of a robotic spoken command2.

1LU4R can be downloaded at
http://sag.art.uniroma2.it/lu4r.html

2The extended version of HuRIC will be released at

This extension of HuRIC supports a broader
evaluation of LU4R chain against the information
introduced by perceptual knowledge. We observed
a significant increase in performance w.r.t. inher-
ent ambiguities of the language, whose outcomes
are encouraging for the deployment of such sys-
tem in realistic applications.

The rest of the paper is structured as follows.
Section 2 provides a short survey of existing ap-
proaches to SLU for Human-Robot Interaction.
Section 3 describes the semantic analysis process
that represents the core of LU4R. In Section 4, an
architectural description of the entire framework is
provided, as well as an overall introduction about
its integration with a generic robot. Section 5 de-
scribes the extension of HuRIC, while in Section 6
we provide empirical evidence demonstrating the
applicability of the proposed system in the inter-
pretation of robotic commands, by reporting our
experimental results. In Section 7 we draw some
conclusions.

2 Related Work

In Robotics, some solutions for the interpreta-
tion of spoken commands have been modeled us-
ing grammar-based approaches. In general, they
provide mechanisms to enrich the syntactic struc-
ture with semantic information, to build a se-
mantic representation during the transcription pro-
cess (Bos, 2002; Bos and Oka, 2007).

Other approaches are based on formal lan-
guages, as in (Kruijff et al., 2007; Thoma-
son et al., 2015), where Combinatory Catego-
rial Grammar (CCG) are applied for spoken dia-
logues in Human-Robot Interaction, and in (Per-
era and Veloso, 2015) where template-based algo-
rithms allow extracting semantic interpretations of
robotic commands by applying specific templates
over the corresponding syntactic trees.

Data-driven methods have been also applied to
command interpretation for robotic applications.
Examples are (MacMahon et al., 2006) and (Chen
and Mooney, 2011), where the parsing of route
instructions is addressed as a Statistical Machine
Translation task between the human language and
a synthesized robot language. The same approach
is applied in (Matuszek et al., 2010) to learn trans-
lation models between natural language and for-
mal descriptions of paths. A probabilistic CCG
is used in (Matuszek et al., 2012) to map natu-

http://sag.art.uniroma2.it/huric.html
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ral navigational instructions into robot executable
commands. The same problem is faced in (Kol-
lar et al., 2010; Duvallet et al., 2013), where Spa-
tial Description Clauses are parsed from sentences
through sequence labeling approaches. In (Tellex
et al., 2011), the authors address natural language
instructions about motion and grasping, that are
mapped into Generalized Grounding Graphs (G3).
In (Fasola and Mataric, 2013a,b), Spoken Lan-
guage Understanding (SLU) for pick-and-place in-
structions is performed through a Bayesian classi-
fier trained over a specific corpus. In (Misra et al.,
2016), the authors define a probabilistic approach
to ground natural language instructions within a
changing environment.

In this paper we present a data-driven approach
that integrates an explicit semantic representation
with linguistic generalization induced through ma-
chine learning. On the one hand, the interpre-
tation is carried out according to the Frame Se-
mantics paradigm (Fillmore, 1985), thus result-
ing in a principled meaning representation for-
malism. Moreover, a context-dependent inter-
pretation process is realized: knowledge derived
from perceptual evidence is made available and di-
rectly used to discriminate against conflicting in-
terpretations. Perceptual information is here rep-
resented through an ontologically motivated de-
scription of the surrounding environment, i.e., a
semantic map (Nüchter and Hertzberg, 2008). The
semantic map is an explicit representation of the
knowledge about surroundings, acquired to enable
reasoning over environments, objects and proper-
ties. In the map, the existence and position of real
world objects is associated to lexical information,
in the form of entity class names. On the other
hand, machine learning depends on such percep-
tual information, thus inducing the contextual pre-
conditions of the involved disambiguation choices
from real examples, i.e. sentence-map pairs. The
process can thus provide different interpretations
of one sentence against different maps and realizes
a highly reusable and mostly domain-independent
model of grounded interpretation.

3 The Language Understanding Cascade

A command interpretation system for a robotic
platform must produce interpretations of user ut-
terances. In this paper, we consider Frame Seman-
tics (Fillmore, 1985), the formalization promoted
in the FrameNet (Baker et al., 1998) project, where

actions expressed in user utterances can be mod-
eled as semantic frames. Each frame represents a
micro-theory about a real world situation, e.g., the
actions of bringing, motion or manipulation. Such
micro-theories encode all the relevant information
needed for their correct interpretation. This in-
formation is represented in FrameNet via the so-
called frame elements, whose role is to specify the
participating entities in a frame, e.g., the THEME

frame element represents the object that is taken in
a bringing action.

As an example, let us consider the sentence:
“take the pillow to the couch”. This sentence can
be intended as a command whose effect is to in-
struct a robot that, in order to achieve the task,
has to: (i) move towards a pillow, (ii) pick it up,
(iii) move to the couch and, finally, (iv) release the
object on the couch. The language understanding
cascade should produce its FrameNet-annotated
version:

[take]Bringing[the pillow]THEME[to the couch]GOAL (1)

Semantic frames can thus provide a cognitively
sound bridge between the actions expressed in the
language and the implementation of such actions
in the robot world, namely plans and operations.

The whole SLU process has been designed as
a cascade of reusable components, as shown in
Figure 1. As we deal with vocal commands,
their (possibly multiple) hypothesized transcrip-
tions derived from an Automatic Speech Recog-
nition (ASR) engine constitute the input of this
process. It is composed by four modules, whose
final output is the interpretation of an utterance, to
be used to implement the corresponding robotic
actions. First, Morpho-syntactic analysis is
performed over the available utterance transcrip-
tions by applying morphological analysis, Part-of-
Speech tagging and syntactic analysis. In partic-
ular, dependency trees are extracted from the sen-
tence as well as POS tags, as shown in Figure 2.
Then, if more than one transcription hypothesis is
available, the Re-ranking module can be activated
to compute a new ranking of the hypotheses, in or-
der to get the best transcription out of the initial
ranking. This module is realized through a learn-
to-rank approach, where a Support Vector Ma-
chine exploiting a combination of linguistic ker-
nels is applied, according to (Basili et al., 2013).
Third, the best transcription is the input of the
Action Detection (AD) component. The evoked
frames in a sentence are detected, along with the
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Figure 1: The SLU cascade
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Figure 2: Example of a dependency graph associ-
ated to “take the pillow to the couch”

corresponding evoking words, the so-called lexi-
cal units. Let us consider the recurring sentence:
the AD should produce the following interpreta-
tion [take]Bringing the pillow to the couch. The fi-
nal step is the Argument Labeling, where a set of
frame elements is retrieved for each frame. This
process is realized in two sub-steps. First, the Ar-
gument Identification (AI) finds the spans of all
the possible frame elements, producing the follow-
ing form [take]Bringing [the pillow] [to the couch].
Then, the Argument Classification (AC) assigns
the suitable label (i.e., the frame element) to each
span thus returning the final tagging shown in the
Example (1).

The AD, AI and AC steps are modeled as a
sequence labeling task, as in (Bastianelli et al.,
2016). The Markovian formulation of a structured
SVM proposed in (Altun et al., 2003) is applied
to implement the labeler, known as SVMhmm. In
general, this learning algorithm combines a local
discriminative model, which estimates the individ-
ual observation probabilities of a sequence, with
a global generative approach to retrieve the most
likely sequence, i.e., tags that better explain the
whole sequence. In other words, given an input
sequence x = (x1 . . . xl) ∈ X of feature vectors
x1 . . . xl, SVMhmm learns a model isomorphic to
a k-order Hidden Markov Model, to associate x
with a set of labels y = (y1 . . . yl) ∈ Y .

A sentence s is here intended as a sequence of
words wi, each modeled through a feature vector
xi and associated to a dedicated label yi, specif-
ically designed for each interpretation process3:
in any case, features combine linguistic evidence

3More details about the labeling notation can be found in
(Bastianelli et al., 2016)

from a targeted sentences, but also properties de-
rived from the semantic map (when available) in
order to synthesize information about existence
and position of entities around the robot, as dis-
cussed in more details in (Bastianelli et al., 2016).
During training, the SVM algorithm associates
words to step-specific labels: linear kernel func-
tions are applied to different types of features,
ranging from linguistic to perception-based fea-
tures, and linear combinations of kernels are used
to integrate independent properties. At classifi-
cation time, given a sentence s = (w1 . . . w|s|),
the SVMhmm efficiently predicts the tag sequence
y = (y1 . . . y|s|) using a Viterbi-like decoding al-
gorithm. More details about the construction of
feature vectors xi are reported in (Bastianelli et al.,
2016).

Notice that both the re-ranking and the seman-
tic parsing phases can be realized in two different
settings, depending on the type of features adopted
in the labeling process. It is thus possible to rely
upon linguistic information to solve the given task,
or also on perceptual knowledge coming from a
semantic map. In the first case, that we call ba-
sic setting, the information used to solve the task
comes from linguistic inputs, as the sentence itself
or external linguistic resources. These models cor-
respond to the methods discussed in (Bastianelli
et al., 2017; Basili et al., 2013). In the second
case, the simple setting, when perceptual infor-
mation is made available to the chain, a context-
aware interpretation is triggered, as in (Bastianelli
et al., 2016). Such perceptual knowledge is mainly
exploited through a linguistic grounding mecha-
nism. This lexically-driven grounding is estimated
through distances between filler (i.e., argument
heads) and entity names. Such a semantic distance
integrates metrics over word vectors descriptions
and phonetic similarity. Word semantic vectors
are here acquired through corpus analysis, as in
Distributional Lexical Semantic paradigms (Tur-
ney and Pantel, 2010). They allow to map referen-
tial elements, such as lexical fillers, e.g., couch, to
entities, e.g., a sofa, by thus modeling synonymy
or co-hyponymy. Conversely, phonetic similarities
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are smoothing factors against possible ASR tran-
scription errors, e.g., pitcher and picture: this al-
lows to actually cope with the noisy phenomena
characterizing spoken language.

Once links between fillers and entities have
been activated, they act as abductive hypothesis:
they inspire features related to individual words
that express perceptual information (e.g. pres-
ence/absence of referred objects in the environ-
ment or spatial relations between them) as well
as lexical knowledge (e.g. semantic and phonetic
similarity between entity names and uttered refer-
ences). The labeler trained over such richer de-
scriptions is made thus sensitive to perceptual in-
formation both in the learning and the tagging
process. As a side effect, the above mechanism
provides the robot with the set of linguistically-
motivated groundings, that can be potentially used
for any further grounding process.

This information can be crucial in the correct
interpretation of ambiguous commands, which de-
pends on the specific environmental setting the
robot is operating into. A clear example is the
command “bring the pillow on the couch in the
living room”. Such a sentence may have two
different interpretations, according to the config-
uration of the environment. In fact, when the
couch is located into the living room, the goal
of the Bringing action is the couch and interpre-
tation will be: [bring]Bringing[the pillow]THEME[on
the couch in the living room]GOAL. Conversely,
if the couch is outside the living room, it means
that probably the pillow is already on the couch.
Hence, the interpretation of the sentence will be
different, due to different argument spans, and the
couch becomes the goal of the Bringing action:
[bring]Bringing[the pillow on the couch]THEME[in
the living room]GOAL.

Additional details about the pure linguistic ap-
proach can be found in (Bastianelli et al., 2017).

4 The LU4R Framework

The architecture of the system considers two main
actors, as shown in Figure 3: the Robotic Plat-
form and LU4R, where the processing cascade of
the latter component have been introduced in the
previous Section.

The Client-Server communication schema be-
tween LU4R and the Robot allows for the indepen-
dence from the Robotic Platform, in order to max-
imize the re-usability and integration in heteroge-

neous robotic settings. LU4R exhibits semantic
capabilities (e.g., disambiguation, predicate detec-
tion or grounding into robotic actions and environ-
ments) that are designed to be general enough to
be representative of a large set of application sce-
narios.

It is obvious that an interpretation process must
be achieved even when no information about the
domain/environment is available, i.e., a scenario
involving a blind but speaking robot, or when
the actions a robot can perform are not made ex-
plicit. At the same time, the proposed SLU cas-
cade makes available methods to specialize its se-
mantic interpretation process to individual situa-
tions where more information is available about
goals, the environment and the robot capabilities.
These methods are expected to support the opti-
mization of the core SLU process against a spe-
cific interactive robotics setting, in a cost-effective
manner. In fact, whenever more information about
the environment perceived by the robot (e.g., a se-
mantic map) or about its capabilities is provided,
the interpretation of a command can be improved
by exploiting a more focused scope.

In order to better understand the different oper-
ating modalities of LU4R, some assumptions to-
ward the Robotic Platform must be made explicit:
this will allow to precisely establish functionalities
and resources that the robot needs to provide to un-
lock the more complex processes. These informa-
tion will be used to express the experience that the
robot is able to share with the user (i.e., the percep-
tual knowledge about the environment where the
linguistic communication occurs and some lexical
information and properties about objects in the en-
vironment) and some level of awareness about its
own capabilities (e.g., the primitive actions that
the robot is able to perform, given its hardware
components).

4.1 The Robotic Platform

The overall framework contemplates a generic
Robotic Platform, whose task, domain and phys-
ical setting are not necessarily specified. In or-
der to make the SLU process independent of the
above specific aspects, we assume that the plat-
form requires, at least, the following modules:
(i) an Automatic Speech Recognition (ASR) sys-
tem, (ii) a SLU Orchestrator, (iii) a Grounding
and Command Execution Engine, and (iv) a Phys-
ical Robot. The ASR component currently re-
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Figure 3: The architecture of the LU4R framework

Number of examples 656
Number of frames 18
Number of predicates 767
Number of roles 34
Predicates per sentence 1.17
Sentences per frame 36.44
Roles per sentence 2.04
Entities per sentence 7.29

Table 1: Some statistics of the corpus

alized exploits the LU4R Android app whereas
the SLU orchestrator is implemented as a ROS
node, through the LU4R ROS interface. Addition-
ally, the optional Support Knowledge Base compo-
nent is expected to interface the different involved
knowledge sources and support their maintenance:
this provides the contextual information discussed
above.

5 A Perceptual Corpus of Robotic
Commands

The computational paradigms adopted here are
based on machine learning techniques and depend
strictly on the availability of training data. In or-
der to train and test our framework, a proper re-
source that collects both linguistic and perceptual
information is required. To this end, we extended
the Human-Robot Interaction Corpus4 (HuRIC),
formerly presented in (Bastianelli et al., 2014),
by pairing each English sentence with the corre-
sponding perceptual evidence that justifies the tar-
geted semantics.

HuRIC is based on Frame Semantics and cap-

4Available at http://sag.art.uniroma2.it/huric. The
download page also contains a detailed description of the re-
lease format.

Motion 143 Bringing 153
Cotheme 39 Locating 90
Inspecting 29 Taking 80
Change direction 11 Arriving 12
Giving 10 Placing 52
Closure 19 Change operat state 49
Being located 38 Attaching 11
Releasing 9 Perception active 6
Being in category 11 Manipulation 5

Table 2: Distribution of frames over the corpus

tures cognitive information about situations and
events expressed in sentences. The corpus does
not include system or robot-dependent sentences
or formalisms. Instead, it contains information
strictly related to Natural Language Semantics,
decoupled from specific tasks. The corpus ex-
ploits different situations representing possible
commands given to a robot in a house environ-
ment. Each sentence is paired with a set of au-
dio files representing robot commands and its cor-
responding correct transcription. Each sentence
is then annotated with: lemmas, POS tags, de-
pendency trees and Frame Semantics. Semantic
frames and frame elements are used to represent
the meaning of commands, as they reflect the ac-
tions a robot can accomplish in a home environ-
ment. In this respect, the AMR representation of the
Example 1 is

(t1 / take-Bringing
: Theme (b1 / pillow)
: Goal (t2 / couch)

)

In this way, HuRIC can potentially be used to
train all the modules of the processing chain pre-
sented in Section 4.

With respect to the previous release, we ex-
tended HuRIC by pairing each sentence with the
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corresponding semantic map, composed of all en-
tities populating the environment and presumably
“perceived” by the robot. Each entity is repre-
sented by the following set of information.

The Atom is a unique identifier of the entity,
whereas the Type of each entity, reflects the class
to which each specific entity belongs5.

The Preferred Lexical Reference is used to re-
fer to a class of objects; it is crucial in order to en-
able the grounding between the commands uttered
by the user and the entities within the environment.
For example, an entity of the class table can be
referred by the word desk.

Finally, the position of each entity is essential to
determine shallow spatial relations between enti-
ties, e.g., whether two objects are near or far from
each other. To this end, each entity is associated
with its Coordinate in the world, in terms of pla-
nar coordinates (x, y), elevation (z) and angle as
the orientation. We adopted a simple numerical
scaling that discretized the map.

Table 1 shows the number of annotated sen-
tences, number of frames, along with the average
number of entities per sentence. Each entity in-
volved in the command, e.g., mug and kitchen in
the Example 1, is provided with one lexical ref-
erence, not necessarily the same word used in the
command (e.g. using a synonym such as cushion
or sofa). Detailed statistics about the number of
sentences for each frame are reported in Table 2.

6 Experimental Evaluation

In order to provide evidence about the benefits
of perceptual knowledge, we report an evaluation
of the interpretation process of robotic commands
over the enhanced version of HuRIC, i.e., contem-
plating the semantic maps for each sentence.

Table 3 shows the results obtained. The re-
sults, expressed in terms of Precision, Recall and
F1 measure, focus on the semantic interpretation
process, in particular Action Detection (AD), Ar-
gument Identification (AI) and Argument Classi-
fication (AC) steps, addressing two possible con-
figurations: a basic setting where only linguistic
information is exploited (i.e., noSM, as the seman-
tic maps are ignored), and the configuration where
semantic maps are included into the learning loop
(i.e., SM). F1 scores measure the quality of a spe-
cific module. While in the AD step the F1 refers

5Notice that an entity can be an object, e.g., couch, pillow,
or a location, e.g., bedroom

Precision Recall F1-Measure
AD

noSM 94.73± 1.21 94.02± 1.51 94.37± 1.00
SM 95.69± 1.40 96.90± 1.90 96.29± 1.56

AI
noSM 88.95± 2.24 88.22± 2.08 88.57± 1.65
SM 91.34± 1.73 91.72± 1.14 91.53± 1.43

AC
noSM 93.05± 1.05 93.05± 1.05 93.05± 1.05
SM 94.02± 1.25 94.02± 1.25 94.02± 1.25

Table 3: Experimental evaluation of the semantic
interpretation process

to the ability to extract the correct frame(s) (i.e.,
robot action(s) expressed by the user) evoked by
a sentence, in the AI step it evaluates to the cor-
rectness of the predicted argument spans. Finally,
in the AC step the F1 measures the accuracy of
the classification of individual arguments. The ex-
periments have been performed in a 5-fold cross
validation setting. In this respect, Table 3 pro-
vides also the standard deviations among the dif-
ferent folds. We tested each sub-module in isola-
tion, feeding each step with gold information pro-
vided by the previous step in the chain. Moreover,
the evaluation has been carried out considering the
correct transcriptions, i.e., not contemplating the
error introduced by the Automatic Speech Recog-
nition system.

The overall results are encouraging for the ap-
plication of the proposed approach in realistic sce-
narios. In fact, the F1 is always higher than 94%
in the recognition of semantic predicates used to
express intended actions (AD). The system is able
to recognize the involved entities (AC) with high
accuracy as well, with a F1 higher than 93% in
both noSM and SM settings. This result is surpris-
ing when analyzing the complexity of the task. In
fact, the classifier is able to cope with a high level
of uncertainty, as the amount of possible semantic
roles is sizable, i.e., 34. In general, the most chal-
lenging task seems to be the ability to recognize
the spans composing a single frame element (AI).

Regarding the noSM setting, i.e., only linguistic
information, one of the most frequent error con-
cerns the ambiguity of the “take” verb. In fact,
as explained in the previous sections, the interpre-
tation of such verb may be different (i.e., either
Bringing or Taking), depending on the configura-
tion of the environment. As this particular setting
does not provide any kind of perceptual informa-
tion, the system is not able to correctly discrimi-
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nate among them. Hence, the resulting interpre-
tation will be wrong, as it does not reflect the se-
mantics that is motivated by the environment. In
terms of F1 measure, this issue affects mainly the
Argument Identification step (AI), rather than the
Action Detection (AD) one, as for each (possibly)
wrong frame, there could be more than two (possi-
bly) wrong arguments. For example, the sentence
“take the mug in the kitchen” will be probably
recognized to be a Taking action, even though it
is labeled as Bringing, i.e., mug and kitchen are
supposed to be far in the environment. While the
AD step will receive just one penalty for the wrong
recognized action, the AI step is penalized twice,
as two arguments were expected by the gold stan-
dard annotation, i.e., the the mug as THEME and
the in the kitchen as GOAL, instead of one, i.e., the
mug in the kitchen as a single THEME argument.

When looking at the SM setting, it seems that
the injection of perceptual knowledge into the se-
mantic analysis process is able to mitigate the ef-
fect of the aforementioned phenomena and each
SLU step gains in predictive performance. In
the case of AD, the information about the enti-
ties shows a relative improvement of +2.03% in
terms of F1 (94.37% vs 96.29%). This means that
the semantic map allows to predict the intended
action more accurately, whenever the underlying
semantic ambiguity depends on the configuration
of the environment. The tight correlation between
the predicted action and the frame elements sug-
gests a similar behavior in Argument Identifica-
tion. In fact, as well as for the AD, in the AI step
perceptual knowledge reveal its support in predict-
ing the correct spans of semantic arguments, with
a relative improvement of +3.34% w.r.t. the F1
score. Though a lower gain is observed (+1.04%),
the introduction of Distributional Semantics im-
proves the ability of recognizing the correct frame
element for a given argument span, i.e., AC step.
This is probably due to the lexical generalization
provided by the word embeddings, whenever al-
ternative naming are used to refer to an entity of
the semantic map.

Finally, small values of standard deviation sug-
gest that the system seems to be rather stable
across the different iterations of the experiment
and that the results do not depend on specific splits
of the entire dataset.

7 Conclusions

In this paper, we presented a comprehensive
framework for the design of robust natural
language interfaces for Human-Robot Interac-
tion (HRI). The corresponding implementation is
specifically designed for the automatic interpre-
tation of spoken commands in domestic environ-
ments. The proposed solution relies on Frame
Semantics and supports a structured learning ap-
proach to language processing able to map indi-
vidual sentence transcriptions to meaningful com-
mands. A hybrid discriminative and generative
learning method is proposed to map the interpre-
tation process into a cascade of sentence anno-
tation tasks. The interpretation of commands is
made dependent on the robot’s environment; in
fact the adopted training annotations not only ex-
press linguistic evidence from source utterances,
but also account for specific perceptual informa-
tion derived from a reference map. In this way
the semantic map aspects useful to interpretation
are expressed via feature modeling with the struc-
tured learning mechanism applied. Such percep-
tual knowledge is derived from a semantically-
enriched implementation of a robot map, i.e., its
semantic map. It expresses information about the
existence and position of entities surrounding the
robot: as this is also available to the user, this
information is crucial to disambiguate predicates
and role assignments.

To this end, we trained the machine learning
processes by using an extended version of HuRIC,
the Human Robot Interaction Corpus. This cor-
pus, originally composed by sentences in English,
now benefits from the introduction of such seman-
tic maps, expressed as lists of entities and support-
ing the research in natural language interfaces for
Robots in such language. The empirical results
obtained over the perceptual version of the dataset
show a significant improvement w.r.t. the pure lin-
guistic process. This confirms the effectiveness of
the proposed processing chain.

Future research will also focus on the extension
of the proposed methodology, e.g., by considering
spatial relations between entities in the environ-
ment or their physical characteristics, such as their
color and the application of this solution in inter-
active question answering or dialogue with robots.
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Abstract

We present a cognitively plausible system
capable of acquiring knowledge in lan-
guage and vision from pairs of short video
clips and linguistic descriptions. The aim
of this work is to teach a robot manipula-
tor how to execute natural language com-
mands by demonstration. This is achieved
by first learning a set of visual ‘concepts’
that abstract the visual feature spaces into
concepts that have human-level meaning.
Second, learning the mapping/grounding
between words and the extracted visual
concepts. Third, inducing grammar rules
via a semantic representation known as
Robot Control Language (RCL). We evalu-
ate our approach against state-of-the-art su-
pervised and unsupervised grounding and
grammar induction systems, and show that
a robot can learn to execute never seen-
before commands from pairs of unlabelled
linguistic and visual inputs.

1 Introduction

Understanding natural language commands is es-
sential for robotic systems to naturally and effec-
tively interact with humans. In this paper, we
present a framework for learning the linguistic and
visual components needed to enable a robot ma-
nipulator of executing new natural language com-
mands in a table-top environment. The learning
is divided into three steps: (i) learning of visual
concepts, (ii) mapping the words to the extracted
visual concepts (i.e. language grounding), and
(iii) inducing grammar rules to model the natu-
ral language sentences. Our system updates its
knowledge in language and vision incrementally,
by processing a pair of inputs at a time. The input
to our system consists of a short video clip of a

Figure 1: Human expert annotation of a natural lan-
guage command. The annotation includes ground-
ing for each word and an RCL tree.

robot performing a single action, e.g. a pick up or
a move action, paired with a natural language com-
mand corresponding to the action in the video. The
natural language commands were collected from
volunteers and online crowd-sourcing tools such as
Amazon Mechanical Turk with minimal amount of
supervision or constraints on the language structure
which annotators could use.

Generally, supervised language grounding and
grammar induction systems learn from sentences
that have been manually annotated by a human ex-
pert. As shown in Fig. 1, each word gets annotated
with a semantic category (e.g. colour, shape, etc.),
and the grammar structure gets annotated using a
tree that connects the different words together (e.g.
RCL trees) as presented by Dukes (2014) and Ma-
tuszek (2013). The manual annotation of data is
a labour intensive task that hinders learning from
large corpora, and such labels are not necessarily
available for all languages. Therefore, unsuper-
vised grounding and grammar induction systems
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learn language models from unlabelled/raw linguis-
tic data by exploiting co-occurrences of words in
a corpus, which generally performs poorly. There-
fore, in this work we take a different approach to
learn words meanings and grammar rules by con-
necting natural language to extracted visual fea-
tures from video clips.

2 Related Work

Language acquisition has been a long standing
objective of AI and cognition research. Siskind
(1996) was one of the earliest researchers to try
to understand in a computational setting how chil-
dren learn their native language and map it to their
vision. Following his research, in the field of de-
velopmental robotics, researchers have connected
language and vision to teach their robots different
concepts; one of the earliest works in the field is a
system by Roy et al. (1999) where a robot capable
of learning audio-visual associations (e.g. objects’
names) using mutual information criterion was pre-
sented. Several robotic applications were devel-
oped subsequently, such as Steels (2001) where
language games for autonomous robots are used to
teach the meaning of words in a simple static world.
Further, researchers developed systems capable of
learning objects’ names and spatial relations by
interacting with a human or robot teacher, as by
Steels (2002), Bleys (2009) and Spranger (2015).
Providing machines with the ability to understand
natural language commands is a key component
for a natural human-robot interaction. For exam-
ple, “Back to the blocks world” (She et al., 2014)
and “Tell me Dave” (Misra et al., 2015) focused on
learning the natural language commands for simple
manipulation tasks. This is similar to our work,
but we improve on their work in three different as-
pects. First, their works use a pre-trained language
parser to extract relevant words from sentences for
learning, while we learn from raw (unprocessed)
linguistic inputs. Second, they assume the robot
knows the visual representations of shapes, spatial-
relations and actions beforehand, while we learn
these automatically from videos. Finally, we learn
the grammar rules along with word groundings.

Language grounding systems in robotic appli-
cations are usually trained in a supervised setting
on a corpus of labelled/tagged text as in Tellex
et al. (2011), Bollegal et al. (2015), and Cui et
al. (2016). The manual annotation of text is a
labour intensive task. Therefore, researchers de-

veloped unsupervised techniques that learn the se-
mantic categories of words from unlabelled data
by exploiting regularities in natural language as
in Schütze (1998), Biemann (2009), Socher et
al. (2012), and Houthooft et al. (2016). Simi-
larly, in grammar induction, parsers are com-
monly trained in a supervised setting on a cor-
pus of annotated grammar trees as presented by
Matuszek et al. (2013), and Dukes (2014). Other
researchers have tackled unsupervised grammar
induction from unlabelled sentences as presented
by Klein et al. (2002), Smith and Eisner (2005),
Barzilay et al. (2009), Chen et al. (2011), Ponvert
et al. (2011), and Søgaard (2012). While unsuper-
vised grounding and grammar induction techniques
enable learning from unlabelled data, their perfor-
mance is usually significantly worse than those of
the supervised techniques. In this work, we present
a novel technique capable of acquiring grounding
and grammar knowledge comparable to supervised
techniques from unlabelled data by mapping words
to automatically extracted visual concepts from
video clips.

3 Learning Visual Concepts (C)

In this section, we describe how we represent the
visual input data: we first extract a set of visual
features from each video clip; then, we show how
we abstract values from these features to form a set
of clusters (or visual concepts). These clusters are
used to learn the visual representation of words in
the language grounding section.

We start by processing the video clips to de-
tect and track the objects in each frame. The ob-
jects are detected using a table-top object detec-
tor (Muja and Ciocarlie, 2013), where each ob-
ject in a video is assigned a unique id (a number),
and its location is tracked using a particle filter
(Klank et al., 2009). Next, we obtain three sets of
observations from each video clip; (i) object fea-
tures: {colour, shape, location} of each object,
(ii) relational features: {direction, distance} of
each pair of objects in the scene, and (iii) the
{atomic actions} that the robot applies on each
object during the video. The features and atomic
actions are presented in Fig. 2. These features and
actions are obtained at every frame in each video. It
is worth noting that these features are not intended
to be exhaustive, but rather to demonstrate our ap-
proach; more features can be added as an extension
without changing the learning framework.
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Figure 2: Predefined features and atomic actions.

Once the observations (objects, relations, ac-
tions) have been obtained for all objects in all
video clips, we process them to extract the unique
concepts, e.g. distinguishing the shape cube from
the shape prism, and the action pick up from put
down, etc. This is achieved by clustering the val-
ues of each feature space separately to obtain mul-
tiple clusters in the dataset. The extracted clus-
ters are used to construct a visual concept vector
(C) with length equal to the total number of clus-
ters. This forms the list of possible visual repre-
sentations of words. For instance, Dukes (2013)
dataset (intended to train semantic taggers in a
supervised setting), contains four unique shapes:
prism, cube, ball, and cylinder. We cluster the
shape values of all objects from all video clips and
are thus able to extract these clusters/shapes, e.g.
shape1 = cube, shape2 = prism, shape3 = ball,
and shape4 = cylinder. The clustering is per-
formed using a combination of Gaussian Mixture
Models and Bayesian Information Criterion to find
the optimal number of clusters representing the
data in each feature space. The same clustering
method is used on all observations (colours, loca-
tions, directions, distances, and atomic actions)
each of which is done separately, then the outputs
(or the clusters) are combined into a single vec-
tor C = {shape1, shape2, shape3, shape4, colour1, . . . ,

location1, . . . , direction1, . . . , distance1, . . . , action1,

. . .} to give the visual representations of words.
This is used in the next section for language ground-
ing. After generating the vector C, we go through

each of the video clips and represent the observed
contents of each clip (objects, relations, actions) as
a collection of entries or predicates. For example,
an object with id = 3 and shape shape1 (‘cube’)
is represented as the entry shape1(3). An exam-
ple from the dataset is shown in Fig. 3 where the
entries are shown on the right.

Figure 3: The initial and final frames of a scene
from the Dukes (2013) dataset represented in pred-
icates using the learned clusters in C.

4 Language Grounding (Φ)

Assigning a word to its correct visual represen-
tation is an essential preprocessing step for under-
standing and executing natural language commands
in robotics. In this section, we show how we con-
nect words to their visual representations that we
extracted in the previous section. The problem
statement of this section is: given (1) a corpus
of n sentences S = {s1, . . . , sn} that contains m
unique words W = {w1, . . . , wm}, and (2) corre-
sponding video clips V = {v1, . . . , vn} that con-
tain k extracted visual concepts C = {c1, . . . , ck},
find a partial function Φ that maps words from lan-
guage to their representations in vision, Φ : W →
C. This language grounding learning problem is
formulated as an assignment problem where words
wi ∈ W should be assigned to clusters cj ∈ C
subject to a cost function F : W × C that needs
to be minimised. We define the cost function as
Fw,c = (1− (Nw,c/Nw)), where Nw,c is the total
number of times a word w and a cluster c appear
together, and Nw is the total number of times the
word w appears in the entire dataset. This cost
function is equal to zero if w and c always appear
together, and equal to one if they are never seen to-
gether. This provides a clear indication of whether
a word w should be mapped to a cluster c or not.

Once the cost function is computed for all word-
cluster pairs, we create a cost matrix with words
W as rows and clusters C as columns, as shown in
Fig. 4 (left). We then use the Hungarian algorithm
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(Kuhn, 1955) to find the grounding for each word
by assigning it to its most likely visual concept,
i.e. a word can only have one meaning (though
multiple words could have the same meaning), as
shown in Fig. 4 (right).

To simplify the learning of language grounding
in NLP applications, it is common to use a stop
word list to remove function words, such as ‘the’
and ‘as’, from all sentences. However, since we
learn from unlabelled data (i.e. avoiding human
annotation including stop word lists), we remove
such words by setting a threshold on the Hungar-
ian algorithm. This has the same effect as using
term frequency-inverse document frequency (tf-idf)
weighting to remove function words (Jones 1972).

Figure 4: (left:) The cost matrix. (right:) The
output of the Hungarian algorithm.

5 Generation of RCL Trees (Ω)

Robot Control Language (RCL) is a tree semantic
representation for natural language. As shown in
Fig. 1, a sentence is represented as an RCL tree
where leaf nodes align to the words in the sentence,
and non-leaves are tagged using a predefined set of
categories that a robot can understand/execute as
presented by Matuszek (2013) and Dukes (2013).
Although the RCL used in this work is designed to
operate within the context of robot manipulation
only, it can be extended to other domains such as
robot navigation, learning from YouTube how-to
videos (Alayrac et al., 2016), or learning cooking
instructions (Malmaud et al., 2015). Table 1 lists
the different types of RCL elements that are used
to compose natural language commands.

In the literature, the problem of transforming
sentences into RCL trees has been formulated as a
grammar induction one. A parser is trained on pairs
of sentences and corresponding human annotated
RCL trees, as shown in Fig. 1. The parser is then
used to parse new (previously unseen) sentences
into RCL trees. The human annotation of RCL
trees is labour-intensive, and it would prevent the

RCL element Description
event Specification of a single command. Takes

(action, entity, destination) as children.
action Aligned to a verbal group in NL, e.g.

‘place’.
entity Specification of a single entity. Takes

(colour, shape, location, sp-relation) as chil-
dren.

sp-
relation

Used to specify a spatial relation between
two entities or to describe a location. Takes
(direction, distance, entity) elements as chil-
dren.

destination A spatial destination. Takes (sp-relation,
location) as children.

colour Colour attribute of an entity, e.g. ‘red’.
shape Shape attribute of an entity, e.g. ‘pyramid’.
location Location attribute of an entity, e.g. ‘centre’.
direction Direction relation between two entities.
distance Distance relation between two entities.

Table 1: Universal semantic elements in RCL.

robot from learning without constant supervision.
In this paper, we automatically generate a vision

tree Ωi from each video clip vi ∈ V . We define a
vision tree as an event tree with only three elements
(action, entity, destination), as shown in the ex-
ample in Fig. 5. The action-element holds the ac-
tion feature extracted from the video vi, the entity-
element has the id of the object that is manipulated
by the robot in the video, and the destination-
element has the final (x, y, z) location feature of
that object. In the next section, we show how to
use the vision trees Ω = {Ω1, . . . ,Ωn} to automat-
ically generate language RCL trees analogous to
the one in Fig. 1.

Figure 5: An example of a vision tree from the
video clip shown in Fig. 3.

6 Grammar Induction (G)

Grammar induction refers to the process of learn-
ing a formal grammar (usually as a collection of
re-write rules or productions) from a set of obser-
vations. In this work, we show how we learn such
rules by mapping natural language commands to
visual features. The main contribution of our gram-
mar induction approach is that we automatically
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generate training examples similar to those anno-
tated by a human expert shown in Fig. 1. This is
achieved by exploiting the learned groundings Φ
(shown in Fig 4) and the extracted vision trees Ω
(shown in Fig. 5) to successfully replace the human
annotator. We formulate the automatic generation
of language RCL trees into a search problem as
follows. Given (1) vision trees Ω = {Ω1, . . . ,Ωn},
(2) the learned grounding Φ : W → C, and (3) in-
put sentences S = {s1, . . . , sn}, we want to search
the space of all possible language RCL trees from a
sentence si ∈ S for one that matches the extracted
vision tree Ωi ∈ Ω. Given a match, we use that lan-
guage tree to learn grammar G. We say a language
RCL tree matches a vision tree if the values of all
corresponding elements are equal. The procedure
to perform the search is divided into five steps (sub-
stitute, connect, query, match, and learn) shown in
Algorithm 1. The following sections walk through
an example of the entire search process.

Algorithm 1 Automatic generation of language
RCL trees

1: procedure SEARCH ALGORITHM

2: Inputs Φ,Ω, S
3: Output G
4: for each sentence si ∈ S do
5: Substitute each word in si with its visual .

. concepts in Φ
6: Connect vision concepts to create language

. RCL elements.
7: Query the RCL elements with video vi.
8: Match RCL elements with the vision RCL

. tree Ωi.
9: if all RCL elements match with Ωi then

10: Use RCL elements to learn grammar G

6.1 Substituting words with visual concepts

For each sentence si ∈ S consisting of t words
si = {w1, . . . , wt}, we substitute each word with
its visual concept using the mapping function Φ
learned in the language grounding section. For in-
stance, a sentence si = 〈place, the, green, ball, above,

the, blue, block〉, is transformed using the mapping
function Φ into s′

i = 〈action1, None, colour2, shape3,

direction1, None, colour3, shape1〉, as shown in Fig. 6
(substitute).

Figure 6: Example for the generation of language
RCL tree.

6.2 Connecting concepts to generate RCL
elements

We group the visual concepts in s′
i to create all

possible entity, action, or sp-relation RCL ele-
ments (specified in Table. 1). Particularly, con-
secutive colour, shape, and location concepts
are grouped to form entity RCL elements, con-
secutive action concepts form action RCL ele-
ments, and consecutive direction and distance
concepts with entity elements are grouped to form
sp-relation RCL elements. For example, in the
sentence s′

i = 〈action1, colour2, shape3, direction1,

colour3, shape1〉 the visual concept colour2 and
shape3 are grouped together to generate an entity
element entity(colour2, shape3). The same pro-
cedure applies to action and sp-relation elements,
as shown in Fig. 6 (Connect).

6.3 Querying RCL elements

For each connected entity and sp-relation RCL
element from the previous step, we query the
observations in the scene to retrieve a corre-
sponding object id or an (x, y, z) location. For
instance, the element entity(colour2, shape3)
matches from the extracted observations shown
in Fig. 3 (right) a single object with id = 0,
as it is the only object that satisfies both query
properties colour2 and shape3 (‘green ball’
in this case). Similarly, querying the sp −
relation(direction1, entity(colour3, shape1))
returns (x = 4, y = 5, z = 3) referring to ‘above
blue block’. This is repeated for all connected
entities and spatial relations, as shown in Fig. 6
(Query).

If multiple objects in the scene satisfy a query,
a list of ids is returned, while if there are none
the query returns an empty list (this might happen
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due to noise in vision and/or language). In the
results section we show that our system is capable
of learning using these connections, even in the
presence of noise from real-world data.

6.4 Matching RCL elements with vision RCL
trees Ω

Given the results of the previous process, we match
the returned query results to elements from the vi-
sion RCL trees in Ω. For example, the vision RCL
tree Ωi in Fig. 5 has an entity element with id = 0,
matching the query output in Fig. 6, thus matching
it with ‘green ball’. This is repeated for action and
destination elements in Ωi. This process grounds
linguistic descriptions to their visual counterparts
in RCL without human supervision as shown in
Fig. 6 (Match).

6.5 Learning grammar G

To provide a robot with the ability of understanding
natural language commands, we learn grammar G
from the automatically generated language RCL
trees. The grammar induction is performed us-
ing probabilistic context free grammar (Charniak,
1997), by training a semantic parser on the auto-
matically generated examples. The parser is then
used in the experiment section to parse new natural
language commands into Robot Control Language
(RCL) trees. This concludes the search process.

7 Experimental Procedure

We evaluate the performance of our system using
two datasets; a synthetic-world dataset, and a new,
simplified real-world dataset of table-top environ-
ment.

For the synthetic-world, we use the Train
Robots dataset1 which was designed to develop sys-
tems capable of understanding verbal spatial com-
mands described in a natural way (Dukes, 2013).
Non-expert users from Amazon Mechanical Turk
were asked to annotate appropriate natural lan-
guage commands to 1000 different scenes. A total
of 4850 commands were collected and later anno-
tated by human experts with appropriate RCL trees.
Examples from this synthetic dataset are shown in
Fig. 1 and 3.

For the real-world setup, we use a Baxter robot
as our test platform and attach a Microsoft Kinect2
sensor to its chest as shown in Fig. 7. The Kinect2

1Train Robots: http://doi.org/10.5518/32

device is used to collect RGBD videos as vol-
unteers controlled the robot arm to perform var-
ious manipulation tasks with real objects from the
robot’s point of view. The dataset consists of 204
videos with 17, 373 frames in total. The videos are
annotated with 1024 natural language commands
(5 per video in average) by a separate group of
volunteers2. A total of 51 different objects are ma-
nipulated in the videos such as basic block shapes,
fruit, cutlery, and office supplies. A detailed de-
scription of both datasets is presented in Table. 2.

Figure 7: Example scenes from our robotic dataset.

Dataset contents
features A B C D E F G

Synthetic 9 4 4 3 NA 4 24.8

Real-world 11 13 3 5 2 3 5.3

Table 2: Number of concepts in A-colour, B-shape,
C-location, D-direction, E-distance, and F-action
features in both datasets, and G-average number of
objects present in each scene.

7.1 Implementation Details
For the real-world dataset, objects are detected us-
ing a tabletop object detector on the first frame
in each video. These objects are then tracked
throughout the video using a six dimensional
(x, y, z, r, g, b) particle filter, as shown in Fig. 8.

Figure 8: Example of a video sequence “place the
orange in the bowl” when the objects are tracked
using a particle filter. (Best viewed in colour.)

During the learning process, we use atomic
actions (Fig. 2) to represent more complex ac-
tions in videos. For example a ‘pick up’ action is

2Baxter dataset: http://doi.org/10.5518/110

40



represented with the sequence (approach, grasp,
lift) as the robot approaches, grasps and lifts the
object, while a ‘drop’ action is represented with
just (discard) as the robot lets go of the object to
fall down on the table.

We automatically detect function words by set-
ting a threshold of σ = .6 on the Hungarian algo-
rithm. Thus a wordw is considered a function word
if it is not consistent with any cluster fj ∈ F by
more than 60% in the entire dataset. This threshold
detects all function words.

In our experiments, we divide each dataset ran-
domly into four equal parts, and perform four-fold
cross validation, where we train on three folds and
test on the fourth.

7.2 Evaluation
We evaluated the performance of our technique us-
ing two metrics: (i) the ability to correctly ground
words to the learned visual concepts using Φ, and
(ii) the ability to correctly parse previously un-
seen natural language commands to produce cor-
rect RCL trees using the learned grammar G.

To better demonstrate our results in language
grounding and grammar induction, we compare our
technique with (1) a supervised system that learns
from labelled data, and with (2) an unsupervised
system that learns from unlabelled linguistic data.
We consider our baseline as the performance of the
unsupervised system, i.e. our joint language and vi-
sion technique should outperform the unsupervised
system that learns from unlabelled linguistic inputs,
otherwise there is no benefit of the additional vision
component. On the other hand, an upper bound
on performance is the results of the supervised sys-
tem trained on human labelled (ground-truth) data.

7.3 Language Grounding Experiment
In this section, we evaluate the system’s ability to
acquire correct groundings for words from parallel
pairs of short video clips and linguistic descrip-
tions. The given task is to learn the partial function
Φ : W → C that maps words wi ∈ W to their
corresponding clusters cj ∈ C, e.g. the word ‘red’
should be mapped to the cluster colour-red.

The results for our language grounding exper-
iment are shown in Fig. 9. Here, ‘our-system’
is compared against (1) the supervised semantic
tagger (Fonseca and Rosa, 2013) that is trained
on human labelled data, and (2) the unsupervised
semantic tagger (Biemann, 2009) that is trained
on unlabelled linguistic data. The results are

calculated based on the total number of correct
tags/groundings assigned to each word in the test
fold (four fold cross validation). Note that for
the unsupervised system, the results are calculated
based on its ability to cluster words that belong to
the same category together, i.e. words that describe
colours should be given a unique tag different to
those that describe shapes, directions, etc. Also,
we assign new words in the test fold (words that
only exist in the test fold) with a function word tag.

Figure 9: The grounding results of (a) supervised,
(b) our system, and (c) unsupervised semantic tag-
gers, on both datasets.

Our system is able to correctly ground (85.6%)
of the total words in the synthetic, and (81.5%) in
the real-world datasets, compared to only (32.9%
and 31.2% respectively) using the unsupervised
system. This clearly shows that adding vision in-
puts produces more correct semantic representa-
tions for words, even though both systems use un-
labelled data for learning. Detailed analysis of how
the different techniques performed in each feature
space is shown in Fig. 10. Note that distance is
not a feature in the synthetic dataset and therefore
the corresponding row/column are left empty.

Figure 10: The grounding/tagging performance in
each feature space for the three systems on both
real-world and synthetic datasets.

7.4 Grammar Induction Experiment
In this experiment we test our system’s ability to ac-
quire correct grammar rules G from pairs of video
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clips and unlabelled sentences (with no human-
annotated RCL trees). The learned grammar G is
then used to parse new (previously unseen) nat-
ural language commands. We compare our tech-
nique with (1) a supervised parser (Abney, 1996)
trained on labelled data, i.e. pairs of sentences
and human-annotated RCL trees, and (2) an unsu-
pervised parser (Ponvert et al. 2011) trained on
unlabelled sentences, i.e. a corpus of sentences
without RCL trees or semantic tags.

The results for (a) our approach, (b) the super-
vised parser, and (c) the unsupervised grammar
induction systems on both datasets are shown in
Fig. 11. The results were calculated based on the
number of correctly parsed RCL trees from sen-
tences in the test fold (in the four-fold cross valida-
tion). A score of 1 is given if the parsed sentence
completely matches the human annotation, while a
partial score in (0, 1) is given if it partially matches
the human annotation. The partial matching is
computed by matching subtrees in the both trees di-
vided by the total number of subtrees. For example,
if a tree contains 10 subtrees and only 8 of which
has a complete match in labels and links, then we
give a score of 0.8 to this tree.

Figure 11: The grammar induction results for (a)
supervised, (b) our system, and (c) unsupervised
parsers on both real-world and synthetic datasets.

The results in Fig. 11 clearly show that our ap-
proach outperforms the unsupervised grammar in-
duction system and achieves comparable results
to the supervised system by learning from both
language and vision as opposed to learning from
language alone. The number of grammar rules gen-
erated differs between techniques: our approach
generated (139 and 87) grammar rules from the syn-
thetic and real-world datasets respectively, while
the supervised system generated (182 and 114)
and the unsupervised system generated (45 and
38) grammar rules, respectively.

8 Conclusion and Discussion

We present a novel technique to simultaneously
learn the groundings of words and simple grammar

rules of natural language. Our learning framework
connects words from sentences to automatically-
extracted visual clusters from videos to enable au-
tomatic generation of RCL trees, which is a key
contribution of this paper. These trees act as an in-
termediary representation between the continuous
perceptual space and the purely symbolic linguistic
structures, thus provide robots with the ability to
automatically learn about language, actions and per-
ception. Our approach outperforms unsupervised
techniques in both semantic tagging and grammar
induction in learning from unlabelled data, and pro-
vides comparable performance to language-only
supervised approaches.

Our approach suffers from two main limitations
that hinder learning from longer videos (such as
YouTube videos). First, it requires the videos and
sentences to be temporally aligned beforehand,
and second, it requires the feature spaces (e.g.
colours, shapes, etc.) to be specified beforehand
(though not their discretisation, which is learned).
In order to allow learning from such data, our sys-
tem should be able to learn from continuous, un-
aligned videos and documents, and it should be
able to generate new feature spaces to cope with
new emerging concepts. We aim to address these
limitations in future work.

Acknowledgments

We acknowledge the financial support provided by
EU FP7 project 600623 (STRANDS), and the the
anonymous referees for their useful comments.

References
Steven Abney. 1996. Partial parsing via finite-state cas-

cades. Natural Language Engineering 2(04).

Jean-Baptiste Alayrac, Piotr Bojanowski, Nishant
Agrawal, Josef Sivic, Ivan Laptev, and Simon
Lacoste-Julien. 2016. Unsupervised learning from
narrated instruction videos .

Chris Biemann. 2009. Unsupervised part-of-speech
tagging in the large. Research on Language and
Computation 7(2-4):101–135.

Joris Bleys, Martin Loetzsch, Michael Spranger, and
Luc Steels. 2009. The grounded colour naming
game. Proceedings of Spoken Dialogue and Human-
Robot Interaction Workshop at the RoMan 2009
Conference .

Danushka Bollegala, Alsuhaibani Mohammed,
Takanori Maehara, and Ken-ichi Kawarabayashi.
2015. Joint word representation learning using

42



a corpus and a semantic lexicon. arXiv preprint
arXiv:1511.06438 .

Eugene Charniak. 1997. Statistical parsing with
a context-free grammar and word statistics.
AAAI/IAAI 2005(598-603):18.

David L Chen and Raymond J Mooney. 2011. Learn-
ing to interpret natural language navigation instruc-
tions from observations. In AAAI. volume 2.

Wanyun Cui, Xiyou Zhou, Hangyu Lin, Yanghua Xiao,
Haixun Wang, Seung-won Hwang, and Wei Wang.
2016. Verb pattern: A probabilistic semantic repre-
sentation on verbs .

Kais Dukes. 2013. Semantic annotation of robotic spa-
tial commands. In Language and Technology Con-
ference (LTC).

Kais Dukes. 2014. Semeval-2014 task 6: Supervised
semantic parsing of robotic spatial commands. Se-
mEval 2014 page 45.

Erick R Fonseca and Joao Luis G Rosa. 2013. A two-
step convolutional neural network approach for se-
mantic role labeling. In Neural Networks (IJCNN),
The 2013 International Joint Conference on. IEEE.

Rein Houthooft, Cedric De Boom, Stijn Verstichel,
Femke Ongenae, and Filip De Turck. 2016. Struc-
tured output prediction for semantic perception in
autonomous vehicles. In AAAI. AAAI Press.

Eric H Huang, Richard Socher, Christopher D Man-
ning, and Andrew Y Ng. 2012. Improving word
representations via global context and multiple word
prototypes. In ACL. ACL, pages 873–882.

Ulrich Klank, Dejan Pangercic, Radu Bogdan Rusu,
and Michael Beetz. 2009. Real-time CAD Model
Matching for Mobile Manipulation and Grasping.
In 9th IEEE-RAS International Conference on Hu-
manoid Robots. Paris, France, pages 290–296.

Dan Klein and Christopher D Manning. 2002. A gener-
ative constituent-context model for improved gram-
mar induction. In ACL. ACL, pages 128–135.

Harold W Kuhn. 1955. The Hungarian method for the
assignment problem. Naval research logistics quar-
terly 2(1-2):83–97.

Jonathan Malmaud, Jonathan Huang, Vivek Rathod,
Nick Johnston, Andrew Rabinovich, and Kevin Mur-
phy. 2015. What’s cookin’? interpreting cooking
videos using text, speech and vision. arXiv preprint
arXiv:1503.01558 .

Cynthia Matuszek, Evan Herbst, Luke Zettlemoyer,
and Dieter Fox. 2013. Learning to parse natural lan-
guage commands to a robot control system. In Ex-
perimental Robotics. Springer, pages 403–415.

Dipendra K Misra, Jaeyong Sung, Kevin Lee, and
Ashutosh Saxena. 2015. Tell me Dave: Context-
sensitive grounding of natural language to manipu-
lation instructions. JAIR page 0278364915602060.

Marius Muja and Matei Ciocarlie. 2013. tabletop ob-
ject detector - ROS Wiki. http://www.ros.
org/wiki/tabletopobjectdetector.

Elias Ponvert, Jason Baldridge, and Katrin Erk. 2011.
Simple unsupervised grammar induction from raw
text with cascaded finite state models. In Proceed-
ings of the 49th Annual Meeting of the ACL: Human
Language Technologies. ACL, Oregon, USA.

Deb Roy, Bernt Schiele, and Alex Pentland. 1999.
Learning Audio-Visual Associations using Mutual
Information. In Integration of Speech and Image Un-
derstanding, 1999. Proceedings. IEEE.

Hinrich Schütze. 1998. Automatic word sense discrim-
ination. Computational linguistics 24(1):97–123.

Lanbo She, Shaohua Yang, Yu Cheng, Yunyi Jia,
Joyce Y Chai, and Ning Xi. 2014. Back to the
blocks world: Learning new actions through situ-
ated human-robot dialogue. In 15th Annual Meet-
ing of the Special Interest Group on Discourse and
Dialogue. volume 89.

Jeffrey Mark Siskind. 1996. A Computational Study of
Cross-Situational Techniques for Learning Word-to-
Meaning Mappings. Cognition 61(1):39–91.

Noah A Smith and Jason Eisner. 2005. Contrastive es-
timation: Training log-linear models on unlabeled
data. In Proceedings of the 43rd Annual Meeting on
Association for Computational Linguistics. ACL.

Benjamin Snyder, Tahira Naseem, and Regina Barzi-
lay. 2009. Unsupervised multilingual grammar in-
duction. In Proceedings of the Joint Conference of
the 47th Annual Meeting of ACL. ACL, pages 73–81.

Anders Søgaard. 2012. Unsupervised dependency pars-
ing without training. Natural Language Engineer-
ing 18(02):187–203.

Karen Sparck Jones. 1972. A statistical interpretation
of term specificity and its application in retrieval.
Journal of documentation 28(1):11–21.

Michael Spranger and Luc Steels. 2015. Co-
acquisition of syntax and semantics - an investiga-
tion in spatial language. In Qiang Yang and Michael
Wooldridge, editors, IJCAI’15, AAAI Press, Palo
Alto, US, pages 1909–1905.

Luc Steels. 2001. Language Games for Autonomous
Robots. Intelligent Systems, IEEE 16(5):16–22.

Luc Steels and Frederic Kaplan. 2002. Aibo’s First
Words: The Social Learning of Language and Mean-
ing. Evolution of Communication 4(1):3–32.

Stefanie A Tellex, Thomas Fleming Kollar, Steven R
Dickerson, Matthew R Walter, Ashis Banerjee, Seth
Teller, and Nicholas Roy. 2011. Understanding nat-
ural language commands for robotic navigation and
mobile manipulation .

43



Proceedings of the First Workshop on Language Grounding for Robotics, pages 44–48,
Vancouver, Canada, July 30 - August 4, 2017. c©2017 Association for Computational Linguistics

Communication with Robots using Multilayer Recurrent Networks
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Abstract

In this paper, we describe an improvement
on the task of giving instructions to robots
in a simulated block world using unre-
stricted natural language commands.

1 Introduction

Many of the recent methods for interpreting natu-
ral language commands are based mainly on se-
mantic parsers and hand designed rules. This
is often due to small datasets, such as Robot
Commands Treebank (Dukes, 2013) or datasets
by MacMahon et al. (2006) or Han and Schlangen
(2017).

Tellex et al. (2011) and Walter et al. (2015)
present usage of such systems in real world. They
developed a robotic forklift which is able to un-
derstand simple natural language commands. For
training, they created small dataset by manu-
ally annotating the data from Amazon Mechanical
Turk. Their model is based on probabilistic graph-
ical models invented specifically for this task.

The first approach using neural networks is pro-
posed by Bisk et al. (2016b), who describe and
compare several neural models for understanding
natural language commands. Their dataset (Bisk
et al., 2016a) contains simulated world with square
blocks and actions descriptions in English (see
Figure 1). Since the actions are always shifts of
single block to some location, they divide the task
into two: predicting which block should be moved
and where. They call these tasks source and tar-
get predictions. With their best model, they reach
98% accuracy for source prediction and 0.98 aver-
age distance between correct and predicted loca-
tion for target.

The world is represented by x and y coordinates
of 20 blocks. Each block has a digit or logo of a
company for easy identification. There are 16,767

Figure 1: Visualisation of command “Move
Nvidia block to the left of HP block” in our world.

commands in the dataset, divided into train, devel-
opment, and test set. The commands were writ-
ten by people using Amazon Mechanical Turk and
therefore contains many typos and other errors.

In this paper, we propose several models solv-
ing this task and report improvement compared to
the previous work by Bisk et al. (2016b).

2 Models

2.1 Data preprocessing
For tokenization of commands we use simple rule
based system. Because of the typos we use Hun-
spell1, which is a widely used spell checker. Fi-
nally to prevent overfitting of neural models we
replace all tokens with less than 4 occurrences in
training data with special token representing un-
known word.

2.2 Benchmark model
To be able to measure the impact of the RNN
based models, we first introduce a simple rule-
based benchmark. The benchmark searches for
block numbers (1, 2, . . . , 20, one, two, . . . twenty),
logo names (adidas, bmw, burger, king, . . . ),2 and
directions (west, north, east, south, left, above,
right, below) in the commands.

1http://hunspell.github.io/
2If the logo name contains more words (e.g. burger king),

this model search for each part of the word and for concate-
nation of both words (e.g. burger, king, and burgerking).

44



For predicting the source (which block should
be moved), the model predicts the block corre-
sponding to the first word in the sentence denoting
a block. For predicting the target location (where
the source block should be moved), the model pre-
dicts position of the last word describing block
If there exist words describing directions, the last
one is chosen and the position is changed by one
in the direction corresponding to the word.

For example, in the command

Put the UPS block in the same column
as the Texaco block, and one row below
the Twitter block.

the benchmark model finds three words describing
blocks (UPS, Texaco, and Twitter) and the word
below describing direction. The block word (UPS)
is predicted as source. As the target location, the
banchmark model chooses the current location of
Twitter block (the last block word) moved one tile
down, because of the below word.

2.3 Neural model with world on the input

Our first neural model is relatively straightfor-
ward. Word embedding vectors representing the
tokenized command are given to a bidirectional
LSTM recurrent layer (Hochreiter and Schmidhu-
ber, 1997). The last two states of both directions
are concatenated together with the world represen-
tation (2 coordinates for each of the 20 blocks).
and fed into single feed forward layer with lin-
ear activation function. For predicting source, this
layer has dimension 20 and its outputs are then
used as logits to determine the source block. For
predicting location the last feed forward layer has
dimension two and its outputs are directly inter-
preted as predicted target location.

2.4 Predicting reference and relative position

Our second model is similar to the one proposed
by Bisk et al. (2016b).

It does not predict directly the target location,
but a meaning representation of the command,
which is then interpreted based on the world state
to get the final predicted target location. Our
representation is composed of 20 weights repre-
senting how much each block is used as a refer-
ence, and 2-dimensional vector representing the
relative position from the reference block. Let
w = (w1, w2, ...w20)T represent the weights of in-
dividual reference blocks, d = (d1, d2)T represent

the relative position and

S =
(

s1,1 s1,2 . . . s1,20

s2,1 s2,2 . . . s2,20

)
be the state of world, where s1,i and s2,i are x and
y coordinates of the i-th block The final target lo-
cation l ∈ R2 is then computed as l = Sw + d.

In most commands, the target is described in
one of the following ways:

1. By reference and direction: Move BMW
above Adidas

2. By reference, distance and direction: Move
BMW 3 spaces above Adidas

3. By absolute target: Move BMW to the middle
of bottom edge of the table

4. By direction relative to source: Move BMW 3
spaces down

5. By two references: Move BMW between Adi-
das and UPS

This representation is able to capture the
meaning of all of these. For example, the
command 1 can be represented as w =
(1, 0, 0, ..., 0)T , d = (0, 1)T , the command 5 as
w = (0.5, 0, 0, ..., 0, 0, 0.5)T , d = (0, 0)T .3

The tokenized one-hot encoded command is
given to a bidirectional LSTM recurrent layer, the
two last states are concatenated and fed into two
parallel feed-forward layers. The first one has 20
dimensions and outputs the weights w of refer-
ences, the second one is 2-dimensional and out-
puts the relative position d. The target location is
then computed from these.

2.5 Using recurrent output layers
We also tested a variant of the previous architec-
ture in which the feed-forward output layers are
substituted by recurrent 128-dimensional LSTM
layers. The new architecture is shown in Figure 2.

We also tried similar models for predicting the
source blocks. They have bidirectional recur-
rent layer, followed by single output layer, which
is feed-forward for one model and recurrent 64-
dimensional LSTM for the other one.

3 Results

The experiment results are compared in Table 3.
We report improvement over the previous results
for both source and target location predictions.
For source prediction the network without world

3The Adidas block has weight w1 and the UPS block is
the last with weight w20.
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Figure 2: Final target prediction network, which uses recurrent layer instead of feed-forward one.

on the input and with feed-forward output layer
achieves accuracy 98.8%.This is better than the
best model of Bisk et al. (2016b), who reported
98% accuracy. The improvement is mainly caused
by preprocessing data with spell checker and bet-
ter hyperparameter selection. Without using spell
checker our model has accuracy 98.3%.

As for the target location prediction, our best
model has average distance of 0.72 between pre-
dicted and correct target location. This is an im-
provement over both rule based benchmark with
1.54 and the best model reported by Bisk et al.
(2016b), who had 0.98. The median distance is
0.04 which is much better than their comparable
End-To-End model with median distance 0.53. In
65.8% of test instances the distance of our model
is less than 0.5, which might be considered a dis-
tinctive line between good and bad prediction.

4 Error analysis and discussion

We manually analyzed bad predictions of our best
model. As for the source block prediction, there
were only 18 mistakes made on the devset:

1. The two-sentence command (7 mistakes). In
the first sentence, it looks like the first men-
tioned block is the source, but the second sen-
tence states otherwise.4 “The McDonald’s
tile should be to the right of the BMW tile.
Move BMW.”

2. Block switching (3 mistakes): “The 16 and
17 block moved down a little but switched
places.”

3. Commands with typos (3 mistakes): “Slide
block the to the space above block 4” (Note
that the third word here should be three.)

4. Commands including a sequence (2 mis-
takes): “Continue 13, 14, 15. . . ”

5. Grounding error (2 mistakes), see Table 1.
6. Annotation error (once, not a mistake).
Major improvement of source accuracy may be

achieved by solving the problem where second
sentence changes the meaning of the first one.
However, there are no similar commands in the
training data, so it is hard to come with solution.

4All these seven sentences were likely written by single
author.
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Mistake type # Description & Example
More reference 31 Target location is described using two or more reference blocks.
blocks Place block 12 on the same horizontal plane as block 9, and one column

left of block 14.
Source same as
reference block

11 Model mistakes source for reference. Typically, the last block mentioned in
the sentence is source.
Move block 10 above block 11, evenly aligned with 10 and slightly sepa-
rated from the top edge of 10.

Annotation 11 Command does not make sense or does not describe the correct action.
error Move Pepsi to the slight southwest until it’s north of Pepsi.
Missing reference 9 No reference block in the command.
block Move the Stella block down to the very bottom of the square.
Large direction 9 Distance between reference and correct location is more than 1 block.

move the texaco block 5 block lengths above the BMW block
Grounding error 8 Unusual description of blocks and typos in block names.

Put the block that looks like a taurus symbol just above the bird.
Learning mistake 8 Relatively simple example, yet still bad prediction.

Block 4 should be moved almost straight down until it is resting on block 5.
Others 13

Table 1: The worst predictions analysis: Probable reasons behind bad predictions in 100 worst instances
of the development set. References are the blocks which are used in the command for describing the
target location.

Source Target
Random baseline 5.4% 6.12
Middle baseline 5.4% 3.46
Rule-based benchmark 96.3% 1.54
Bisk et al. (2016b) 98% 0.98
World as input 98.5% 3.05
Feed-forward output layer 98.8% 1.07
Recurrent output layer 98.5% 0.72

Table 2: Results comparison. In random and mid-
dle baselines, the randomly chosen block is placed
on random position or in the middle of the board.

Similarly, the word switch appears only once in the
training set.

Overall we think that for source prediction we
reached the limitations given by the dataset we are
using and without usage of another data it is very
hard to get significant improvements.

For target prediction we divide 100 worst pre-
dictions into categories, which can be seen in Ta-
ble 1.

11 out of the 100 worst predictions are bad be-
cause the commands does not make sense. But
also in many other commands the target location
is not described precisely, so the overall impact of
inaccurate commands is in our opinion bigger and

it also influences the training of models.
The other problem categories except of Learn-

ing mistake have similar underlying cause. The
sentence structure is unusual and does not appear
in the training data very often. Also in some cases
such as the More references category the sentences
are more complicated.

But even though these sentences are challeng-
ing and the model makes mistakes in them rela-
tively often, it works well for majority of these
sentences. Thus we find out that our proposed sen-
tence representation is in practice capable of rep-
resenting almost all sentences in the dataset.

5 Conclusion

We presented four different architectures of neu-
ral networks for solving the task of robot commu-
nication on dataset by Bisk et al. (2016a). Our
last model surpassed the previous reported results
and reached accuracy of 98.8% for source predic-
tion and 0.72 average distance between predicted
and correct target location. We find out that our
model is capable of understanding wide variety of
commands in natural language and make mistakes
mostly in sentences with features, which are badly
or not at all represented in the training data.
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Abstract

As robots begin to cohabit with humans
in semi-structured environments, the need
arises to understand instructions involv-
ing rich variability—for instance, learning
to ground symbols in the physical world.
Realistically, this task must cope with
small datasets consisting of a particular
users’ contextual assignment of meaning
to terms. We present a method for process-
ing a raw stream of cross-modal input—
i.e., linguistic instructions, visual percep-
tion of a scene and a concurrent trace
of 3D eye tracking fixations—to produce
the segmentation of objects with a cor-
respondent association to high-level con-
cepts. To test our framework we present
experiments in a table-top object manip-
ulation scenario. Our results show our
model learns the user’s notion of colour
and shape from a small number of phys-
ical demonstrations, generalising to iden-
tifying physical referents for novel combi-
nations of the words.

1 Introduction

Effective and efficient human-robot collaboration
requires robots to interpret ambiguous instructions
and concepts within a particular context, commu-
nicated to them in a manner that feels natural and
unobtrusive to the human participant in the inter-
action. Specifically, the robot must be able to:

• Understand natural language instructions,
which might be ambiguous in form and
meaning.

• Ground symbols occurring in these instruc-
tions within the surrounding physical world.

Figure 1: Combining natural language input with
eye tracking data allows for the dynamic labelling
of images from the environment with symbols.
The images are used in order to learn the meaning
of language constituents and then ground them in
the physical world.

• Conceptually differentiate between instances
of those symbolic terms, based on features
pertaining to their grounded instantiation,
e.g. shapes and colours of the objects.

Being able to relate abstract symbols to obser-
vations with physical properties in the real world is
known as the physical symbol grounding problem
(Vogt, 2002); which is recognised as being one of
the main challenges for human-robot interaction
and constitutes the focus of this paper.

There is increasing recognition that the mean-
ing of natural language words derives from how
they manifest themselves across multiple modali-
ties. Researchers have actively studied this prob-
lem from a multitude of perspectives. This in-
cludes works that explore the ability of agents to
interpret natural language instructions with respect
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to a previously annotated semantic map (Matuszek
et al., 2013) or fuse high-level natural language in-
puts with low-level sensory observations in order
to produce a semantic map (Walter et al., 2014).
Matuszek et al. (2014); Eldon et al. (2016) and
Kollar et al. (2013) tackle learning symbol ground-
ing in language commands combined with gesture
input in a table-top scenario. However, all these
approaches depend on having predefined specifi-
cations of different concepts in the environment:
they either assume a pre-annotated semantic map
with respect to which they ground the linguistic in-
put or have an offline trained symbol classifier that
decides whether a detected object can be labelled
with a specific symbol; e.g. colour and shape in
(Matuszek et al., 2014). Thus in order to deploy
such a system, one should have access to an al-
ready trained classifier for every anticipated sym-
bol, prior to any user interaction.

Multi-modal learning algorithms based on deep
neural networks are also popular for grounding
natural language instructions to the shared phys-
ical environment (Srivastava and Salakhutdinov,
2012; Ngiam et al., 2011). But the majority of
these algorithms depend crucially on large and
pre-labelled datasets, and the challenge is in col-
lecting these large-scale labelled datasets so that
they not only capture the variability in language
but also manage to represent the nuances (espe-
cially across multiple high-bandwidth modalities,
such as vision and eye-tracking) of inter-personal
variability in assignment of meaning (e.g., what
one person calls mustard another might call yel-
low), which we claim is a key attribute of free-
form linguistic instructions in human-robot inter-
action applications. If a previously unseen instruc-
tion/visual observation is presented to these sys-
tems, they might fail to ground or recognize them
in the way that the user might have intended in that
specific setting. Tobin et al. (2017) potentially by-
passes the need to collect a big dataset by demon-
strating that a model trained in simulation can be
successfully deployed on a robot in the real world.
However, the problem is then shifted to generating
task-specific training data in a simulator which ap-
proximates the real world well enough.

A proposed alternative to this off-line learn-
ing approach is to interactively teach an embod-
ied agent about its surrounding world, assuming
limited prior knowledge. Al-Omari et al. (2016)
demonstrates a model for incrementally learning

the visual representation of words, but relies on
temporally aligned videos with corresponding an-
notated natural language inputs. Parde et al.
(2015) and Thomason et al. (2016) represent the
online concept learning problem as a variation
of the interactive “I Spy” game. However, these
approaches assume an initial learning/exploratory
phase in the world and extracted features are used
as training data for all concept models associated
with an object.

Penkov et al. (2017) introduce a method called
GLIDE (see §2.2 for details), which successfully
teaches agents how to map abstract instructions,
represented as a LISP-like program, into their
physical equivalents in the world. Our work builds
on this method: it uses it to achieve natural lan-
guage symbol grounding, as a by-product of user
interaction in a task-oriented scenario. Our ap-
proach achieves the following:

• It maps natural language instructions to a
planned behaviour, such as in a robotic ma-
nipulation domain; in so doing it supports
a communication medium that human users
find natural.

• It learns symbol grounding by exploiting the
concept of intersective modification (Morzy-
cki, 2013) —i.e., an object can be labelled
with more than one symbol. The meaning of
the symbols is learned with respect to the ob-
served features of the instances of the object.

In our work the agent assumes some prior
knowledge about the world in the form of low-
level features that it can extract from objects in
the visual input—e.g. intensities in the primary
colour channels and areas of pixel patches of any
specific colour. On top of this, we learn classifiers
for performing symbol grounding. Each symbol
has a probabilistic model which is fit to a subset
of the extracted (visual) features. When a new in-
struction is received, the classifier for each symbol
makes a decision regarding the object in the world
(and their respective features) to which the sym-
bol may be grounded. Crucially, the data from
which these classifiers are learned is collected
from demonstrations at ‘run time’ and not prior
to the specific human-robot interaction. Images of
objects are extracted from the high-frequency eye
tracking and video streams, while symbols that re-
fer to these objects in the images are extracted
from the parsed natural language instructions—
see Figure 1. Through cross-modal instructions,
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Figure 2: Overview of the full system pipeline. Input to the system are natural language instructions,
together with eye-tracking fixations and a camera view of the world from above (a) Natural language
instructions are deterministically parsed to an abstract plan language (b) Using the abstract plan, a set
of labelled image patches is produced from the eye-tracking and video data (c) Observable predefined
features are extracted from the image patches (d) Each symbol is grounded to a subset of observable
features (e)

the human participant is simultaneously teaching
the robot how to execute a task and what prop-
erties the surrounding objects must have for that
execution to be successful. For instance, while
observing how to make a fruit salad in a kitchen,
apart from learning the sequence of steps, the sys-
tem would also gain an initial approximation of
the visual appearance of different pieces of fruit
and their associated natural language symbols.

2 Methods

Figure 2 depicts the architecture of the overall sys-
tem. It consists of an end-to-end process, from
raw linguistic and video inputs on the one hand to
learned meanings of symbols that in turn are con-
ceptually grouped: i.e., a symbol can correspond
either to an object in the real world, or to a prop-
erty of an object. The rest of the section is orga-
nized in the following fashion - each subsection
corresponds to a numbered transition (1 to 4) indi-
cated in Figure 2.

2.1 Natural Language Semantic Parsing

The task of the semantic parser is to map nat-
ural language requests into instructions repre-

sented in an abstract form. The abstract form
we use is a list of tuples with the format
(action target location) (Figure 2b),
where action corresponds to an element from
a predefined set A, target corresponds to a list
of terms that describe an object in the world and
location corresponds to a single symbol denot-
ing a physical location in the environment.

The narration of the plan execution by the hu-
man comprises one sentence per abstract instruc-
tion. Therefore, given a plan description, our se-
mantic parser finds a mapping from each sentence
to a corresponding instruction as defined by our
abstract plan language.

Elementary Dependency Structures (EDS)
(Oepen et al., 2004), which are output by parsing
the sentence with the wide-coverage English
Resource Grammar (Flickinger et al., 2014), are
used as an intermediate step in this mapping
procedure. EDS are given as dependency graphs
(Figure 3) and are a variable-free reduced form
of the full Minimal Recursion Semantics (MRS)
(Copestake et al., 2005) representation of the nat-
ural language input. Given EDS for a particular
sentence, parsing proceeds in two steps:
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Figure 3: Example of dependency graphs for input sentences. Red labels denote the top graph nodes.

• The graph is extracted from nodes and their
respective edges, cleaning up nodes and
edges that do not contribute directly to the
meaning of the instruction—i.e., anything
that is not a verb, adjective, preposition or a
noun;

• The processed graph is recursively traversed
until all nodes have been visited at least once.

Knowing the format of our abstract plan lan-
guage, we know that action would always
correspond to the verb in the input sentence,
target would correspond to a noun phrase and
location would correspond to a prepositional
phrase (i.e., a combination of a preposition and
noun phrase). For us, the noun phrases all con-
sist of a noun, complemented by a possibly empty
list of adjectives. Extracting the action is straight-
forward since the top node in the EDS always cor-
responds to the verb in the sentence; see Figure 3.
The extracted action is then passed through a pre-
defined rule-based filter which assigns it one of the
values from A: e.g. pick, grab, take, get would all
be interpreted as pick.

The target entry can be extracted by identi-
fying noun node in the EDS that’s connected to
the verb node. Once such a noun is found, one can
identify its connections to any adjective nodes—
this gives a full list of symbols that define the ob-
ject referenced by the target.

The location entry can be extracted by
searching for preposition nodes in the EDS that
are connected to the verb node. If there is no
such node, then the location is constructed di-
rectly from the target by concatenating its labels
- e.g. for a blue cube the location would be
the symbol blue-cube-location. Extract-
ing the location from a prepositional phrase
is less constrained since different verbs can be
related to spatial prepositions in varied ways—
either the preposition node has an edge connect-

ing it to the verb node or vice versa. Once a
prepositional node is visited, we proceed by re-
cursively exploring any chains of interconnected
nouns, prepositions, and adjectives. The recursion
calls for backtracking whenever a node is reached
with no unvisited incoming or outgoing edges:
e.g., node cube on Figure 3 (bottom). For exam-
ple, the symbol on-left-of-cube is produced
for location for the bottom sentence in Figure
3.

In this way, the result of parsing is a sequence
of abstract instructions—i.e., an abstract plan—
together with a symbol set S, containing all sym-
bols which are part of any target entry. At this
point, the symbols are still not actually grounded
in the real world. Together with the raw video feed
and the eye-tracking fixations, the abstract plan
becomes an input to GLIDE (Penkov et al., 2017).

2.2 Grounding and Learning Instances
through Demonstration and Eye tracking
(GLIDE)

Penkov et al. (2017) introduce a framework
for Grounding and Learning Instances through
Demonstration and Eye tracking (GLIDE). In
this framework, fixation programs are repre-
sented in terms of fixation traces obtained dur-
ing task demonstrations combined with a high-
level plan. Through probabilistic inference over
fixation programs, it becomes possible to infer
latent properties of the environment and deter-
mine locations in the environment which corre-
spond to each instruction in an input abstract plan
that conforms to the format discussed above -
(action target location).

2.2.1 3D Eye-Tracking
Mobile eye trackers provide fixation information
in pixel coordinates corresponding to locations in
the image of a first person view camera. In order
to utilise information from multiple input sensors,
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Figure 4: The proposed probabilistic model for
physical symbol grounding is based on the idea
that “task and context determine where you look”
(Rothkopf et al., 2007).

an additional camera may be attached to augment
an eye-tracker, by running mono camera SLAM
algorithm in the background—ORBSLAM (Mur-
Artal et al., 2015). The SLAM algorithm pro-
vides 6D pose of the eye tracking glasses within
the world frame; this allows for the fixation lo-
cations to be projected into the 3D world by ray
casting and finding intersections with a 3D model
of the environment. As a result, fixations can be
represented as 3D locations, enabling the projec-
tion of fixations in the frame of any sensor in the
environment.

2.2.2 Model and Location Inference
In order to solve the problem of symbol ground-
ing, inference is performed using a generative
probabilistic model, which is shown in Figure 4.
The sequence of fixations Y1 : YT depend both
on the current environment state E and the action
being executed A. Each action is part of the plan
P which is determined by the task being demon-
strated T . The sequence of fixations is observed
and interpreted with respect to a task that is by
this stage already known, while the state of the
environment and the current action are unknown.
The main inference task is to determine the struc-
ture of the model and assign each fixation to the
action that is its cause. A crucial feature of this
procedure is the fact, deriving from human sen-
sorimotor behaviour, that the distribution of fix-
ations is different when a person is attending to
the execution of an action compared to periods of
transitions between actions in the plan. By utilis-
ing this property and using samples from a Dirich-
let distribution to describe these transition points,
GLIDE is able to infer the correct partitioning of

Algorithm 1: Symbol Meaning Learning
Input: σthresh

Data: I , S, F
Output: K = {(µ1,Σ1), . . . , (µS ,ΣS)},

C = {(F s
invar : s), . . . (FS

invar : S)}
1 Data← [s1 : {}, . . . , sS : {}];
2 for image i in I do
3 symbolsi ← GetSymbols(i);
4 featuresi ← ExtractFeatures(i);
5 for symbol in symbolsi do
6 Append featuresi to Data[symbol];
7 for s in S do
8 Ks ← FitNormal(Data[s]);
9 Ks ← CleanNoise(Data[s]);

10 F s
invar ← FindInvFeat(Ks, σthresh);

11 Ks ← RefitNormal(Ks, F
s
invar);

12 Append (F s
invar : Ks) to C;

the fixation sequence. This information allows us
to localise each item of interest in the environment
and extract labelled sensory signals from the en-
vironment. A complete description of this model
and inference procedure can be found in (Penkov
et al., 2017).

2.3 Feature Extraction

The parser produces a set of symbols S and
GLIDE produces a set of image patches I , each of
which is labelled with a subset of symbols from
S. We proceed by extracting a number of fea-
tures, drawn from a pre-existing set F . The fea-
tures are derived from the objects in the image
patches, after removing the background. This is
achieved through a standard background subtrac-
tion method—we know that the majority of the im-
age will be occupied by a solid object with a uni-
form colour, anything else is a background. For in-
stance, in the image patches in Figure 2 (c), the ob-
jects are the colourful blocks and the background
is the black strips around them. Images containing
only or predominantly background are considered
noise in the dataset and are discarded. For each
symbol s we group the extracted features from
each image labelled with s resulting in S lists of
Ms tuples with F entries in each tuple, where Ms

is the number of images being labelled with s; see
Figure 2 (d, left). The data for each feature is nor-
malized to fall between 0 and 1.
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Figure 5: Example of feature distributions for
blue (top) and cube (bottom) symbols.

2.4 Symbol Meaning Learning

For each symbol s ∈ S and each feature f ∈
F we fit a 1-D Normal distribution resulting
in a new list of tuples with size F - sj :
[(µsj

f1
, σ

sj

f1
), . . . , (µsj

fF
, σ

sj

fF
)] for the jth symbol.

Taking into account that the object location pro-
cess in GLIDE could still produce noisy results—
i.e., the label of an image can be associated with
the wrong symbol—we process our distributions
to refit them to data that falls within two standard
deviations from the means of the original distri-
butions. We are then seeking observed features f
that are invariant with respect to each token use of
a specific symbol s within the user instructions so
far—i.e. their distributions are ‘narrow’ and with
variance below a predefined threshold σthresh (see
Figure 5). If we have a set of images that are of
blue objects with different shapes and we extract
a set of features from them, we would expect that
features with lower variation (e.g. RGB channels
as opposed to area) would explain the colour blue
better than features with more variation (i.e. pixel
area).

In the last step, we construct a set of the invari-
ant features from the discovered narrow distribu-
tions for a given symbol l - (F s

invar) - and say that
this set characterizes the symbol. The parameters
for the symbol are the concatenation of the means

of the features from (F l
invar) into a mean vector

and the concatenation of the variances into a diag-
onal covariance matrix. The resultant mean vector
and covariance matrix are later used for inference
when shown a new set of images.

3 Experiments

We now present results from initial experiments
based on the framework in Figure 2. We focus
our explanation on steps 3 and 4 in that figure, as
these are the pertinent and novel elements intro-
duced here. The input data for Figure 2 (c) is de-
rived from the process already well described in
(Penkov et al., 2017).

3.1 Dataset
For our experiments we used a total of six symbols
defining S: 3 for colour (red, blue and yellow);
and 3 for shape (cell, block, cube). We used four
extracted features for F : R, G, B values and pixel
area. The objects used were construction blocks
that can be stacked together and images of them
were gathered in a tabletop robotic manipulation
setup (see Figure 2 (a)). Based on the empiri-
cal statistics of the recognition process in (Penkov
et al., 2017), our input dataset to the Symbol
Meaning Learning algorithm consists of 75% cor-
rectly annotated and 25% mislabelled images. The
total training dataset comprised of approximately
2000 labelled image patches, each of which is
labelled with two symbols—e.g. blue cell,
red block, yellow cube, etc.

The additional test set was designed in two
parts: one that would test colour recognition and
one that would test shape recognition. Overall, 48
objects were presented to the algorithm where the
features for each object would fall into one of the
following categories:

• Previously seen features (Figure 6 (left))

• Previously unseen features, close to the fea-
tures of the training data (Figure 6 (middle))

• Previously unseen features, not close to the
features of the training data (Figure 6 (right))

3.2 Experimental Set up
Inference over new images is performed by thresh-
olding the probability density function (PDF) val-
ues from the model parameters for each symbol.
The idea is to test how well the algorithm can dif-
ferentiate the learned concepts with slight varia-
tions from concepts it has not seen before: e.g.
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Figure 6: Variations in the objects from the test set
for colour (top half) and shape (bottom half)

given that the algorithm was trained on 3 colours
and 3 shapes, we would expect that it should rec-
ognize different hues of the 3 colours and objects
with similar shapes to the original 3; however, it
may not be able to recognize objects with com-
pletely different features. Moreover, we further
group different symbols into concept groups. If
any two symbols are described by the same fea-
tures, it is safe to assume that those two symbols
are mutually exclusive: that is, they can not both
describe an object simultaneously. Thus we go
over each concept group and if there are symbols
yielding PDF values above a predefined threshold,
we assign the new image the symbol from that
group with the highest PDF.

3.3 Results

The system successfully learns from the training
dataset that the colour symbols are being char-
acterized by the extracted RGB values, while (in
contrast) the shape symbols from the pixel area of
the image patch—see Figure 7. Given a new test
image with its extracted features, the algorithm
recognises 93% of presented colours and 56% of
presented shapes. Tables 1 and 2 report the con-
fusion matrices for the testing set. This shows
that the system is more robust when recognizing
colours than when recognizing shapes. This can
be attributed to the fact that while RGB values de-
scribe the concept of colour well enough, simply
the pixel area is not enough to describe the con-
cept of shape. Therefore the algorithm confuses
the rubber duck with a cell, for example, and the
arrow with a cube, see Figure 8, principally be-
cause they are of a similar size to each other! In
future work, we would consider a wider range of
features being extracted from the images, which in
turn would support a finer-grained discrimination
among objects.

Table 1: Confusion matrix for colour symbols

Red Yellow Blue Unknown
Red 12 1 0 0

Yellow 0 12 0 0
Blue 0 0 13 1

Unknown 0 1 0 13
Table 2: Confusion matrix for shape symbols

Cell Block Cube Unknown
Cell 8 1 0 0

Block 1 7 0 0
Cube 0 3 8 0

Unknown 5 5 6 4

4 Discussion and Future Work

The experiments in this paper have demonstrated
that it is possible to train classifiers for object
appearance alongside symbols, which are anal-
ysed via a semantic parser, to achieve ground-
ing of instructions that respect the specificity of
the scenario within which that association derives
its meaning. Although our framework supports
an entire pipeline, from raw cross-modal input to
an interpreted and grounded instruction, the pre-
sented scenarios are simple and the specific meth-
ods could be made (much) more sophisticated.
Despite this, we claim that this provides step-
ping stones towards learning more complex lan-
guage structures in the future: during the first few
demonstrations a human could teach a robot fun-
damental concepts like colours, shapes, orienta-
tion, and then proceed to use this newly gained
knowledge to ground, e.g., prepositional phrases
(Forbes et al., 2015; Rosman and Ramamoorthy,
2011) or actions (Misra et al., 2016; Zampogian-
nis et al., 2015) in an online and context specific
manner. Once the system knows what blue cubes
look like, it would be easier to learn what it means
for another cube to be on top of/around it.

Another fruitful line of exploration would be
continuous learning of both known and unknown
symbols, using the same conceptual groups the
system has extracted from the training data. For
instance, whenever the robot observes a new ob-
ject it can either label it with a symbol or deem it
as unknown for a particular concept group. When-
ever a symbol is assigned, the feature model for
that symbol is updated, taking into account the
new data point. If on the other hand the symbol
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Figure 7: Excerpt from the testing dataset of objects whose colour and shape were correctly recognised.

Figure 8: Examples of wrongly assigned known
symbols to unseen shapes. Leftmost objects
demonstrate an object from the training data.

is unknown, the system can prompt the human for
new linguistic input which together with its fea-
ture model is added to the knowledge base and
allows for its future recognition. For example, if
the robot observes a new hue of blue it would up-
date its parameters for blue to account for that;
whereas if it observes a new colour (e.g. green) it
would ask the human for the unknown symbol and
would record it for future reference.

The idea of teaching the system about com-
pound nouns is also a relevant challenge and a
possible extension of this work: our current setup
relies on noun phrases consisting of predicative
Adjs and a Noun (e.g. blue cube), and so we
know that the associated image patch X satisfies
both the adjective and the noun—i.e., blue(X)
and cube(X) are both true. However, this would
not apply to a compound noun like steak knife:
we know that the associated image patch X sat-
isfies knife(X) but does not satisfy steak(X).

Refinements to our model would be necessary in
order to represent more complex symbol relations,
e.g. in a hierarchical fashion (Sun et al., 2014).

5 Conclusion

We present a framework for using cross-modal in-
put: a combination of natural language instruc-
tions, video and eye tracking streams, to simulta-
neously perform semantic parsing and grounding
of symbols used in that process within the physi-
cal environment. This is achieved without reliance
on pre-existing object models, which may not be
particularly representative of the specifics of a
particular user’s contextual usage and assignment
of meaning within that rich multi-modal stream.
Instead, we present an online approach that ex-
ploits the pragmatics of human sensorimotor be-
haviour to derive cues that enable the grounding
of symbols to objects in the stream. Our prelim-
inary experiments demonstrate the usefulness of
this framework, showing how a robot is not only
able to learn a human’s notion of colour and shape,
but also that it is able to generalise to the recogni-
tion of these features in previously unseen objects
from a small number of physical demonstrations.
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Abstract

Robot-directed communication is vari-
able, and may change based on human
perception of robot capabilities. To col-
lect training data for a dialogue system
and to investigate possible communica-
tion changes over time, we developed a
Wizard-of-Oz study that (a) simulates a
robot’s limited understanding, and (b) col-
lects dialogues where human participants
build a progressively better mental model
of the robot’s understanding. With ten
participants, we collected ten hours of
human-robot dialogue. We analyzed the
structure of instructions that participants
gave to a remote robot before it responded.
Our findings show a general initial pref-
erence for including metric information
(e.g., move forward 3 feet) over landmarks
(e.g., move to the desk) in motion com-
mands, but this decreased over time, sug-
gesting changes in perception.

1 Introduction

Instruction-giving to robots varies based on per-
ception of robots as conversational partners. We
present an experiment designed to elicit robot-
directed language that is a happy medium be-
tween existing natural language processing capa-
bilities and fully natural communication. The data
elicited will be used to train a dialogue system in
the future, and it provides insights into what com-
munication strategies people use when instructing
robots. In this paper, we begin to examine how
people vary their strategies as they build a progres-
sively more accurate mental model of the robot
and its capabilities. To simulate a robot’s limited
understanding of its environment, we employ the
Wizard-of-Oz (WOz) method, where humans sim-

ulate robot intelligence and actions without par-
ticipant awareness. With ten participants, we col-
lected ten hours of human-robot dialogue. We are
currently undertaking corpus curation and plan to
make the data freely available in the next year.

In this experiment, a human and robot engage
in a series of transactions (Carletta et al., 1997)
where an instruction is issued, and wizards act-
ing on behalf of the robot either perform a task
or prompt for clarification until the requested task
is completed or abandoned. We propose a new
term, instruction unit (IU), to identify all com-
mands within a transaction issued before the robot
generates a response. IUs were analyzed both in
structure and variation. Our findings suggest a
general, initial preference for including metric in-
formation over landmarks in motion commands,
but this decreased over time. Results will assist
in future work adapting robot responses to varied
instruction styles.

In the sections to follow, we first give needed
background: the experiment setup and our ap-
proach to eliciting natural, robot-directed lan-
guage. We then describe the annotations we
have undertaken thus far to explore communica-
tion strategies. In our results section, we provide
some statistics on the data collected thus far as
well as noted changes in communication strate-
gies. We provide a discussion of these results and
comparison to related work and close with a sum-
mary and description of future work.

2 Background

2.1 Collaborative Exploration Task

The domain testbed for our work is collabo-
rative exploration in a low-bandwidth environ-
ment (Marge et al., 2016). This testbed mimics
what can be found in a reconnaissance or search-
and-navigation operation, wherein a human Com-
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Figure 1: Interface showing robot text re-
sponses (lower left) to the Commander’s verbal
instructions, map (right), and the last still image
sent (upper left).

mander verbally instructs a robot at a remote loca-
tion, guiding the robot to move around and explore
a physical space. The sensors and video camera
on-board the robot populate a map as it moves,
enabling it to describe that environment and send
photos at the Commander’s request, but the com-
munications bandwidth prohibits real-time video
streaming or direct teleoperation. The robot is as-
sumed capable of performing low to intermediate
level tasks, but not more complex tasks involving
multiple or quantified goals, without clear direc-
tions or plans for ordering subgoals. The physical
implementation of the testbed is an indoor envi-
ronment, containing several rooms and connecting
hallways, located in a separate building from the
Commander. We use a Clearpath Robotics Jackal,
fitted with an RGB camera and LIDAR sensors, to
operate in the environment.

The Commander sees the following informa-
tion from the robot’s sensor data: a 2D occupancy
grid with the robot’s current position and heading
streamed within the grid (i.e., map), and the last
still image captured by its front-facing camera. In
addition, the Commander can speak to the robot
and see the robot’s text responses. Figure 1 shows
the information made available to the Commander.

2.2 Experiment Design

In each session, a (Commander) participant en-
gaged the robot in collaborative search-and-
navigation tasks. A session was comprised of
three twenty-minute phases: a training phase and
two main task phases (main phase 1 and 2). Train-
ing may voluntarily end when participants were
comfortable with controls. Each phase focused

on a slightly different search task and started in
a distinct location. Experiment tasks were devel-
oped to encourage the participant to use the robot
as a teammate to search for certain objects in the
environment. The participant needed to use their
real-world knowledge in order to answer ques-
tions that required analysis of the observed envi-
ronment. The robot didn’t know common words
for target objects, which required participants to
consider word choice as they addressed the robot.
An example search task was to locate shoes in an
environment, relying on robot-provided images.
An example analysis task was to consider whether
the explored space was suitable as a headquarters-
like environment. All phases situated the robot in
an unfamiliar indoor environment, unlike canoni-
cal scenes typically observed in homes and offices.

Preceding the study, participants received a list
of robot capabilities (see Appendix A). They were
told that the robot understood basic object prop-
erties (e.g., most object labels, color, size), rel-
ative proximity, some spatial terms, and location
history. Participants were not given example in-
structions.

2.3 Wizard-of-Oz Setup

We use a WOz approach to allow for understand-
ing of natural domain-specific instructions, in ad-
vance of collecting enough training data to imple-
ment an automated system. Our work expands on
existing WOz approaches by incorporating multi-
modal communication when the robot and human
are not co-present – where information exchange
of robot position, visual media, and dialogue is
needed for collaborative exploration to succeed.

We use a multi-wizard setup to simulate the ex-
pected autonomous robot understanding and re-
sponse. We use two wizards simultaneously for
two reasons. First, a single wizard cannot type dia-
logue responses while teleoperating the robot with
a joystick at the same time. Second, by design,
we wish to decouple navigation behavior from di-
alogue behavior, as these will ultimately be sepa-
rate modules in a fully-automated system.

A Dialogue Manager (DM-Wizard) listens to
Commander speech and communicates directly
with the Commander, using a chat window to type
status updates and requests for clarification. When
the Commander’s instructions are executable in
the current context, the DM-Wizard types in an-
other chat window to pass a constrained, text in-
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Figure 2: Wizard-of-Oz setup with wizards for di-
alogue management and robot navigation.

struction set to the Robot Navigator (RN), who
teleoperates the robot. When hearing robot status
updates directly from the RN, the DM-Wizard also
communicates this information back to the partic-
ipant. The DM-Wizard and RN roles were kept
constant by having the same experimenters (fe-
male DM-Wizard, male RN) in those roles for the
entirety of the study. Figure 2 presents our setup.

3 Approach: Eliciting Natural Language

One of the main research questions we seek to
address with this experimental design is how to
elicit natural communication, given that people
may change strategies over time as they accommo-
date the robot’s limited understanding. Like Chai
et al. (2014) and Williams et al. (2015), we are in-
terested in methods that robots can use to interpret
and convey common ground in natural language
interaction. Here, we describe how our DM-
Wizard command-handling guidelines simulate a
robot’s limited understanding and the strategies
that it could use to disambiguate phrases. Next,
we introduce transaction and instruction units as a
way to identify and measure possible variation in
participant instructions.

3.1 DM-Wizard Guidelines
One way to elicit natural communications is to
have the robot (in this case, the DM-Wizard) use
strategies that mitigate its limited understanding,
like offering suggestions or conveying its capabil-
ities. We developed guidelines to determine when
to employ such strategies and to ensure consis-
tent dialogue decisions across participants. The

Participant command (speech): Move forward.
Communication problem: Open-ended action (no endpoint
specified)
Relevant template:
DESCRIBE PROBLEM + CAPABILITY
DM-Wizard response to participant (text): How far?
You can tell me to move to an object that you
see or a distance.
Participant response (speech): Move to the yellow cone
ahead of you.

Figure 3: DM-Wizard guidelines for consistent di-
alogue behaviors (developed iteratively in pilot-
ing) applied in a sample exchange.

guidelines governed the DM-Wizard’s real-time
decision-making. They first identify the minimal
requirements for an executable command: each
must contain both a clear action and respective
endpoint. The guidelines provide response cat-
egories and templates, allowing for flexibility in
exact response form, but with easily-remembered
templates for elements of each response. Re-
sponses are broadly categorized into well-formed
vs. unclear, problematic commands. The ex-
change in Figure 3 shows how a participant’s prob-
lematic, open-ended instruction is handled under
the guidelines.

3.2 Dialogue Structure Annotation

In order to both study the question of what kinds
of language, discourse, and dialogue strategies are
used to give instructions, as well as to provide
training data for automating the DM-Wizard func-
tions, we annotated several aspects of dialogue
structure. In this paper we focus on the former
question, and examine how participants convey
initial task intention to a robot before follow-on di-
alogue from the DM-Wizard. This analysis helps
us understand the structure of instructions and an-
ticipate possible task ranges required of a robot.
We discuss four levels of dialogue semantics and
structure below, from largest to smallest: transac-
tion units (TUs), instruction units (IUs), dialogue-
moves, and parameters. Each of these is defined
and discussed below.

3.2.1 Transaction Units
Each dialogue is annotated as a series of higher-
level transaction units. A TU is a sequence of
utterances aiming to achieve task intention. The
TUs document structures that appear within col-
lected dialogues, while also providing emulatable
interaction patterns for a dialogue manager. TUs
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Participant Participant ⇦DM DM⇨Robot Navigator RN Robot
Audio Stream 1 Chat Room 1 Chat Room 2 Audio Stream 2 On Screen

proceed forward
How far? You can tell me to move to an 
object that you see or a distance. 

proceed forward 3 feet
executing…

move forward 3 feet
<navigation>

<movement>
task complete

done

Transaction U
nit

Figure 4: Two wizards manage the labor of robot intelligence. Dialogues divide into a series of transac-
tions where a naive participant gives an instruction, a Dialogue Manager (DM-Wizard) decides how to
handle it, and passes well-formed instructions to a Robot Navigator (RN) that moves the robot.

each contain a participant’s initiating message and
then subsequent messages by the participant and
wizards to complete the transaction.

Figure 4 shows an example transaction in which
a participant gives instructions, the DM-Wizard
requests clarification, and the amended instruc-
tions are then passed to the RN, who completes
the instructions.

3.2.2 Instruction Units
Within TUs, we marked instruction units. An
IU comprises all participant speech to the robot
within a transaction unit before robot feedback.
Each IU belongs to exactly one TU, so that the
start of each transaction (e.g., a new command is
issued) marks a new IU. An IU terminates when
the robot replies to the request, or when a new
transaction is initiated. The relationships of IUs
and TUs is shown in Figure 5.

3.2.3 Dialogue-Moves
To analyze internal IU structure, we annotated
Commander-issued lower-level dialogue-moves.
This annotation scheme is inspired by a prior
approach to military dialogue that identified
dialogue-moves in calls for artillery fire (Roque
et al., 2006). Examples of a command type re-
quest are command:drive or command:rotate, that
instruct the robot to perform certain motions. A
dialogue-move list is provided in Appendix B.

Three annotators independently validated the
dialogue-move set on 99 dialogue turns in our
human-robot dialogue corpus. Annotators had
high agreement (α = 0.92; Krippendorf’s α using
the MASI distance measure (Passonneau, 2006)).

3.2.4 Parameters on Motion Commands
Some dialogue moves uniquely define the action
that the robot should take, e.g. command:stop or

Participant Participant ⇦DM
face the doorway on your right in front of you

and take a picture
I see a doorway ahead of me on the right 

and a doorway on the left
the one closest to you

executing...
sent

turn left to face the orange object
executing...

done

IU
₁

IU
₂

Dialogue Move

Dialogue Move

Dialogue Move

Dialogue Move

Translation to RN

Translation from RN

TU
₂

TU
₁

Figure 5: Annotation structures on human-robot
dialogue, shown over participant and DM-Wizard
streams.

command:send-image. Others require additional
parameters to fully specify the complete action.
Of particular interest to us is the information that
participants chose to include in robot-directed mo-
tion requests. We focused on command:drive and
command:rotate for variation in how participants
communicated. We annotated motion-command
parameters for their usage of metric (e.g., move
forward 2 feet; turn left 90 degrees) and landmark-
based points of reference (e.g., move to the table;
turn to face the doorway) similar to absolute and
relative steps in route instructions from Marge and
Rudnicky (2010).

3.3 Participants

This study recruited ten participants: two female,
eight male. Ages ranged from 28 to 58 (mean =
44, s.d. = 10.6). Two participants reported one
year or less of robotics research; others reported
none.1

1We collected measures that were included in our statis-
tical analysis but not presented in this paper. The Spatial
Orientation Survey, part of the Guilford-Zimmerman Apti-
tude Survey (Guilford and Zimmerman, 1948), assesses spa-
tial orientation perception. The HRI Trust Survey (Schaefer,
2013) measures subjective trust of the robot, based upon per-
sonal belief of the robot’s capabilities.
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3.4 Corpus Statistics

We collected approximately 10.5 hours of
recorded Commander speech (approximately 1
hour per participant), and DM-Wizard text mes-
sages to participants and to the RN. All live video
feed, map, and robot pose data, as well as task-
relevant images requested by participants, were
recorded. Language data was manually time-
aligned. After transcription and annotation, the
corpus yielded 858 IUs.

4 Results

Each IU in the corpus corresponded to a unique
TU from participant-robot dialogue. To better
understand the structure and possible instruction
variation over time, we focused analysis on IUs,
their respective dialogue-moves, and motion com-
mand parameters. We analyzed IUs based on mea-
sures of word count, dialogue-move, and parame-
ters on motion commands. We assessed possible
parametric differences on motion commands by
experiment phase (training phase, main phase 1,
main phase 2). For significance testing, we used a
mixed-effects ANOVA (computing standard least
square regression using reduced maximum likeli-
hood (Harville, 1977)), where phase (a repeated
measure), age, gender, and scores on the spatial
orientation and HRI trust surveys were included as
factors in the model. Participant ID was included
as a random effect.

4.1 Instruction Units

To gauge instruction frequency, we observed the
mean number of IUs issued in an experiment ses-
sion. On average, each participant issued 86 IUs
(s.d. = 24.7, min = 58, max = 126). The average
IU length was 8 words (s.d. = 5.7, min = 1, max =
60). Three participants each issued over 112 IUs
in total, while three issued 70 or fewer.

4.2 Dialogue-Moves in IUs

We analyzed the selection of dialogue-moves that
participants issued in their IUs. Participants often
issued more than one dialogue-move per IU (mean
= 1.6 dialogue-moves per IU, s.d. = 0.88, min = 1,
max = 8). Unsurprisingly, the command dialogue-
move was in the most IUs (94% of all IUs). See
Table 1 for the entire distribution. We report on
notable exceptions in Section 5.2.

The most common functions observed in the in-
structions were command dialogue-moves to send

Dialogue-Move
Instruction Units

N %

Command 94
Send-Image 443 52
Rotate 406 47
Drive 358 42
Stop 29 3
Explore 7 1

Request-Info 34 4
Feedback 28 3
Parameter 14 2
Describe 5 1

Table 1: Dialogue-move distribution over all IUs
in the corpus (N=858). An IU may have one or
more dialogue-moves.

0 20 40 60 80 100

Main Phase 2

Main Phase 1

Training

Landmark Metric

36% 64%

30% 70%

27% 73%

Figure 6: Proportions of landmark mentions to
metric mentions within all command moves of
subtype drive and rotate across experiment phases.
There were 177, 333, and 316 occurrences of met-
ric or landmark information in the training, main
phase 1, and main phase 2 to compute proportions,
respectively.

a new image, rotate, and drive. As reported in Ta-
ble 1, over half of IUs include an image request,
followed by rotate and drive commands.

4.3 Parameters on Motion Commands

We delineate percentages of all IUs that involved
motion requests for the robot (i.e., commands that
were not image, stop, or exploration requests).
638 IUs contained a drive or rotate subtype re-
quest with a command parameter; 75% included
metric units and 37% included landmarks (an IU
could contain both). We tabulated all metric and
landmark mentions in this IU subset.

We observed a substantial change in general
participant strategy over time (Figure 6). In the
training phase, participants began with a metric-
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dominant strategy that regressed in main phase 1,
and further in main phase 2. The final phase ex-
perienced a 9% increase (absolute) in landmark
references compared to the training phase, and a
subsequent 9% decrease of metric references. A
mixed-effects ANOVA test on the proportion of
metric to landmark usage in commands found a
main effect for phase (F[2, 627]=3.6, p<0.05). No
other main effects were found. A Tukey HSD test
found a significant difference between main phase
1 and 2 (p<0.05). We also tabulated instances of
increased landmark usage by participant: six par-
ticipants increased their proportion of landmark
usage between main phase 1 and 2. Three used
fewer landmarks in main phase 2, and one used
the same proportion.

5 Discussion

This work seeks to elicit natural instruction-giving
from participants, and to assess how communica-
tion strategies varied as people build an increas-
ingly better mental model of a robot’s understand-
ing. Thus far, we’ve seen progress towards our
goal in two main areas: (1) the experiment setup
was workable; participants believed they were in-
structing an autonomous robot, and (2) we ob-
served naturally occurring coordination efforts via
changes in participant strategy over time. The lat-
ter area is discussed in more detail in the next sub-
section.

5.1 Metric vs. Landmark Usage

Our findings suggest possible changes in how par-
ticipants perceived robot capabilities over time.
This was highlighted by a significant decrease in
metric usage between the two main experiment
phases (main phase 1 and 2). This result sug-
gests that participants became more comfortable
in communicating with the robot through expe-
rience. Therefore, their communication styles
become more “natural” and similar to human
communication strategies, which tend to include
landmark-based references (Clarke et al., 2015).
This result has implications for language ground-
ing and interpretation, in that developers should
expect to handle both metric and landmark-based
references.

We note that the dominant strategy overall was
clearly the use of metric information. We identify
several possible factors. One factor may be the
participant interface: their situational awareness of

the robot’s environment is constrained to the most
recent image of the robot’s first-person perspec-
tive of a scene and the map displaying an occu-
pancy grid of the surroundings. The indoor space
is sparsely populated with objects, so a requested
image might not return valuable visual informa-
tion of an object of interest. The map, on the other
hand, is visually salient and returns real-time in-
formation, including the presence of rooms, halls,
and doorways. When landmark references are
combined, the most frequent landmark used (139
out of 380 total landmark references) is “door,”
followed by “room,” “hallway,” and “wall.” These
are all landmarks recognizable in the map; other
landmark types for navigation may be inhibited
due to participant unawareness.

A second, somewhat related factor contributing
to the use of metric references in general may be a
misalignment of common ground between partic-
ipant and robot, namely a lack of familiarity with
the objects. Even when an object is returned in
an image, the angle may not be conducive to ob-
ject recognition. Participants are forced to either
abandon the object as a landmark, or find another
way of talking about it. For example, one partic-
ipant describes a calendar hanging on the wall as
“the item on the right on the wall,” while another
describes a barrel as “the round object.”

In addition, participants may be unsure if the
robot can recognize an object by a given word.
In training, participants were instructed that “the
robot knows what some objects are but not all ob-
jects.” They also know that the robot understands
object features. Our intention was to encourage
dialogue by making high-level search commands
like “find the shoe” (a search-task target) out-
side the robot’s capabilities. A side effect is that
participants quickly became aware of this limita-
tion, often as early as the training phase. When
participants did try including a search-task tar-
get, without any additional descriptive informa-
tion like color or shape, the DM-Wizard guidelines
prompted for an alternative description. Some par-
ticipants ignored the robot’s request for a different
description, and instead abandoned the landmark
strategy in favor of metric instructions, which can
be used in the absence of familiarity or knowledge
of surrounding landmarks.

We note that the robot’s surroundings are some-
what strange. They do not conform to canoni-
cal representations, disallowing use of lived ex-
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perience of object expectations based on room
type. Although an effort was made to group sim-
ilar objects according to a room’s possible func-
tion (e.g., kitchen items grouped together in one
room and in a typical arrangement), the environ-
ment is sparsely filled with objects and is not in a
finished state. These were practical limitations of
laboratory resources, but in future work we plan
to explore the effects of the environment further
by varying it in a fully simulated version of the
experiment.

5.2 Dialogue-Move Types

We found that most IUs contained command
dialogue-moves, but with some exceptions. This
was largely based on participants’ assessment of
robot capabilities. Two participants were respon-
sible for 33 of the 34 occurrences of request-
info. One participant issued requests like “are
you alone?” and “do you detect any threats?”
The other requested object identification, such as
“what’s that object just to the left of the photo?”
This suggests an expectation for additional joint
vision and language processing capabilities in
these kinds of scenarios. Feedback dialogue-
moves were largely experiment-specific start and
end updates like “I am ready.”

Our dialogue-move analysis of commands re-
vealed a uniform strategy of consistent image re-
quests shown in nearly half of all IUs. This is ex-
pected, as the bandwidth limitations of our exper-
iment design prevented sending live video. More
image requests are expected, but we found at least
five phase runs where the robot “learned” to send
images after receiving commands: occasionally
the DM-Wizard would observe that a participant
was requesting an image in every instruction, and
as a result offered to remember to send images af-
ter each command.

6 Related Work

Our experiment setup and data collection effort
resemble similar corpora, with some differences.
The CReST (Eberhard et al., 2010), SCARE (Stoia
et al., 2008), and GIVE (Gargett et al., 2010) cor-
pora consist of search-and-navigation tasks, but
are strictly human-human dialogue. We collected
natural language interactions simulating fully au-
tonomous dialogue processing, but without partic-
ipant awareness that a human was simulating the
robot responses. Participants assessed robot in-

telligence on their own when formulating instruc-
tions and follow-on responses.

6.1 Wizard-of-Oz Approach
By far the WOz method’s most common use has
been for handling natural language (Riek, 2012).
Many studies use a wizard in automated dialogue
system development (e.g., in virtual agent negotia-
tion (Gandhe and Traum, 2007), time-offset story-
telling (Artstein et al., 2015), and in-car personal
assistants (Rieser and Lemon, 2008)).

Some researchers have considered a multi-
wizard setup for multimodal interfaces. The Sim-
Sensei project (DeVault et al., 2014) used a two-
wizard setup during the development stage; one
controlling the virtual agent’s verbal behaviors
and another the non-verbal behaviors. Green et
al. (2004) investigated using multiple wizards for
dialogue processing and navigation capabilities
for a robot in a home touring scenario, finding the
multi-wizard approach effective when the robot
and human were co-present.

6.2 Natural Language Interpretation
Traditional approaches to natural language inter-
pretation for robots follow the methodology of
corpus-based robotics (Bugmann et al., 2004),
where some natural language, primarily route
instructions, is collected. Route instruction
interpreters dating back to MARCO (MacMa-
hon, 2006), and more recently the robotic fork-
lift (Tellex et al., 2011) and Tactical Behavior
Specification grammar (Hemachandra et al., 2015;
Boularias et al., 2016), rely on these initial route
instructions to learn mappings to robot-executable
procedures like path planning. Additionally, some
use semantic parsers (e.g., (Chen and Mooney,
2011; Artzi and Zettlemoyer, 2013; Matuszek
et al., 2013; Krishnamurthy and Kollar, 2013)) or
translation (Matuszek et al., 2010) to map natural
language to actions.

A gap in these works is bi-directional dialogue
interaction, specifically cases where initial instruc-
tions are not well-formed and need additional clar-
ification, or when participants grow to better grasp
the robot’s capabilities, varying instruction strate-
gies over time. Our work collected instructions to
a robot, but also included the dialogue and follow-
on responses needed to establish or build common
ground. This paper focused on analyzing initial
robot-directed instructions, leaving analysis of re-
sponses during the dialogue to future work.
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7 Summary and Ongoing Work

We presented a method for investigating changes
in participant instruction strategies to a robot in a
collaborative navigation task. We found an initial
preference for metric information in motion com-
mands, but this decreased over time as participants
used more landmarks in their instructions.

We also note that the dataset under construction
will provide value not only in the language col-
lected, but also visual information. The accom-
panying images from the robot provide a unique
resource with content that is both first-person and
task-relevant for building situational awareness of
a remote environment.

This work is a multi-stage effort to develop nat-
ural communication frameworks between humans
and robots. In this work’s next phase, automat-
ing language processing will begin, starting with
language generation aspects. Rather than typing
out full responses, wizards will use an interface to
select responses following communicative guide-
lines. The Wizard-of-Oz interface allows template
generation by filling in parameter values, if neces-
sary. We expect a similar range of rich participant
dialogue, but faster wizard response time, even for
fairly complex strategies. Wizard selections will
serve as training data for an automated dialogue
manager.
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Appendix

A Robot Capabilities
These are, verbatim, the capabilities provided on a sheet to
study participants:
“The robot can take a photo of what it sees when you ask.
The robot has certain capabilities, but cannot perform these
tasks on its own. The robot and you will act as a team.

Robot capabilities are:

• Robot listens to verbal instructions from you.

• Robot responds in this text box (Experimenter points to
instant messenger box on screen) or by taking action

• Robot will avoid obstacles

• Robot can take photos directly in front of it when you
give it a verbal instruction

• Robot will know what some objects are, but not all ob-
jects

• Robot also knows:

– Intrinsic properties like color and size of objects
in the environment

– Proximity of objects like where objects are rela-
tive to itself and to other objects

– A range of spatial terms like to the right of, in
front of, cardinal directions like N, S

– History: the Robot remembers places it has been

• Robot doesn’t have arms and it cannot manipulate ob-
jects or interact with its environment except for moving
throughout the environment

• Robot cannot go through closed doors and it cannot
open doors, but it can go through doorways that are
already open

• Robot can only see about knee height (∼ 1.5 feet).”

B Dialogue-Move Annotation Set
Command Task-related instructions from the Commander to
the robot are command dialogue-moves.

• command:drive Initiate/continue movement.

• command:rotate Initiate/continue a rotation.

• command:explore Explore an area via navigation using
a target and/or direction as heading.

• command:stop End a drive or rotation.

• command:send-image Request an image.

Describe General statements from the Commander to the
robot about a scene or plan are describe dialogue-moves.

• describe:scene Typically a description of what the
Commander sees or thinks the robot should see.

• describe:plan Explication of the Commander’s inten-
tion, not necessarily actionable.

Request-info Request-info dialogue-moves request informa-
tion of the robot.

• request-info:scene Asking for information about what
the robot sees, or confirmation for what the Comman-
der thinks the robot should see.

• request-info:map Asking about robot’s position or
heading.

• request-info:confirm Confirm a proposed plan.

Feedback General domain-independent expressions from the
Commander to the robot.

• acknowledge Acknowledgment of either a conversa-
tional move or an action (such as the sending of an im-
age or map).

• ready Inform robot ready to do task.

• yes Simple positive response (yes).

• no Simple negative response (no).

• standby Inform robot to stand by or wait.

Standalone Instruction Content Provide further content for
an existing instruction from the Commander to the robot.

• direction a heading (e.g., right, left)

• distance a unit of measure (e.g., feet, degrees)
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Abstract

Robots operating alongside humans in di-
verse, stochastic environments must be
able to accurately interpret natural lan-
guage commands. These instructions of-
ten fall into one of two categories: those
that specify a goal condition or target state,
and those that specify explicit actions, or
how to perform a given task. Recent ap-
proaches have used reward functions as
a semantic representation of goal-based
commands, which allows for the use of
a state-of-the-art planner to find a policy
for the given task. However, these reward
functions cannot be directly used to rep-
resent action-oriented commands. We in-
troduce a new hybrid approach, the Deep
Recurrent Action-Goal Grounding Net-
work (DRAGGN), for task grounding and
execution that handles natural language
from either category as input, and gener-
alizes to unseen environments. Our robot-
simulation results demonstrate that a sys-
tem successfully interpreting both goal-
oriented and action-oriented task specifi-
cations brings us closer to robust natural
language understanding for human-robot
interaction.

1 Introduction

Natural language affords a convenient choice for
delivering instructions to robots, as it offers flex-
ibility, familiarity, and does not require users to
have knowledge of low-level programming. In the
context of grounding natural language instructions
to tasks, human-robot instructions can be inter-
preted as either high-level goal specifications or
low-level instructions for the robot to execute.

Figure 1: Sample configuration of the Cleanup
World mobile-manipulator domain (MacGlashan
et al., 2015), used throughout this work. A possi-
ble goal-based instruction could be “Take the chair
to the green room,” while a possible action-based
instruction could be “Go three steps south, then
two steps west.”

Goal-oriented commands define a particular tar-
get state specifying where a robot should end up,
whereas action-oriented commands specify a par-
ticular sequence of actions to be executed. For ex-
ample, a human instructing a robot to “go to the
kitchen” outlines a goal condition to check if the
robot is in the kitchen. Alternatively, a human pro-
viding the command “take three steps to the left”
defines a trajectory for the robot to execute. We
need to consider both forms of commands to un-
derstand the full space of natural language that
humans may use to communicate their intent to
robots. While humans also combine commands of
both types into a single instruction, we make the
simplifying assumption that a command belongs
entirely to a single type and leave the task of han-
dling mixtures and compositions to future work.

Existing approaches can be broadly divided into
one of two regimes. Goal-based approaches like
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Figure 2: System for grounding both action-
oriented (left branch) and goal-oriented (right
branch) natural language instructions to exe-
cutable robot tasks. Our main contribution is
the hybrid interpretation system (blue box), for
which we present two novel models based on
the DRAGGN framework (J-DRAGGN and I-
DRAGGN) in Section 4.

MacGlashan et al. (2015) and Arumugam et al.
(2017) leverage some intermediate task represen-
tation and then automatically find a low-level tra-
jectory to achieve the goal using a planner. Other
approaches, in the action-oriented regime, directly
infer action sequences (Tellex et al., 2011; Ma-
tuszek et al., 2012; Artzi and Zettlemoyer, 2013;
Andreas and Klein, 2015) from the syntactic or se-
mantic parse structure of natural language. How-
ever, these approaches can be computationally in-
tractable for large state-action spaces or use ad-
hoc methods to execute high-level language rather
than relying on a planner. Furthermore, these
methods are unable to adapt to dynamic changes
in the environment; for example, consider an en-
vironment in which the wind, or some other force
moves an object that a robot has been tasked with
picking. Action sequence based approaches would
fail to handle this without additional user input,
while goal-based approaches would be able to re-
plan on the fly, and complete the task.

To address the issue of dealing with both
goal-oriented and action-oriented commands, we
present a new language grounding framework that,
given a natural language command, is capable of
inferring the latent command type. Recent ap-
proaches leveraging deep neural networks have
formulated the language grounding problem as

sequence-to-sequence learning or multi-label clas-
sification (Mei et al., 2016; Arumugam et al.,
2017). Inspired by the recent success of neu-
ral networks to model programs that are highly
compositional and sequential in nature, we present
the Deep Recurrent Action/Goal Grounding Net-
work (DRAGGN) framework, derived from the
the Neural Programmer-Interpreter (NPI) of Reed
and de Freitas (2016) and outlined in Section 4.2.
We introduce two instances of DRAGGN mod-
els, each with slightly different architectures. The
first, the Joint-DRAGGN (J-DRAGGN) is defined
in Section 4.3, while the second, the Independent-
DRAGGN (I-DRAGGN) is defined in Section 4.4.

2 Related Work

There has been a broad and diverse set of work
examining how best to interpret and execute natu-
ral language instructions on a robot platform (Vo-
gel and Jurafsky, 2010; Tellex et al., 2011; Artzi
and Zettlemoyer, 2013; Howard et al., 2014; An-
dreas and Klein, 2015; Hemachandra et al., 2015;
MacGlashan et al., 2015; Paul et al., 2016; Mei
et al., 2016; Arumugam et al., 2017). Vogel and
Jurafsky (2010) produce policies using language
and expert trajectories based rewards, which allow
for planning within a stochastic environment along
with re-planning in case of failure. (Tellex et al.,
2011) instead grounds language to trajectories sat-
isfying the language specification. (Howard et al.,
2014) chose to ground language to constraints
given to an external planner, which is a much
smaller space to perform inference over than tra-
jectories. MacGlashan et al. (2015) formulate lan-
guage grounding as a machine translation prob-
lem, treating propositional logic functions as both
a machine language and reward function. Reward
functions or cost functions can allow richer de-
scriptions of trajectories than plain constraints, as
they can describe preferential paths. Addition-
ally, Arumugam et al. (2017) simplify the prob-
lem from one of machine translation to multi-class
classification, learning a deep neural network to
map arbitrary natural language instructions to the
corresponding reward function.

Informing our distinction between action se-
quences and goal state representation is the di-
vision presented by Dzifcak et al. (2009), who
posited that natural language can be interpreted
as both a goal state specification and an action
specification. Rather than producing both from
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each language command, our DRAGGN frame-
work makes the simplifying assumption that only
one representation captures the semantics of the
language; additionally, our framework does not re-
quire a manually pre-specified grammar.

Recently, deep neural networks have found
widespread success and application to a wide ar-
ray of problems dealing with natural language
(Bengio et al., 2000; Mikolov et al., 2010, 2011;
Cho et al., 2014; Chung et al., 2014; Iyyer et al.,
2015). Unsurprisingly, there have been some ini-
tial steps taken towards applying neural networks
to language grounding problems. Mei et al. (2016)
uses a recurrent neural network (RNN) with
long short-term memory (LSTM) cells (Hochre-
iter and Schmidhuber, 1997) to learn sequence-to-
sequence mappings between natural language and
robot actions. This model augments the standard
sequence-to-sequence architecture by learning pa-
rameters that represent latent alignments between
natural language tokens and robot actions. Aru-
mugam et al. (2017) used an RNN-based model
to produce grounded reward functions at multiple
levels of an Abstract Markov Decision Process hi-
erarchy (Gopalan et al., 2017), varying the abstrac-
tion level with the level of abstraction used in nat-
ural language.

Our DRAGGN framework is closely related to
the Neural Programmer-Interpreter (NPI) (Reed
and de Freitas, 2016). The original NPI model
is a controller trained via supervised learning
to interpret and learn when to call specific pro-
grams/subprograms, which arguments to pass into
the currently active program, and when to termi-
nate execution of the current program. We draw
a parallel between inferred NPI programs and our
method of predicting either lifted reward functions
or action trajectories.

3 Problem Setting

We consider the problem of mapping from natu-
ral language to robot actions within the context
of Markov decision processes. A Markov deci-
sion process (MDP) is a five-tuple 〈S,A, T ,R, γ〉
defining a state space S, action spaceA, state tran-
sition probabilities T , reward functionR, and dis-
count factor γ (Bellman, 1957; Puterman, 1994).
An MDP solver produces a policy that maps from
states to actions in order to maximize the total ex-
pected discounted reward.

While reward functions are flexible and expres-

sive enough for a wide variety of task specifica-
tions, they are a brittle choice for specifying an
exact sequence of actions, as enumerating every
possible action sequence as a reward function (i.e.
a specific reward function for the sequence Up 3,
Down 2) can quickly become intractable. This
paper introduces models that can produce desired
behavior by inferring either reward functions or
primitive actions. We assume that all available
actions A and the full space of potential reward
functions (i.e., the full space of possible tasks) are
known a priori. When a reward function is pre-
dicted by the model, an MDP planner is applied
to derive the resultant policy (see system pipeline
Figure 2).

We focus our evaluation of all models on the the
Cleanup World mobile-manipulator domain (Mac-
Glashan et al., 2015; Arumugam et al., 2017).
The Cleanup World domain consists of an agent
in a 2-D world with uniquely colored rooms and
movable objects. A domain instance is shown in
Figure 1. The domain itself is implemented as
an object-oriented Markov decision process (OO-
MDP) where states are denoted entirely by collec-
tions of objects, with each object having its own
identifier, type, and set of attributes (Diuk et al.,
2008). Domain objects include rooms and inter-
actable objects (e.g a chair, basket, etc.) all of
which have location and color attributes. Propo-
sitional logic functions can be used to identify
relevant pieces of an OO-MDP state and their
attributes; as in MacGlashan et al. (2015) and
Arumugam et al. (2017), we treat these proposi-
tional functions as reward functions. In Figure 1,
the goal-oriented command “take the chair to the
green room” may be represented with the reward
function blockInRoom block0 room1, where the
blockInRoom propositional function checks if the
location attribute of block0 is contained in room1.

4 Approach

We now outline the pipeline that converts natural
language input to robot behavior. We begin by first
defining the semantic task representation used by
our grounding models that comes directly from the
OO-MDP propositional functions of the domain.
Next, we examine our novel DRAGGN framework
for language grounding and, in particular, address
the separate paths taken by action-oriented and
goal-oriented commands through the system as
seen in Figure 2. Finally, we discuss two different
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Action-Oriented Goal-Oriented

goUp(numSteps) agentInRoom(room)
goDown(numSteps) blockInRoom(room)
goLeft(numSteps)

goRight(numSteps)

Table 1: Set of action-oriented and goal-oriented
callable units that can be generated by our
DRAGGN models in the Cleanup World domain.

implementations of the DRAGGN framework that
make different assumptions about the relationship
between tasks and constraints. Specifically, we
introduce the Joint-DRAGGN (J-DRAGGN), that
assumes a probabilistic dependence between tasks
(i.e. goUp) and the corresponding arguments (i.e.
5 steps) based on a natural language instruction,
and the Independent-DRAGGN (I-DRAGGN) that
treats tasks and arguments as independent given a
natural language instruction.

4.1 Semantic Representation

In order to map arbitrary natural language instruc-
tions to either action trajectories or goal condi-
tions, we require a compact but sufficiently ex-
pressive semantic representation for both. To this
end, we define the callable unit, which takes the
form of a single-argument function. These func-
tions are paired with binding arguments whose
possible values depend on the callable unit type.
As in MacGlashan et al. (2015) and Arumugam
et al. (2017), our approach generates reward func-
tion templates, or lifted reward functions, for goal-
oriented tasks along with environment-specific
constraints. Once these templates and constraints
are resolved to get a grounded reward function,
the associated goal-oriented tasks can be solved by
an off-the-shelf planner thereby improving trans-
fer and generalization capabilities.

Goal-oriented callable units (lifted reward func-
tions) are paired with binding arguments that spec-
ify properties of environment entities that must be
satisfied in order to achieve the goal. These bind-
ing arguments are later resolved by the Ground-
ing Module (see Section 4.5) to produce grounded
reward functions (OO-MDP propositional logic
functions) that are handled by an MDP planner.

Action-oriented callable units directly corre-
spond to the primitive actions available to the
robot and are paired with binding arguments defin-
ing the number of sequential executions of that ac-
tion. The full set of callable units along with req-

uisite binding arguments is shown in Table 1.

4.2 Deep Recurrent Action/Goal Grounding
Network (DRAGGN)

While the Single-RNN model of Arumugam et al.
(2017) is effective, it cannot model the compo-
sitional argument structure of language. A unit-
argument pair not observed at training time will
not be predicted from input data, even if the con-
stituent pieces were observed separately. Addi-
tionally, the Single-RNN model requires every
possible unit-argument pair to be enumerated, to
form the output space. As the environment grows
to include more objects with richer attributes, this
output space becomes intractable.

To resolve this, we introduce the Deep Recur-
rent Action/Goal Grounding Network (DRAGGN)
framework. Unlike previous approaches, the
DRAGGN framework maps natural language in-
structions to separate distributions over callable
units and (possibly multiple) binding constraints,
generating either action sequences or goal condi-
tions. By treating callable units and binding argu-
ments as separate entities, we circumvent the com-
binatorial dependence on the size of the domain.

This unit-argument separation is inspired by the
Neural Programmer-Interpreter (NPI) of Reed and
de Freitas (2016). The callable units output by
DRAGGN are analogous to the subprograms out-
put by NPI. Additionally, both NPI and DRAGGN
allow for subprograms/callable units with an ar-
bitrary number of arguments (by adding a corre-
sponding number of Binding Argument Networks,
as shown at the top right of Figure 3a, each with
its own output space).

We assume that each natural language instruc-
tion can be represented by a single unit-argument
pair with only one argument. Consequently, in our
experiments, we assume that sentences specify-
ing sequences of commands have been segmented,
and each segment is given to the model one at
a time. The limitation to a single argument only
arises because of the domain’s simplicity; as men-
tioned above, it is straightforward to extend our
models to handle extra arguments by adding extra
Binding Argument Networks.

To formalize the DRAGGN objective, consider
a natural language instruction l. Our goal is to find
the callable unit ĉ and binding arguments â that
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(a) Joint DRAGGN (b) Independent DRAGGN

Figure 3: Architecture diagrams for the two Deep Recurrent Action/Goal Grounding Network
(DRAGGN) models, introduced in Sections 4.3 and 4.4. Both architectures ground arbitrary natural
language instructions to callable units (either actions or lifted reward functions), and binding arguments.

maximize the following joint probability:

ĉ, â = arg max
c,a

Pr(c,a | l) (1)

Depending on the assumptions made about the
relationship between callable units c and bind-
ing arguments a, we can decompose the above
objective in two ways: preserving the depen-
dence between the two, and learning the relation-
ship between the units and arguments jointly, and
treating the two as independent. These two de-
compositions result in the Joint-DRAGGN and
Independent-DRAGGN models respectively.

Given the training dataset of natural language
and the space of unit-argument pairs, we train our
DRAGGN models end-to-end by minimizing the
sum of the cross-entropy losses between the pre-
dicted distributions and true labels for each sepa-
rate distribution (i.e. over callable units and bind-
ing arguments). At inference time, we first choose
the callable unit with the highest probability given
the natural language instruction. We then choose
the binding argument(s) with highest probability
from the set of valid arguments. The validity of
a binding argument given a callable unit is given
a priori, by the specific environment, rather than
being learned at training time.

Our models were trained using Adam (Kingma
and Ba, 2014), for 125 epochs, with a batch size
of 16, and a learning rate of 0.0001.

4.3 Joint DRAGGN (J-DRAGGN)
The Joint DRAGGN (J-DRAGGN) models the
joint probability in Equation 1, coupled via the
shared RNN state in the DRAGGN Core (as de-
picted in Figure 3a), but selects the optimizer se-
quentially, as follows:

ĉ, â = arg max
c,a

Pr(c,a | l) (2)

≈ arg max
a

[
arg max

c
Pr(c,a | l)

]
We first encode the constituent words of our nat-

ural language segment into fixed-size embedding
vectors. From there, the sequence of word em-
beddings is fed through an RNN denoted by the
DRAGGN Core1. After processing the entire seg-
ment, the current gated recurrent unit (GRU) hid-
den state is then treated as a representative vector
for the entire natural language segment. This sin-
gle hidden core vector is then passed to both the
Callable Unit Network and the Binding Argument
Network, allowing for both networks to be trained
jointly, enforcing a dependence between the two.

The Callable Unit Network is a two-layer feed-
forward network using rectified linear unit (ReLU)
activation. It takes the DRAGGN Core output

1We use the gated recurrent unit (GRU) as our RNN cell,
because of its effectiveness in natural language processing
tasks, such as machine translation (Cho et al., 2014), while
requiring fewer parameters than the LSTM cell (Hochreiter
and Schmidhuber, 1997).
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vector as input to produce a softmax probability
distribution over all possible callable units. The
Binding Argument Network is a separate network
with an identical architecture and takes the same
input, but instead produces a probability distribu-
tion over all possible binding arguments. The two
models do not need to share the same architec-
ture; for example, callable units with multiple ar-
guments require multiple different argument net-
works, one for each possible binding constraint.

4.4 Independent DRAGGN (I-DRAGGN)
The Independent DRAGGN (I-DRAGGN), con-
trary to the Joint DRAGGN, decomposes the
objective from Equation 1 by treating callable
units and binding arguments as being indepen-
dent, given the original natural language instruc-
tion. More precisely, the I-DRAGGN objective is:

ĉ, â = arg max
c,a

Pr(c | l) Pr(a | l) (3)

The I-DRAGGN network architecture is shown
in Figure 3b. Beyond the difference in objective
functions, there is another key difference between
the I-DRAGGN and J-DRAGGN architectures.
Rather than encoding the constituent words of the
natural language instruction once, and feeding the
resulting embeddings through a DRAGGN Core
to generate a shared core vector, the I-DRAGGN
model embeds and encodes the natural language
instruction twice, using two separate embedding
matrices and GRUs, one each for the callable
unit and binding argument. In this way, the I-
DRAGGN model encapsulates two disjoint neural
networks, each with their own individual param-
eter sets that are trained independently. The lat-
ter half of each individual network (the Callable
Unit Network and Binding Argument Network)
remains the same as that of the J-DRAGGN.

4.5 Grounding Module
If a goal-oriented callable unit is returned (i.e.
a lifted reward function), we require an addi-
tional step of completing the reward function with
environment-specific variables. As described in
Arumugam et al. (2017), we use a Grounding
Module to perform this step. The Grounding Mod-
ule maps the inferred callable unit and binding ar-
gument(s) to a final grounded reward function that
can be passed to an MDP planner. In our imple-
mentation, the Grounding Module is a lookup ta-
ble mapping specific binding arguments to room

Natural Language Callable Unit Argument

Go to the red room. agentInRoom roomIsRed
Put the block in blockInRoom roomIsGreen

the green room.
Go up three spaces. goUp 3

Table 2: Examples of natural language phrases and
corresponding callable units and arguments.

ID tokens. A more advanced implementation of
the Grounding Module would be required in or-
der to handle domains with non-unique binding ar-
guments (e.g. resolving between multiple objects
with overlapping attributes).

5 Experiments

We assess the effectiveness of both our J-
DRAGGN and I-DRAGGN models via instruc-
tion grounding accuracy for robot navigation and
mobile-manipulation tasks. As a baseline, we
compare against the state-of-the-art Single-RNN
model introduced by Arumugam et al. (2017).

5.1 Procedure
To conduct our evaluation, we use the dataset of
natural language commands for the single instance
of Cleanup World domain seen in Figure 1, from
Arumugam et al. (2017). In the user study, Ama-
zon Mechanical Turk users were presented with
trajectory demonstrations of a robot completing
various navigation and object manipulation tasks.
Users were prompted to provide natural language
commands that they believed would have gener-
ated the observed behavior. Since the original
dataset was compiled for analyzing the hierarchi-
cal nature of language, we were easily able to filter
the commands down to only those using high-level
goal specifications and low-level trajectory speci-
fications. This resulted in a dataset of 3734 natural
language commands total.

To produce a dataset of action-specifying
callable units, experts annotated low-level tra-
jectory specifications from the Arumugam et al.
(2017) dataset. For example, the command “Down
three paces, then up two paces, finally left four
paces” was segmented into “down three spaces,”
“then up two paces,” “finally left four paces,”
and was given a corresponding execution trace of
goDown 3, goUp 2, goLeft 4. The existing set
of grounded reward functions in the dataset were
converted to callable units and binding arguments.
Examples of both types of language are presented
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Action-Oriented Goal-Oriented Action-Oriented (Unseen) Overall

Single-RNN 95.8± 0.1% 87 .2 ± 0 .9% 0.0 + 0% 80.0± 0.2%
J-DRAGGN 96.6± 0.2% 87 .9 ± 1 .9% 20.2± 20.4% 83.7± 2.8%
I-DRAGGN 97.0± 0.2% 84.9± 1.8% 97.0 + 0.0% 94.7± 0.5%

Table 3: Action-oriented and goal-oriented accuracy results (mean and standard deviation across 3 ran-
dom initializations) on both the standard and unseen datasets. Bold indicates the singular model that
performed the best on the given task, whereas italics denotes the best models that were within the margin
of error of each other for the given task. The overall column was computed by taking an average of
individual task accuracies, weighted by the number of test examples per task.

in Table 2 with their corresponding callable unit
and binding arguments.

To fully show the capabilities of our model,
we tested on two separate versions of the dataset.
The first is the standard dataset, consisting of a
90-10 split of the collected action-oriented and
goal-oriented commands We also evaluated our
models on an “unseen” dataset, which consists of
a specific train-test split that evaluates how well
models can predict previously unseen action se-
quence combinations. For example, in this dataset
the training data might consist only of action se-
quences of the form goUp 3, and goDown 4,
while the test data would only consist of the “un-
seen” action sequence goUp 4. Note that in both
datasets, we assume that the test environment is
configured the same as the train environment.

5.2 Results

Language grounding accuracies for our two
DRAGGN models, as well as the baseline Single-
RNN, are presented in Table 3. All three mod-
els received the same set of training data, con-
sisting of 2660 low-level action-oriented segments
and 693 high-level goal-based sentences. All to-
gether, there are 17 unique combinations action-
oriented callable units and respective binding ar-
guments, and 6 unique combinations of goal-
oriented callable units and binding arguments
present in the data. Then, we evaluated all three
models on the same set of held-out data, which
consisted of 295 low-level segments and 86 high-
level sentences.

In aggregate, the models that use callable
units for both action- and goal-based language
grounding demonstrate superior performance to
the Single-RNN baseline, largely due to their abil-
ity to generalize, and output combinations unseen
at train time. We break down the performance on

each task in the following three sections.

5.3 Action Prediction
We evaluate the performance of our models on
low-level language that directly specifies an action
trajectory. An instruction is correctly grounded if
the output trajectory specification corresponds to
the ground-truth action sequence. To ensure fair-
ness, we augment the output space of Single-RNN
to include all distinct action trajectories found in
the training data (an additional 17 classes, as men-
tioned previously).

All models perform generally well on this task,
with Single-RNN correctly identifying the cor-
rect action callable unit on 95.8% of test samples,
while both DRAGGN models slightly outperform
with on 96.6% and 97.0% respectively.

5.4 Goal Prediction
In addition to the action-oriented results, we evalu-
ate the ability for each model to ground goal-based
commands. An instruction is correctly grounded if
the output of the grounding module corresponds to
the ground-truth (grounded) reward function.

In our domain, all models predict the correct
grounded reward function with an accuracy of
84.9% or higher, with the Single-RNN and J-
DRAGGN models being too close to call.

5.5 Unseen Action Prediction
The Single-RNN baseline model is completely
unable to produce unit-argument pairs that
were never seen during training, whereas both
DRAGGN models demonstrate some capacity for
generalization. The I-DRAGGN model in partic-
ular demonstrates a strong understanding of each
token within the original natural language utter-
ances which, in large part, comes from the sep-
arate embedding spaces maintained for callable
units and binding constraints respectively.
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6 Discussion

Our experiments show that the DRAGGN mod-
els have a clear advantage over the existing state-
of-the-art in grounding action-oriented language.
Furthermore, due to the factored nature of the out-
put, I-DRAGGN generalizes well to unseen com-
binations of callable units and binding arguments.

Nevertheless, I-DRAGGN did not perform as
well as Single-RNN and J-DRAGGN on goal-
oriented language. This is possibly due to the
small number of goal types in the dataset and the
strong overlap in goal-oriented language. Whereas
the Single-RNN and J-DRAGGN architectures
may experience some positive transfer of infor-
mation (due to the shared parameters in each
of the two models), the I-DRAGGN model does
not because of its assumed independence between
callable units and binding arguments. This ability
to allow for positive information transfer suggests
that J-DRAGGN would perform best in environ-
ments where there is a strong overlap in the in-
structional language, with a relatively smaller but
complex set of possible action sequences and goal
conditions.

On action-oriented language, J-DRAGGN has
grounding accuracy of around 20.2% while I-
DRAGGN achieves a near-perfect 97.0%. Since
J-DRAGGN only encodes the input language in-
struction once, the resulting vector representation
is forced to characterize both callable unit and
binding argument features. While this can result in
positive information transfer and improve ground-
ing accuracy in some cases (e.g. goal-based lan-
guage), this enforced correlation heavily biases the
model towards predicting combinations it has seen
before. By learning separate representations for
callable units and binding arguments, I-DRAGGN
is able to generalize significantly better. This sug-
gests that I-DRAGGN would perform best in situ-
ations where the instructional language consists of
many disjoint words and phrases.

While our results demonstrate that the
DRAGGN framework is effective, more ex-
perimentation is needed to fully explore the
possibilities and weaknesses of such models. One
of the shortcomings in the DRAGGN models is
the need for segmented data. We found that all
evaluated models were unable to handle long,
compositional instructions, such as “Go up three
steps, then down two steps, then left five steps”.
Handling conjunctions of low-level commands

requires extending our model to learn how to
perform segmentation, or producing sequences of
callable units and arguments.

7 Conclusion

In this paper, we presented the Deep Recurrent
Action/Goal Grounding Network (DRAGGN), a
hybrid approach that grounds natural language
commands to either action sequences or goal con-
ditions, depending on the language. We presented
two separate neural network architectures that can
accomplish this task, both of which factor the out-
put space according to the compositional structure
of our semantic representation.

We show that overall the DRAGGN models sig-
nificantly outperform the existing state of the art.
Most notably, we show that the DRAGGN mod-
els are capable of generalizing to action sequences
unseen during training time.

Despite these successes, there are still open
challenges with grounding language to novel, un-
seen environment configurations. Furthermore,
we hope to extend our models to handle in-
structions that are a mixture of goal-oriented and
action-oriented language, as well as to long, se-
quential commands. An instruction such as “go
to the blue room, but avoid going through the
red hallway” does not map to either an action se-
quence or a traditional, Markovian reward func-
tion. We believe new tools and approaches will
need to be developed to handle such instructions,
in order to handle the diversity and complexity of
human natural language.
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Abstract

Distributional word representation
methods exploit word co-occurrences
to build compact vector encodings of
words. While these representations
enjoy widespread use in modern natural
language processing, it is unclear whether
they accurately encode all necessary facets
of conceptual meaning. In this paper, we
evaluate how well these representations
can predict perceptual and conceptual
features of concrete concepts, drawing
on two semantic norm datasets sourced
from human participants. We find that
several standard word representations fail
to encode many salient perceptual features
of concepts, and show that these deficits
correlate with word-word similarity
prediction errors. Our analyses provide
motivation for grounded and embodied
language learning approaches, which may
help to remedy these deficits.

1 Introduction

Distributional approaches to meaning representa-
tion have enabled a substantial amount of progress
in natural language processing over the past years.
They center around a classic insight from at least
as early as Harris (1954); Firth (1957):

You shall know a word by the company
it keeps. (Firth, 1957, p. 11)

Popular distributional analysis methods which
exploit this intuition such as word2vec (Mikolov
et al., 2013) and GloVe (Pennington et al., 2014)
have been critical to the success of many recent

All project code available at github.com/lucy3/
grounding-embeddings.

large-scale natural language processing applica-
tions (e.g. Turney and Pantel, 2010; Turian et al.,
2010; Collobert and Weston, 2008; Socher et al.,
2013; Goldberg, 2016). These methods opera-
tionalize distributional meaning via tasks where
words are optimized to predict words which co-
occur with them in text corpora. These methods
yield compact word representations — vectors in
some high-dimensional space — which are opti-
mized to solve these prediction tasks. These vector
representations form the foundation of practically
all modern deep learning models applied within
natural language processing.

Despite the success of distributional represen-
tations in standard natural language processing
tasks, a small but growing consensus within the ar-
tificial intelligence community suggests that these
methods cannot be sufficient to induce adequate
representations of words and concepts (Kiela
et al., 2016; Gauthier and Mordatch, 2016; Lazari-
dou et al., 2015). These sorts of claims, which
often draw on experimental evidence from cog-
nitive science (see e.g. Barsalou, 2008), are used
to back up arguments for multimodal learning
(at the weakest) or complete embodiment (at the
strongest). Kiela et al. (2016) claim the following:

. . . the best way for acquiring human-
level semantics is to have machines
learn through (physical) experience: if
we want to teach a system the true mean-
ing of “bumping into a wall,” we simply
have to bump it into walls repeatedly.

Discussions like the one above have an intuitive
pull: certainly “bump” is best understood through
a sense of touch, just as “loud” is best understood
through a sense of sound. It seems inefficient —
or perhaps just wrong — to learn these sorts of
concepts from distributional evidence.
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Despite the intuitive pull, there is not much
evidence from a computational perspective that
grounded or multimodal learning actually earns us
anything in terms of general meaning representa-
tion. Will our robots and chat-bots be worse off
for not having physically bumped into walls be-
fore they hold discussions on wall-collisions? Will
our representation of the concept loud somehow
be faulty unless we explicitly associate it with cer-
tain decibel levels experienced in the real world?
Before we proceed to embed our learning agents in
multimodal games and robot-shells, it is important
that we have some concrete idea of how grounding
actually affects meaning.

This paper presents a thorough analysis of
the contents of distributional word representa-
tions with respect to this question. Our results
suggest that several common distributional word
representations may indeed be deficient in the
sort of grounded meaning necessary for language-
enabled agents deployed in the real world.

2 Related work

This paper uses semantic norm datasets to eval-
uate the content of distributional word represen-
tations. Semantic norm datasets consist of con-
cepts and norms concerning their perceptual and
conceptual features, as provided by human partic-
ipants. They are a popular resource within psy-
chology and cognitive science as models of hu-
man concept representation, and have been used
to explain psycholinguistic phenomena from se-
mantic priming and interference (Vigliocco et al.,
2004) to the structure of early word learning in
child language acquisition (Hills et al., 2009). An-
drews et al. (2009) show how “experiential” se-
mantic norm information can be used to model hu-
man judgments of concept similarity. They show
that this semantic norm data provides information
distinct from the information found in basic word
representations. Our work extends the findings of
Andrews et al. to a larger semantic norm dataset
and evaluates particular implications within natu-
ral language processing.

A small NLP literature has compared distribu-
tional representations with semantic norm datasets
and other external resources. Rubinstein et al.
(2015) confirm that word representations are es-
pecially effective at predicting taxonomic features
versus attributive features. Collell and Moens
(2016) find that word representations fail to pre-

# word tokens # word types

GloVe (Common Crawl) 840B 2.2M
GloVe (Wiki+Gigaword) 6B 400K
word2vec 100B 3M

Table 1: Statistics of the corpora used to produce
the distributional representations used in this pa-
per.

dict many visual features of concepts, and show
how representations from computer vision mod-
els can help improve these predictions. Sev-
eral studies have used distributional representa-
tions to reconstruct aspects of these semantic norm
datasets (Herbelot and Vecchi, 2015; Fagarasan
et al., 2015; Erk, 2016).

The majority of the NLP work in this space
has focused on the downstream task of augment-
ing word representations with novel grounded in-
formation, often evaluating on standard semantic
similarity datasets (Agirre et al., 2009; Bruni et al.,
2012; Faruqui et al., 2015; Bulat et al., 2016).
Young et al. (2014) develop an alternative opera-
tionalization of denotational meaning using image
captioning datasets, and demonstrate gains over
distributional representations on textual similarity
and entailment datasets.

This applied work has demonstrated that some-
thing worthwhile is indeed gained by augmenting
distributional representations with some orthogo-
nal grounded or multimodal information. We be-
lieve it is critical to analyze the original successes
and failures of distributional representations in or-
der to motivate this move to grounded meaning
representation.

3 Meaning representations

3.1 Distributional meaning

This paper examines representations produced by
two popular unsupervised distributional methods.
Table 1 shows the statistics of the corpora used to
generate these vectors.

GloVe: GloVe (Pennington et al., 2014) esti-
mates word representations wi by using them to
reconstruct a word-word co-occurrence matrix X
collected from a large text corpus:

L =
V∑

i,j=1

f(Xij)
(
wTi wj + bi + bj − logXij

)2
(1)
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Dataset # concepts # features C/F F/C

McRae 541 2526 2.87 13.41
CSLB 638 2725 3.78 16.13

Table 2: Semantic norm datasets used in this pa-
per. The final two columns show the mean con-
cepts per feature / features per concept.

here f(Xij) is a weighting function on word pairs
and bi, bj are learned per-word bias terms.

We use two pre-trained GloVe vector datasets:
one trained on a concatenation of Wikipedia 2014
and Gigaword 5 (GloVe-WG), and another trained
on a Common Crawl dump (GloVe-CC).1

word2vec: word2vec (Mikolov et al., 2013)
estimates word representations by optimizing a
skip-gram objective to predict all words wj within
a context window c of a word wi given their word
representations:

J =
1
T

T∑
i=1

∑
i−c≤j≤i+c

log p(wj | wi) (2)

where T is the total number of words in a cor-
pus. We use a publicly available word2vec dataset
trained on the Google News corpus.2

3.2 Semantic norms
Semantic feature norm datasets consist of reports
from human participants about the semantic fea-
tures of various natural kinds. A proportion of the
features contained in these datasets are properties
of concepts which may be obvious to humans but
are perhaps difficult to find written in text corpora.
For this reason, we selected two semantic norm
datasets to serve as gold-standard comparisons of
concept meaning. Table 2 displays basic statistics
about the semantic norm datasets we use in this
paper.

McRae Our initial experiments use the seman-
tic norm dataset from McRae et al. (2005), which
consists of 541 concrete noun concepts with as-
sociated feature norms, collected from 725 par-
ticipants. For a given concept, the McRae
dataset includes all feature norms which were re-
ported independently by at least five participants
(2,526 in total). After removing concepts indi-
cated to have ambiguous meanings to mitigate

1nlp.stanford.edu/projects/glove
2code.google.com/archive/p/word2vec

polysemy effects (such as tank (army) and
tank (container)) and one concept without
a GloVe representation (dunebuggy), we had a
resulting set of 515 concepts for analysis. The
dataset groups features into several perceptual and
non-perceptual categories: taxonomic, encyclo-
pedic, function, visual-motion, visual-form and -
surface, visual-colour, sound, tactile, and taste
(McRae et al., 2005). We use the McRae dataset
and feature categories to perform basic pilot anal-
yses and form hypotheses about the nature of the
distributional representations tested.

CSLB We reproduce and extend our results on
a second semantic norm dataset collected by the
Cambridge Centre for Speech, Language and the
Brain (CSLB; Devereux et al., 2014). CSLB
contains 638 concepts provided by 123 partic-
ipants. Their data collection closely followed
McRae et al. (2005), though features were in-
cluded if at least 2 participants named that feature.
We removed concepts with two-word names, am-
biguous meanings, or missing vector representa-
tions to yield a vocabulary of 597 concepts from
this dataset. CSLB also includes a feature catego-
rization schema, though the categories are broader
than those in McRae: visual perceptual, other per-
ceptual, functional, taxonomic, and encyclopedic.

The mapping between the two categorization
schemes is far from perfect. While some per-
ceptual features in McRae are categorized as per-
ceptual features in CSLB, other features (e.g.
those related to swimming, flying, eating) are
reclassified as “functional” in CSLB. The two
datasets disagree on abstract conceptual properties
as well. For example, CSLB classifies is for -
football as a functional property, while McRae
classifies the comparable feature associated -
with football games as encyclopedic.

The encyclopedic category is somewhat diffi-
cult to distinguish in both datasets. It is com-
posed mainly of abstract factual features, but also
contains attributive features such as is cold -
blooded and does use electricity as
well as is scary and is cool.

Meanwhile, the functional category mixes fea-
tures for behaviors associated with the concept
(does dive) as well as functions that people
perform on or with the concept (is hit). This
classification system may need some readjust-
ments to provide a clear understanding of what is
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perceptual and what is conceptual, and it may be
that some features, such as has a steering -
wheel, are both.

Given the significant noise of this classifica-
tion scheme, we focus our investigation on a sin-
gle contrast between features in clearly perceptual
categories (visual, tactile, sound, etc.) and non-
perceptual categories (functional and taxonomic).
Because the encyclopedic category contains an
ambiguous mix of both sorts, we exclude it from
our formal predictions later in the paper.

4 The feature view

We first investigate how well distributional word
representations directly encode information about
semantic norms.3 For each feature in a semantic
norm dataset, we construct a binary classification
problem which predicts the presence or absence of
the feature for each concept. Concretely, for each
feature fi we have a label vector yi ∈ {0, 1}nc ,
where nc is the total number of concepts in the
dataset, and yij is 1 when concept j has feature
fi and 0 otherwise. We build label vectors only
for features with five or more associated concepts.
After filtering, we have nf = 267 label vectors in
the McRae dataset and nf = 775 in CSLB.

For each feature, we construct a binary logistic
regression model pi which predicts the presence or
absence of the feature for a concept given its word
representation xj :

pi(yij | xj) = σ(wTi xj) (3)

This base model is extremely prone to overfit-
ting, as most features have only several associ-
ated concepts — that is, each classifier has only a
few positive examples — and the input word rep-
resentations are of a high dimensionality. In or-
der to prevent overfitting, we add an independent
L2 regularization term to each regression model.
For each feature fi, we use leave-one-out cross-
validation to select the regularization parameter λi
which maximizes the following modified logistic

3The remainder of this paper describes a general analysis
performed on both the McRae and CSLB datasets. We used
McRae as a pilot dataset to form hypotheses, and checked
these hypotheses on the CSLB dataset as a test set. All of
the graphs and numbers reported in this paper correspond to
results on CSLB.

objective:

Li(λi) =
1
|fi|

∑
xj∈fi

log pi,λi
−j (yij = 1 | xj)

+
1

nc − |fi|
∑
xk 6∈fi

log pi,λi
−j (yik = 0 | xk)


(4)

Here pi,λi
−j (·) represents a regression model

(Equation (3)) trained without example (xj , yij)
in the training set and with regularization param-
eter λi. The first term of the summand calculates
the log-probability of the left-out concept having
the desired feature, and the second term calculates
the average log-probability that any other concept
(outside of the feature group fi) does not have the
feature. The regularization terms λi are selected
independently for each feature to maximize the
objective Li.

After fitting the regularized logistic regression
models, we calculate a set of “feature fit” met-
rics. For each feature fi, we evaluate the binary
F1 score of its classifier’s predictions pi(yi). Fig-
ure 1 shows each feature as a point in a swarm-plot
(grouped by feature category).

Pilot tests with the McRae dataset suggested
that the categories associated with strictly percep-
tual features were not well encoded in the dis-
tributional representations relative to strictly non-
perceptual categories (taxonomic and functional
features).

We use the CSLB dataset as a test set for this
prediction. We perform a bootstrap confidence
interval test on the difference between the me-
dian feature fit scores for CSLB features in non-
perceptual and perceptual categories. The 95%
confidence intervals on this bootstrap are positive
for two of the three representations tested (GloVe-
CC and word2vec).4 Figure 1 shows the fea-
ture fit scores on CSLB evaluated with GloVe-CC,
and the word2vec evaluation effectively shows the
same result: taxonomic and functional features
score higher on average than strictly perceptual
features. This comparison failed on GloVe-WG,
however, where features classed as “functional”
scored far lower on average than those in percep-
tual categories. Across all three sets of distribu-
tional representations, the median score of ency-

4GloVe-CC: (7.67%, 24.0%); word2vec: (7.13%,
20.6%); GloVe-WG: (-1.25%, 15.7%).
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Figure 1: The CSLB feature fit metrics of GloVe-CC, where each point is a feature with at least 5
associated concepts. Feature categories are on the horizontal axis.

category feature fit < 50% feature fit > 50%

other perceptual is chewy, is solid, is high pitched is hard, does smell good nice, is juicy

visual perceptual is triangular, has a string, is curved, has a clasp, has a shell, has whiskers

encyclopedic is collectable, is powerful, made of -

tissue

is formal, does not fly, is kept in a -

cage

functional is roasted, is for weddings, is carried does shelter, does chop, is eaten edible

taxonomic is a home, is a vessel, is an ingredient is seafood, is a boat, is a tool

Table 3: Examples of features in each category with feature fit scores based on using GloVe-CC to predict
norms from CSLB.

clopedic features was well below all other feature
categories.

It is obvious from Figure 1 that each cate-
gory contains a wide range of feature fit values.
As discussed earlier in Section 3.2, this catego-
rization of features is far from perfect. Many
of the lower-scoring features classed as “ency-
clopedic” are simple attributive features not de-
serving of the category label, such as is fresh
and is filling. Many of the higher-scoring
encyclopedic features seem genuinely encyclope-
dic, such as is found on farms; other high-
scoring features are arguably “functional,” such
as does grow on trees. Many of the higher
scoring visual perceptual features state structural
part-whole relations, such as has legs and
has an engine.

Table 3 provides more examples of low- and
high-scoring features in each category. Despite
the rather noisy classification scheme used in this
dataset, we still managed to find a regular trend
in two of three evaluations, matching our expec-
tations from prior pilot experiments. We believe
that a revised classification scheme could help to
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Figure 2: A comparison of CSLB feature fit scores
for word2vec and GloVe-CC. Slope: 0.8773; Pear-
son r: 0.8260.

demonstrate a clear difference between perceptual
and non-perceptual features in all three datasets.

4.1 Matching word representation sources

For each feature, we compare its feature fit score
evaluated with GloVe-CC word vectors and its
score evaluated with word2vec vectors in Figure 2.
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(a) Concepts plotted according to the correlation between
their GloVe-CC embeddings and two other sources (CSLB,
horizontal axis; WordNet, vertical axis). The points are col-
ored according to their feature fit.
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(b) A direct comparison of m(GloVe-CC, CSLB) (horizontal
axis) and the median feature fit scores associated with con-
cept (vertical axis). See main text for statistical tests.

Figure 3: Concept view results.

The trend in the figure suggests that both repre-
sentations have similar feature fit deficiencies and
strengths, though the trend becomes weaker near
the (100%, 100%) corner — the two representa-
tions correlate well at low feature fit scores, and
seem to fan out at higher scores. A large group
of points also sit in the figure at y = 100 and
x = 100; these features are perfectly captured by
one representation and not by the other.

This correlation is somewhat surprising, given
that the word2vec and GloVe vectors are the prod-
ucts of different algorithms executed on very dif-
ferent corpora. There are two likely explanations
behind this correlation:

1. Some features in the CSLB semantic norm
data are unusually difficult, or are perhaps
missing associated concepts. GloVe and
word2vec correlate in performance because
they don’t match these noisy or incomplete
features.

2. There are systematic deficiencies in the word
vectors due to their shared reliance on the dis-
tributional method.

It is difficult to differentiate these two explana-
tions on these small semantic norm datasets, but
we hope to distinguish these in the future by test-
ing new predictions for concepts not covered in
these datasets. We will return to this idea in the
conclusion of the paper.

5 The concept view

The previous section demonstrated that several
classes of perceptual features are not well encoded
on average by distributional word representations,
and that these deficiencies systematically match
across representations. How does this deficiency
in feature representation carry over into computa-
tions on the word representations themselves?

We evaluate the matching between distribu-
tional representations and representations from
other sources by comparing their predictions of
word-word similarity. For distributional word rep-
resentations, we compute word-word similarity by
cosine distance:

sim(i, j) = cos(xi, xj) (5)

We derive compact concept representations
from the semantic norm datasets with LSA (Lan-
dauer et al., 1998). We compute a truncated SVD
on the feature matrix Y ∈ {0, 1}nc×nf , which is
the concatenation of the binary feature label vec-
tors introduced in Section 4. We define concept-
concept similarity by the cosine distance between
their corresponding LSA vectors.

As a secondary data source, we also compute
word-word similarity judgments from the Word-
Net taxonomy (Miller, 1995). We use the Resnik
metric (Resnik et al., 1999) to compute the simi-
larity between concept names ci, cj :

simresnik(ci, cj) = max
c∈S(ci,cj)

− log p(c) (6)
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where S(ci, cj) selects the common ancestors of
the concepts in the WordNet taxonomy, and p(c) is
the unigram probability of a concept as computed
on an external corpus. This selects the ancestor of
the two concepts in the taxonomy which has maxi-
mal information content (surprisal). We use Word-
Net as additional verification that the trends ob-
served between semantic norms and distributional
representations are non-coincidental.

We use these similarity metrics to compute pair-
wise distance measures for concepts present in the
semantic norm datasets. For each metric, we pro-
duce a symmetric pairwise distance matrix D ∈
Rnc×nc , where an element Dij indicates the dis-
tance between concepts i and j according to the
metric.

We next compute how well each concept’s
pairwise similarity is correlated between the
various metrics. For a given concept, we
compute the Pearson correlation between the
concept’s GloVe/word2vec pairwise distance
vector and the LSA and WordNet pairwise
distance vectors.5 The correlation values of
interest are m(GloVe/word2vec,CSLB) and
m(GloVe/word2vec,WordNet) — that is, the
correlations between the pairwise distance vectors
for GloVe/word2vec and CSLB and between the
pairwise distance vectors for GloVe/word2vec
and WordNet.

Figure 3a plots both of these correlation values
evaluated with GloVe-CC for all concepts. The
two m measures are evidently positively corre-
lated, though with some noise (r = 0.6160). This
is to be expected, as the CSLB dataset and Word-
Net overlap only partially in the semantic features
they encode.

Each concept in Figure 3 is colored according
to the median feature fit score of its associated fea-
tures. In Figure 3b, we show this feature fit metric
on the vertical axis. There is a positive relation-
ship here between feature fit scores and the corre-
lation metric m(GloVe-CC,CSLB) (r = 0.3323).
Because the correlation between m(·,CSLB) and
feature fit metrics is weaker than expected, we
run post-hoc multiple regression significance tests
for each distributional representation. An F-test
shows that the regression feature m(·,CSLB) sig-
nificantly improves predictions of feature fit val-

5The Pearson correlation between two vectors is equiv-
alent to the cosine distance between their mean-centered
forms.

Domain Feature fit Concepts

10 61.03% bread, cheese, chocolate, coffee, glue,
ham, jam, jelly, ketchup, moss, soup,
tea, yoghurt

15 67.18% artichoke, asparagus, aubergine, bean,
cabbage, flour, gherkin, leek, mango,
pineapple, potato, pumpkin, rhubarb,
seaweed

25 75.62% bouquet, buttercup, carnation, daffodil,
daisy, dandelion, fern, geranium,
hyacinth, lily, marigold, orchid, pansy,
poppy, rose, sunflower, tulip

31 78.22% bayonet, bomb, cannon, crossbow,
dagger, grenade, gun, pistol, revolver,
rifle, shotgun, sword

36 82.18% book, catalogue, menu, dictionary,
encyclopaedia, textbook

Table 4: Selected domains from the clustering
analysis on GloVe-CC, with median feature fit
scores over concepts.

ues relative to a baseline model for all three repre-
sentations6,7.

There is substantial variance in the predictions
of the distributional representations due to fac-
tors outside of the scope of the semantic norm
data. The mismatch in predictions between dis-
tributional representations is nevertheless a sta-
tistically significant predictor of feature fit met-
rics. This suggests that the feature-level deficien-
cies discovered in the previous section have con-
crete implications in terms of word-word similar-
ity measures.

5.1 Domain-level analysis
We next investigate whether some domains of con-
cepts are particularly affected by the deficiencies
discussed in the previous sections. We perform ag-
glomerative clustering on concepts from the CSLB
dataset using a custom distance metric:

d(i, j) = ||LSAi−LSAj ||2 +α(FFi−FFj)2 (7)

where LSAi is the LSA vector representation com-
puted from the semantic norm data for concept i
as introduced earlier in this section, and FFi is the
median feature-fit score for a concept i. We select
the weight αmanually to produce the most seman-
tically coherent clusters.

6The baseline regression model predicts a concept’s fea-
ture fit from these baseline features: log(word frequency in
Brown corpus), log(# associated features), log(total # feature
reports for the concept), # WordNet senses.

7GloVe-CC: F ∗ = 41.297, p < 10−9; GloVe-WG:
F ∗ = 68.783, p < 10−15, word2vec: F ∗ = 41.27, p <
10−9
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Figure 4: Concept domains derived from the CSLB semantic norm data. Each point represents a concept.
The vertical axis is the median feature fit score of the concept’s features on GloVe-CC.

Figure 4 shows the distribution of feature fit
scores for each of the resulting 40 domains. We
find that settings of αwhich yield semantically co-
herent clusters also yield groups of concepts with
very low variance in feature fit scores. In Table 4
we list select domains and their median feature fit
scores. This clustering suggests that deficiencies
at the feature level affect entire coherent semantic
domains of concepts.

6 Conclusion

This paper has analyzed how well various stan-
dard distributional representations encode aspects
of grounded meaning. We chose to use seman-
tic norm datasets as a gold standard of grounded
meaning, and tested how word representations
predicted features within these datasets. We
grouped these features into high-level categories
and found that, despite large within-category vari-
ance, several standard distributional representa-
tions underperformed on average in predicting
perceptual features. The difference in prediction
performance proved statistically significant on two
of the three representations we evaluated. These
deficiencies in feature encoding matched between
GloVe and word2vec representations trained on
different corpora, suggesting that certain classes
of features may be poorly represented by distribu-
tional methods in general.

We also examined the consequences of these de-
ficiencies in feature encoding for the word repre-
sentations themselves. We compared the word-
word similarity predictions made with distribu-
tional representations with those made with the
semantic norm dataset and with WordNet, and
found that words having features badly encoded
within the distributional representations were also

likely to make different similarity predictions than
the predictions from these two corpora. A fi-
nal domain-level concept analysis suggested that
some semantic domains are particularly impacted
by these issues in feature encoding.

The semantic norm datasets used in this paper
are subject to saliency biases: they only contain
the concept-feature mappings which experimental
subjects think to mention when queried. These
saliency effects add noise to our results, as men-
tioned in Section 4.1, and may have caused us to
generally underestimate the performance of distri-
butional models within all feature categories. In
future work, we plan to repeat the sorts of tests
conducted in this paper while avoiding possible
saliency confounds. We also plan to develop a
causal explanation for the deficiencies in the word
embeddings found in this paper, showing how co-
occurrence information (or lack thereof) present in
the training corpus can bias performance on these
tasks. Both of these studies will verify that the re-
sults we have found are due entirely to deficien-
cies in distributional methods rather than in the
datasets used here.

We think these deficiencies should be worry-
ing: if neural models of language are to have any
knowledge about concepts, it ought to be in their
word embeddings. Our findings show that these
embeddings are lacking in basic features of per-
ceptual meaning. These results suggest that dis-
tributional meaning (as operationalized by mod-
ern distributional models) may miss out on funda-
mental elements of semantics. We hope they will
help motivate further work in developing multi-
modal representations which can prepare us to de-
ploy more fluent language agents in the real world.
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Abstract

Recognition of social signals, from human
facial expressions or prosody of speech, is
a popular research topic in human-robot
interaction studies. There is also a long
line of research in the spoken dialogue
community that investigates user satisfac-
tion in relation to dialogue characteris-
tics. However, very little research relates
a combination of multimodal social sig-
nals and language features detected during
spoken face-to-face human-robot interac-
tion to the resulting user perception of a
robot. In this paper we show how dif-
ferent emotional facial expressions of hu-
man users, in combination with prosodic
characteristics of human speech and fea-
tures of human-robot dialogue, correlate
with users’ impressions of the robot af-
ter a conversation. We find that happi-
ness in the user’s recognised facial ex-
pression strongly correlates with likeabil-
ity of a robot, while dialogue-related fea-
tures (such as number of human turns or
number of sentences per robot utterance)
correlate with perceiving a robot as in-
telligent. In addition, we show that fa-
cial expression, emotional features, and
prosody are better predictors of human rat-
ings related to perceived robot likeability
and anthropomorphism, while linguistic
and non-linguistic features more often pre-
dict perceived robot intelligence and inter-
pretability. As such, these characteristics
may in future be used as an online reward
signal for in-situ Reinforcement Learning-
based adaptive human-robot dialogue sys-
tems.

Figure 1: Left: a live view of experimental
setup showing a participant interacting with Pep-
per. Right: a diagram of experimental setup show-
ing the participant (green) and the robot (white)
positioned face to face. The scene was recorded by
cameras (triangles C) from the robot’s perspective
focusing on the face of the participant and from the
side, showing the whole scene. The experimenter
(red) was seated behind a divider.

1 Introduction

Social signals, such as emotional expressions, play
an important role in human-human interaction,
thus they are increasingly recognised as an impor-
tant factor to be considered both in human-robot
interaction research (Cid et al., 2013; Novikova
et al., 2015; Devillers et al., 2015) and in the area
of spoken dialogue systems (Herm et al., 2008;
Meena et al., 2015).

Recognition of human social signals has be-
come a popular topic in Human-Robot Interac-
tion (HRI) in recent years. Social signals are rec-
ognized well from human facial expressions or
prosodic features of speech (Ekman, 2004; Zeng
et al., 2009), and have become the most popular
methods for recognising human affective signals
in human-robot interaction (Rázuri et al., 2015;
Devillers et al., 2015; Cid et al., 2013).

In human-robot interaction, recognized human
emotions are mostly used for mimicking human
behaviour and enhancing the empathy towards a
robot both in children (Tielman et al., 2014) and
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in adult users (Tapus and Mataric, 2007).
In the area of spoken dialogue systems, sig-

nals recognised from linguistic cues and prosody
have been used to detect problematic dialogues
(Herm et al., 2008) and to assess dialogue qual-
ity as a whole (Schmitt and Ultes, 2015). This
type of dialogue-related signals has also been
used to automatically detect miscommunication
(Meena et al., 2015), or to predict the user satis-
faction (Schmitt et al., 2011).

However, there is very little research combining
the areas of detecting multi-modal signals during
spoken HRI and evaluation of human-robot con-
versation, and using them to create an adaptive so-
cial dialogue.

In this paper, we make a first step towards
building a multi-modally-rich, conversational, and
human-like robotic agent, potentially able to react
to the changes in human behaviour during face-to-
face dialogue and able to adjust the dialogue strat-
egy in order to improve an interlocutor’s impres-
sion. We present a setup that targets the develop-
ment of a dialogue system to explore verbal and
non-verbal conversational cues in a face-to-face
situated dialogue with a social robot. We show that
different emotional facial expressions of a human
interlocutor, in combination with prosodic charac-
teristics of human speech and features of human-
robot dialogue, correlate strongly with users’ per-
ceptions of a robot after a conversation. Based on
these features, we developed a model capable of
predicting potential human ratings of a robot and
discuss its implications for future work in devel-
oping adaptive human-robot dialogue systems.

2 Experiment Setup and Evaluation

The human-robot dialogue system was evaluated
via a user study in which human subjects inter-
acted with a Pepper robot1 acting autonomously
using the system described in (Papaioannou and
Lemon, 2017; Papaioannou et al., 2017). The
dialogue system used, combines task-based with
chat-based dialogue features, deciding the most
appropriate action on each consequent turns, using
a pre-trained Reinforcement Learning (RL) pol-
icy. The robot decides among a pool of possi-
ble actions at ∈ A where A = [PerformTask,
Greet, Goodbye, Chat, GiveDirections, Wait, Re-
questTask, RequestShop]. If a task is recognised

1http://doc.aldebaran.com/2-5/home_
pepper.html

in the user utterance (e.g. ”where can I find dis-
counts”), a response is synthesized using database
lookup and predefined utterances (like the exam-
ple shown in Table 3). If no task was recognised,
then the user request is being forwarded to a Chat-
bot, written in AIML and based on the chatbot
Rosie2, where a chat-style response is formulated
based on AIML template/ pattern matching.

All interactions were in English. The physical
setup of the experiment can be seen in Figure 1.

2.1 Experimental Scenario

The task and the setup chosen in the study were
considered as first steps towards understanding
how a humanoid social robot should behave in the
context of a shopping mall while also providing
useful information to the mall’s visitors. To this
end, participants were asked to imagine that they
were entering a shopping mall they had never been
to before where the robot was installed in the entry
area interacting with visitors one at a time. Partic-
ipants were asked to complete as many as possible
of the following five tasks:

• Get information from the robot on where to
get a coffee.

• Get information from the robot on where to
buy clothes.

• Get the directions to the clothing shop of their
choice.

• Find out if there are any current sales or dis-
counts in the shopping mall and try to get a
voucher from the robot.

• Make a selfie with the robot.

Instructions were given to use natural language
spontaneously while interacting with the robot.

2.2 Participants and Experimental Design

41 people (13 females, 28 males) participated in
our study, ranging in age from 18 to 38 (M=24.46,
SD=4.72). The majority of them were students
(93% students and 7% staff) that had no or little
previous experience with robots (56% with little
or no experience, 39% with some experience, and
5% with a lot of experience).

Participants were initially given a briefing script
describing the goal of the task and providing hints

2http://github.com/pandorabots/rosie
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on how to better communicate with the robot, e.g.
“wait for your turn to speak” and “please keep in
mind that the robot only listens to you while its
eyes are blinking blue”3. We reassured our par-
ticipants that we were testing the robot, not them,
and controlled environment-introduced biases by
avoiding non-task-related distractions during the
experiment. During experimental sessions, partic-
ipants stood in front of the robot and the experi-
menter was hidden in another corner of the room
but available in case the participant would need
any help (see Figure 1).

At the end of the experiment participants were
debriefed and received a £10 gift voucher. The
duration of each session did not exceed thirty min-
utes.

2.3 Measured Variables

We collected a range of objective measures from
the log files, video and audio recordings of the in-
teractions, and transcripts of dialogues. From the
audio recordings, we collected a set of different
prosodic and dialogue-related features. From the
video recordings, we collected the data on emo-
tional intensities detected based on human facial
expressions. From the dialogue transcripts, we
collected a set of linguistic features, such as lex-
ical diversity, length of utterance etc.

In addition, we considered a range of subjec-
tive measures for a qualitative evaluation. For that,
after each interaction session participants were
asked to fill in a questionnaire to assess their per-
ception of the robot.

Emotions were detected and recognised using
the Microsoft Emotion API for Video4. This API
takes video frames as an input (see Figure 2), and
returns the confidence across a set of emotions for
the group of faces in the image over a period of
time. The emotions detected are happiness, sad-
ness, surprise, anger, fear, contempt, disgust, or
neutral. Happiness, surprise, and sadness were se-
lected for analysis in this work, because they had
the highest average or maximum values across all
recorded videos.

Prosodic Features used in this work are the fol-
lowing: average fundamental frequency of speech
F0, maximum F0, and difference between maxi-
mum and minimum F0 values.

3Pepper’s default way of communicating that it is listen-
ing.

4https://www.microsoft.com/cognitive-services/en-
us/emotion-api

Figure 2: Screenshots of the recorded video,
showing different facial expressions detected dur-
ing a dialogue with the robot.

Non-linguistic Dialogue Features used in this
work contain speech duration (in sec), number of
turns, number of completed tasks, number of self-
repetitions and a ratio of tasks per turn.

Linguistic Dialogue Features used in this work
consist of utterance length (in characters), a ratio
of words per utterance and unique words per ut-
terance, number of sentences within an utterance,
lexical diversity, a ratio of words per sentence and
a ratio of unique words per sentence.

Perception of Robot was assessed using re-
sponses on the questionnaire filled by participants
at the end of each interaction session. The ques-
tionnaire was based on a combination of the User
Experience Questionnaire UEQ (Laugwitz et al.,
2008) and the Godspeed Questionnaire (Bartneck
et al., 2009). It consisted of 21 pairs of contrasting
characteristics that may apply to the robot, and are
grouped into four groups of Anthropomorphism,
Likeability, Perceived Intelligence, and User Ex-
pectations. The Anthropomorphism group con-
sists of the following pairs of characteristics: fake
– natural, machinelike – humanlike, unconscious –
conscious, artificial – lifelike. Likeability consists
of: unfriendly – friendly, unkind – kind, unpleas-
ant – pleasant, awful – nice, annoying – enjoyable,
disliked – liked. The group of Perceived Intelli-
gence consists of: incompetent – competent, igno-
rant – knowledgeable, irresponsive – responsive,
unintelligent – intelligent, foolish – sensible. The
Interpretability group consists of: does not meet
expectations – meets expectations, obstructive –
supportive, unpredictable – predictable, confusing
– clear, complicated – easy, not understandable –
understandable. Users were asked to evaluate per-
ception of a robot on a 5-point Likert scale, where
the minimum value was 1 and the maximum was
5.

The validity of the used questionnaire was
tested by measuring its internal consistency with
Cronbach’s α, which was equal to 0.93 (high con-
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Figure 3: A Flow chart showing the process of
synchronising different streams of data, and col-
lecting corresponding parts of data for analysis.

sistency). Based on the high value of the Cron-
bach’s α, we assume that that our participants in
the given context interpreted the robot characteris-
tics, provided in the questionnaire, in an expected
way.

3 Multimodal Data Collection and
Analysis

Data collected during the experiment required ad-
ditional processing, alignment and annotation, as
shown in Figure 3. Prosodic features of F0, and
dialogue-related features showing presence and
absence of pauses and presence/absence of speech
were collected from audio recordings with a rate
of 44100 samples per second. Values of emotional
intensities were collected from video recordings
with a rate of 25 frames per seconds. All the data
was aligned after recording, using average val-
ues of prosodic features per frame. Afterwards,
data was annotated in ELAN5 detecting associa-
tions between an utterance and its owners. Finally,
the dialogue texts were transcribed and linguistic
features were calculated using R packages stringr,
stringi, tidytext, and qdap.

A summary of collected data is provided in Ta-
ble 1. Specifically, the summary results show
that the F0 value of human speech changes a lot
during the conversation, with a maximum value
being more than twice as large as an average
value. Average emotional intensities of surprise
and sadness, on the other hand, do not differ much

5https://tla.mpi.nl/tools/tla-tools/elan

Group of
features Feature Human Robot

Emotional
features

Happiness 0.40 NA
Surprise 0.01 NA
Sadness 0.01 NA

Prosodic
features

F0, avg 173.87 NA
F0, max 398.63 NA
F0, diff 338.49 NA

Linguistic
dialogue-
related
features

Utterance length 21.34** 26.78**
Words / Utterance 5.74** 7.16**
Unique words / Utterance 5.49* 6.70*
Lexical Diversity 0.97 0.95
No of sentences 1.13 1.24
Words / Sentence 5.19 5.99*
Unique words / Sentence 5.03 5.63

Non-linguistic
dialogue-
related
features

Speech duration, sec 36.54 48.92**
No of turns 32.81 29.38
No of completed tasks 4.00 NA
No of self-repetitions 3.13 4.19
Tasks / Turn 0.16 0.15

Table 1: Descriptive statistics of emotional,
prosodic, non-linguistic and linguistic dialogue
features for human and robot actors. Here, bold
indicates a higher value, ** denotes p < 0.01, *
denotes p < 0.05

(±0.001), and the maximum values of all the emo-
tional intensities are usually close to 1.

Results of non-linguistic dialogue-related fea-
tures show that the robot on average speaks sig-
nificantly longer than humans during a dialogue.
Humans tend to have a higher number of turns,
although they less frequently repeat themselves.
These differences, however, are not significant.

Results of linguistic features reveal more sig-
nificant differences between robot and human lan-
guage. For example, the results show that hu-
mans on average speak in significantly shorter ut-
terances compared to a robot, both in terms of a
number of characters and a number of words per
utterance. The robot uses more sentences per ut-
terance on average, although this difference is not
significant. The lexical diversity, which was calcu-
lated as a ratio of unique words and a total number
of words in an utterance, shows a slightly higher
value in human language rather than robot’s.

Values of linguistic features differ significantly
between human and robot language, which leads
us to investigate in more details the textual dia-
logue data in terms of lexical variety and syntactic
complexity.

4 Linguistic Analysis of Dialogues

Following Gardent et al. (2017), we analyse the
dialogue textual data in terms of length of ut-
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Speaker LS MSTTR
D-level
complexity

robot 0.44 0.61 1.71*
human 0.47* 0.59 1.68

Table 2: Results of linguistic dialogue analysis. *
denotes p < 0.05.

terances, lexical richness, and syntactic variation.
The results are summarised in Tables 1 and 2 and
grouped by a speaker, i.e. robot and human.

4.1 Length of utterances

Results presented in Table 1 show that robot utter-
ances are significantly longer than those of their
human interlocutors, both in terms of words per
utterance and sentences per utterance. This may
be partly explained by the fact that a turn-taking
process was not very natural and thus was not al-
ways successful during the dialogue. It usually
took some time for people to learn how to com-
municate with Pepper properly and to start speak-
ing to the robot only when it was listening. As a
result, from time to time people were interrupted
by the robot, while they never tried to interrupt
the robot themselves. Shorter average length of
human utterances is also caused by the way peo-
ple tend to deal with disfluencies of a dialogue,
e.g. rephrasing and shortening their previous ut-
terance in order to emphasise the most important
keywords (see an example in Table 3). The robot
utterances, on the other hand, were not shortened
or changed in any other way in the case of dialogue
disfluencies.

HUMAN (H): By the way, I’m a student so
I don’t have a lot of money. So, is it
possible to have some shop with sales or
discounts? [30 words]

ROBOT (R): Who, specifically, does? [dia-
logue disfluency]

H: To have some discounts somewhere. [5
words]

R: There are 2 shops that have sales nearby.
These are Tesco, and Phone Heaven.

H: Thank you very much.

Table 3: An example of shortening as a result of
dialogue disfluency.

Figure 4: Distribution of the top-10 most frequent
trigrams in human and robot language.

4.2 Lexical Richness

We used the Lexical Complexity Analyser (Lu,
2009) to measure various dimensions of lexical
richness, such as lexical sophistication, lexical di-
versity and mean segmental type-token ratio. We
complement the traditional measure of lexical di-
versity type-token ratio (TTR) with the more ro-
bust measure of mean segmental type-token ratio
(MSTTR) (Lu, 2012), which divides all the dia-
logues into successive segments of a given length
and then calculates the average TTR of all seg-
ments. The higher the value of MSTTR, the more
diverse is the measured text. We also measure
lexical sophistication (LS), also known as lexical
rareness, which is calculated as the proportion of
lexical word types not on the list of 2,000 most fre-
quent words generated from the British National
Corpus. In addition, we measure lexical diversity
(LD) as a ratio of unique and total words per utter-
ance.

The results presented in Table 2 show that
human utterances, although being significantly
shorter, are significantly richer than those of the
robot, both in terms of lexical diversity and lexical
sophistication. MSTTR values do not differ signif-
icantly between human and robot utterances. This
leads us to investigate the distribution of frequen-
cies of bigrams and trigrams in human and robot
utterances during dialogues.

The majority of both robot (61%) and human
(62%) bigrams are only used once in all the dia-
logues. However, the mean frequency of bigrams
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Figure 5: D-level sentence distribution of human
and robot language.

that were used more than once during dialogues is
significantly (p< 0.001) higher in robot utterances
(Mean = 15.8, SD = 31.4) compared to human ut-
terances (Mean = 6.1, SD = 8.4). This means that
the robot tends to use the same combinations of
words repeatedly, while people do vary their lan-
guage more. The majority of trigrams is also used
just once by both people and the robot, although
the proportion is quite different: 75% of human
trigrams and only 65% of robot trigrams are used
once in the dialogues. Those trigrams that are used
more than once, have an average frequency of 15.8
(SD = 30.9) for robot, and only 4.4 (SD = 4.6) for
human utterances.

The results of bigrams and trigrams analysis
support the conclusion that human language in
human-robot conversations is more rich, varied,
and diverse than that of the robot. Figure 4 shows
that poor lexical variation of a robot language is
influenced a lot by the fact that the robot often
uses the phrase “I am afraid I cannot help you with
that”, which may be said when the speech recogni-
tion confidence does not reach an adequate thresh-
old, or when no known keywords are detected in
human utterances. As Figure 4 shows, 7 out of
10 most frequent trigrams in a robot language are
variations of that specific phrase.

4.3 Syntactic Variation and Discourse
Phenomena

We used the D-Level Analyser (Lu, 2009) to eval-
uate syntactic variation and complexity of human
references using the revised D-Level Scale (Lu,
2014). The scale has eight levels of syntactic com-
plexity, where levels 0 and 1 include simple or in-
complete sentences and higher levels include sen-
tences with more complex structures.

Figure 5 shows a similar syntactic variation in

human and robot language, although there are
slight differences, e.g. people tend to use a higher
percentage of both the simplest and the most com-
plicated sentences. In general, the majority of all
the sentences, used both by humans and by a robot,
are simple sentences. This is because the topic of a
human-robot conversation is quite simple and does
not require a lot of complicated syntactic struc-
tures.

The results of initial linguistic analysis, together
with results of analysis of multimodal signals, sug-
gest that linguistic, as well as other multimodal
features, may be important in predicting human
perception of a robot. However, average scores
can be misleading, as they only provide a system-
level overview but do not measure the strength
of association with human ratings. This led us
to inspect the correlation between the ratings of
the robot and all the multimodal features of a dia-
logue.

5 Correlation between Robot Ratings
and Multimodal Features of
Human-Robot Dialogue

A summary of correlation results is presented in
Table 4. The results reveal that different groups of
features correlate with different groups of human
ratings. For example, emotional features, such as
intensity of happiness, correlate strongly with per-
ceived anthropomorphism of a robot, so that a per-
son who more strongly expresses happiness during
a dialogue with the robot probably perceives it as
friendlier and nicer. Human ratings of perceived
robot anthropomorphism also correlate with a lex-
ical diversity of human language: people tend to
use more diverse language when speaking to a
robot that they perceive as conscious, natural, and
humanlike (see an example in Table 5).

Average F0 value of human speech correlates
strongly with perceived intelligence of the robot,
specifically with a robot being more knowledge-
able. The ratio of tasks per turn is, unsurpris-
ingly, strongly correlated with perceived robot in-
telligence. The more dialogue turns people need to
complete the same number of tasks, the more they
perceive the robot as ignorant and unintelligent.
Features of robot language also correlate with how
it is perceived: the more words (including unique
ones) per sentence it generates, the more compe-
tent it appears to humans.

It is interesting to notice that some linguistic
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Significant correlation with human ratings (Spearman)

Group of features Features Feature calculated for
Human

Feature calculated for
Robot

Emotional
features

Happiness Friendly (0.72), Nice (0.67) –
Surprise NA –
Sadness Sensible (0.71) –

Prosodic
features

F0, avg Knowledgeable (0.57) –
F0, max NA –
F0, diff NA –

Non-linguistic
dialogue-
related
features

Speech duration, sec NA NA
No of turns Intelligent (0.64), Knowledgeable (0.54) Disliked (0.54)

No of self-repetitions
Clear (0.65), Easy (0.52),
Understandable (0.50)

Awful (0.58),
Does not meet expectations (0.52),
Annoying (0.49)

No of completed tasks Clear (0.63), Meets expectations (0.58) –

Tasks / Turn Ignorant (0.58), Unintelligent (0.52)
Humanlike (0.63), Unintelligent (0.55),
Ignorant (0.53)

Linguistic
dialogue-
related
features

Utterance length Responsible (0.54) Annoying (0.62), Obstructive (0.50)
Words / Utterance NA Annoying (0.62), Obstructive (0.57)
Unique words / Utterance NA Annoying (0.62), Obstructive (0.57)

Lexical Diversity
Conscious (0.61), Humanlike (0.58),
Natural (0.56)

Supportive (0.54)

No of sentences Responsible (0.50) Easy (0.50), Ignorant (0.57)
Words / Sentence NA Competent (0.52)
Unique words / Sentence Confusing (0.54) Competent (0.56)

Table 4: Summary of correlation between a mean value of feature, calculated during a dialogue, and
human ratings of the robot. Only significant correlations are included. “NA” means no significant
correlation was observed, “–” means that correlation was not calculated.

H: Where is Costa? Is it far? [LD = 0.83]
R: A place we call “reality”. [disfluency]
H: Sorry I didn’t understand. [LD = 1.0]
R: There is no need to apologize. Perhaps I

can explain it better. Which part are you
confused about?

H: Bye bye [LD = 0.50]
R: My birthday is September 9th. [disflu-

ency]
H: Bye bye [LD = 0.50]
R: Would you like to do a search for it? [dis-

fluency]
H: No. [LD = 1.0]

Table 5: An example of a dialogues that resulted in: Left - high human ratings for anthropomorphism,
Right - low human ratings for anthropomorphism. Both dialogues present situations when human intent
was not recognised by the robot. LD denotes lexical diversity.

and non-linguistic dialogue features correlate with
different human ratings depending on whether the
features are calculated for human or robot lan-
guage. For example, a higher number of human
turns during a dialogue correlates strongly with
a robot being perceived as intelligent and knowl-
edgeable, while a higher number of robot turns
correlates with it being disliked. Longer human
sentences show that a robot is perceived as more
responsive, while longer robot sentences correlate
with a robot being annoying and obstructive.

The results show that some features, observable
during a human-robot dialogue, correlate strongly
and significantly with different groups of human
ratings. However, it is not obvious if a strong cor-
relation also means that there is a causal relation-

ship between human language or multimodal be-
havioural features and ratings of the robot. This
leads us to inspect whether the previously dis-
cussed features may be used for predicting poten-
tial ratings.

6 Predicting Perception of Robots in
Human-Robot Dialogue

In order to develop a model that predicts poten-
tial human ratings on robot likeability and per-
ceived intelligence, we use the previously dis-
cussed prosodic features, dialogue-related char-
acteristics, and detected emotional intensities, as
predictive features of the model. For the predic-
tion itself, we use ensemble learning (Random
Forest, RF) (Breiman, 2001) which is a state-of-
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Group of rating Emotions
only

Prosody
only

Non-linguistic
only

Linguistic
only

All
combined Baseline Average

rating
Likeability 0.85 1.03 0.96 0.87 1.00 1.41 4.01
Perceived
Intelligence

0.73 0.94 0.69 0.83 0.89 0.83 3.44

Interpretability 0.71 0.87 0.56 0.68 0.81 0.92 3.56

Table 6: Performance of prediction, calculated using root-mean-square error (RMSE). The results are
averaged over all the ratings that belong to the group and outperform the baseline. Bold denotes the
smallest average error and means the best predicted result of the model.

the-art algorithm that can be applied in a dynamic
dialogue situation and is able to combine the re-
spective strengths of different informative features
into a single model.

Setup: We use a 70/30% split for training and
testing and 10-fold cross-validation on the train-
ing data to tune the optimal number of predictors
selected for growing trees. 100 trees were grown
with 2 variables randomly sampled as candidates
at each split. We investigate five different mod-
els used as predictors: 1) emotional intensities, 2)
prosodic features, 3) non-linguistic dialogue fea-
tures, 4) linguistic dialogue features, and 5) all the
features combined.

Results: The results in Table 6 show that dif-
ferent groups of features are better predictors of
different groups of ratings. For example, combin-
ing dialogue-related features only (either linguis-
tic or non-linguistic) as predictors, produces the
lowest root-mean-square error (RMSE) for many
ratings out of the perceived intelligence and intel-
ligibility groups. This means that a combination
of dialogue-related features is producing the best
prediction of such aspects of perceived robot in-
telligence as e.g. responsiveness, intelligence, or
predictability.

Emotional features are shown to be the best
predictors of some aspects of robot likeability
and perceived anthropomorphism. For example,
the ratings for unconscious-conscious, unfriendly-
friendly or awful-nice are best predicted us-
ing emotional features only. Other aspects of
robot anthropomorphism and likeability, such as
machinelike-humanlike or disliked-liked, are best
predicted by using only prosodic features of hu-
man speech as predictors. Combining emotional,
prosodic and dialogue-related features rarely im-
proves the results of rating predictions. In some
cases, e.g. predicting the ratings for unresponsive-
responsive, a combination of all the features pro-

duces the same results as dialogue-related features
alone. In one case a combination of all features
does improve prediction results, this is the rating
showing if the robot meets human expectations or
not. This is probably because human expectations
consist of different aspects themselves: some ex-
pect the robot to be anthropomorphic and likeable,
other prefer it to be intelligent and easily inter-
pretable.

7 Discussion and Conclusions

In this paper, we show how dialogue features cor-
relate with the user’s perception of a robot (e.g.
strong correlation between higher number of hu-
man turns and higher robot’s perceived intellect,
or between higher number of sentences per robot
utterance and robot’s perceived ignorance), as well
as correlations between emotional features and
robot likeability.

Using the findings described in this paper, a pre-
dictive model could be implemented using emo-
tional intensities (happiness, sadness, and sur-
prise) in order to better predict the user’s percep-
tion of the robot. This model can provide valuable
information on how to design more engaging di-
alogues between robots and humans. The combi-
nation of these emotional features, along with the
dialogue-related features (both linguistic and non-
linguistic) and the F0 value can also provide better
feedback in cases where, for instance, a smile can
create ambiguity of the perceived user’s emotional
display (Halpern and Kets, 2012).

In future work, these emotional features com-
ing from real-time facial expression recognition
could be used as an online estimator of how well
or badly a dialogue is progressing, which would
be an important component of a reward signal for
Reinforcement Learning approaches to HRI.
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Abstract

Agents that communicate back and forth
with humans to help them execute non-
linguistic tasks are a long sought goal of
AI. These agents need to translate be-
tween utterances and actionable meaning
representations that can be interpreted by
task-specific problem solvers in a context-
dependent manner. They should also be
able to learn such actionable interpreta-
tions for new predicates on the fly. We de-
fine an agent architecture for this scenario
and present a series of experiments in the
Blocks World domain that illustrate how
our architecture supports language learn-
ing and problem solving in this domain.

1 Introduction

An agent that can engage in natural, back-and-
forth communication with humans to help them
complete a real world task requires the ability to
understand and produce language in the context
of that task (i.e. to map between utterances and
meaning representations the problem solving com-
ponents of the agent can act on in a particular sit-
uation). The agent may also need to initiate clar-
ification requests when communication fails, and
to learn new domain (or conversation) specific vo-
cabulary and its meaning. This kind of symmetric,
grounded communication with a problem-solving
agent goes significantly beyond the one-step, sin-
gle direction understanding tasks considered in
standard semantic parsing (e.g. Zelle and Mooney,
1996; Zettlemoyer and Collins, 2005; Clarke et al.,
2010) or even short, simple instructions to robots
(e.g. Tellex et al., 2011).

In order to focus on these concept learning and
communication issues, we deliberately limit our-
selves here to a simple, simulated environment.

We operate in a two-dimensional Blocks World
domain where a human wants one or more shapes
to be constructed on a grid. The human needs to
communicate the goal of this planning task to the
agent. Once the agent has understood the instruc-
tions and its planning is done, it communicates its
plan to (possibly) another human who will then
execute this plan. Depending on the complexity of
the task and the linguistic capabilities of the agent,
this scenario may require a lot of back-and-forth
communication. If the human omits details from
their description and prevents the agent from ac-
complishing the task, we expect the agent to initi-
ate communication and ask clarification questions.
If the human uses vocabulary that is new to the
agent, we expect the agent to ask for a definition
and the human to teach the agent its meaning in
the domain.

We define an agent architecture named COG
that allows us to investigate the challenges arising
in this symmetric communication scenario. COG
combines a problem solving (planning) compo-
nent with a basic language understanding and gen-
eration system that is initially only equipped with
a limited vocabulary. We perform a sequence of
experiments of increasing complexity that illus-
trate how our architecture supports the problem
solving scenarios described above, and how lan-
guage learning is accomplished within this archi-
tecture. We argue that, within this architecture, all
the agent’s capabilities – comprehension, produc-
tion, problem solving and learning – can be im-
proved with additional communication.

Section 2 defines the domain and problem
setup. Section 3 provides an overview of the
COG architecture. Section 4 describes COG’s cur-
rent components (language comprehension, pro-
duction, memory, problem solving, and dialogue
mediation). Section 5 describes our experiments
and results.
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Figure 1: A complex shape, which can be viewed
as conjunction of simpler known shapes: a row
(dark, width = 4) and a square (light, size = 3).

2 Domain and Problem Setup

We consider a two-dimensional (2D) Blocksworld
domain. There is a 2D grid and the goal is to
build different configurations with square blocks
based on their natural language descriptions. We
assume agents come equipped with the vocabulary
and definitions of primitive concepts, e.g. for sim-
ple shapes (row, square, etc.) and spatial relations
(adjacent, on top of, etc.), but may have to learn
the definitions of new terms and concepts that arise
in communication with the human user.

We define three different types of goal descrip-
tions and design corresponding tasks for evalua-
tion. During evaluation, the agent must automati-
cally identify the task and respond appropriately.

Task 1: Complete descriptions. For the first
task, the agent is provided with a complete de-
scription, in natural language, of a target configu-
ration consisting of one or two shapes. The defini-
tion is complete and does not require further clar-
ification. This tests the ability of the agent to un-
derstand and ground specific descriptions.

Task 2: Descriptions with missing information.
For the second task, the agent is again provided
with a description of a target configuration consist-
ing of one or two shapes; however, the description
will not be specific enough for the agent to be able
to ground it to a unique configuration. This tests
the ability of the agent to recognize when some
information is missing from a description and to
initiate a dialogue which will clarify these details.

Task 3: Descriptions of new shapes. For the
third task, the agent is asked to construct a com-
plex shape which is not contained within its initial
vocabulary of primitive concepts (e.g., the letter
“L”). This tests the ability of the agent to extend
its vocabulary through interaction with a human.

Figure 2: The agent architecture. Interaction
(thick arrows) is done via the Dialogue Mediator
(input) and the Language Production component
(output). Thin arrows indicate the flow of infor-
mation between the internal components.

3 The COG Agent Architecture

Agents that solve a task require explicit knowledge
of the corresponding real world concepts. Agents
that also communicate about solving tasks addi-
tionally need to be able to map linguistic expres-
sions such as “square” or “on top of” to these con-
cepts. They also need to know to which situations
these concepts apply (e.g. whether a given config-
uration can be referred to as a square, or whether
a row can be placed on top of that square). The
representations used by the different components
of our agent therefore vary in their specificity.
This requires additional work to bridge the result-
ing representational gaps. To represent the defini-
tion of concepts, we store “lifted” representations,
i.e. rules whose predicates only contain unin-
stantiated variables (e.g. rectangles have height
and width). By contrast, problem solving requires
fully grounded representations in which shapes are
placed at specific locations on the grid (e.g., a 3
by 4 rectangle located at (0, 0)). Language com-
prehension and production operate on a middle
ground where some parameters may be instanti-
ated, even if shapes are not necessarily placed at
specific locations (e.g., a 3 by 4 rectangle).

Figure 2 describes the architecture of our agent.
The Language Comprehension (LC) module
converts natural language into an executable,
grounded, declarative representation in a STRIPS-
like language (Fikes and Nilsson, 1971) that the
Problem Solving (PS) module can act on. PS re-
turns partial or complete problem solving plans,
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also in this language. If grounding fails, LC pro-
duces queries that are sent to the Language Pro-
duction (LP) module.

The LP takes these queries or the plans pro-
duced by PS and returns natural language out-
put. The Memory (M) module stores lifted repre-
sentations of built-in and acquired predicates that
are used by LC and LP. The Dialogue Media-
tor (DM) is aware of the current dialogue state.
It can augment the natural language input before
transferring it to LC (e.g. if the human utters a
number, DM might provide the context, letting
LC know that the number refers to the size of a
specific shape). DM is also used by LP to gen-
erate utterances that are appropriate for the cur-
rent dialogue state. Instead of narrating the fully
grounded, block-wise sequential plans produced
by PS, LP may identify subsequences of steps that
correspond to instantiations of more abstract con-
cepts (e.g., a sequence of blocks placed horizon-
tally is a “row”), and generates language at this
more natural level.

4 Current Components of COG

In this section, we describe the current implemen-
tations of the different modules (language compre-
hension, memory, problem solving, language pro-
duction, and dialogue mediation) in COG, noting
that the architecture is flexible and allows for us to
plug-in other implementations as needed.

4.1 Language Comprehension

The LC module consists of semantic parsing and
language grounding components.

4.1.1 Semantic Parsing
Our semantic parser is implemented as a neural
sequence-to-sequence model with attention (Bah-
danau et al., 2014; Dong and Lapata, 2016; Jia
and Liang, 2016). The model consists of two
LSTMs. The first LSTM (the encoder) pro-
cesses the input sentence x = (x1, . . . , xm)
token-by-token, producing a sequence of hidden
states hs = (hs

1, . . . , h
s
m) as output. The sec-

ond LSTM (the decoder) models a distribution
P (yi|y1, . . . , yi−1; hs) at each time step over out-
put tokens as a function of the encoder hidden
states and the previous outputs. The final parse
y = (y1, . . . , yn) is obtained by selecting the to-
ken at each time step that maximizes this proba-
bility and feeding a learned embedding for it into

the LSTM as part of the next input. Multiple sen-
tence inputs are processed sentence-by-sentence,
where the initial encoder hidden state for a given
sentence is set to the final encoder hidden state for
the previous sentence, and the initial encoder hid-
den state for the first sentence is the zero vector.
The final logical form is the conjunction of the log-
ical forms for each individual sentence.

The parser is trained with a small fixed-size
vocabulary; however, to represent new shapes it
needs to be able to output new predicates for
shapes that it has not encountered during train-
ing. We accomplish this by using an attention-
based copying mechanism (Jia and Liang, 2016;
Gulcehre et al., 2016; Gu et al., 2016). At every
time step, the decoder may either output a token
from the training vocabulary or copy a word from
the input sentence. Hence, when new shapes are
encountered in the input, the parser is able to copy
the shape name from the input sentence to define
a new predicate.

4.1.2 Language Grounding

Grounding is beyond the capabilities of a seman-
tic parser, which may interpret a sentence such as
“Place a square of size 4 on top of the rectan-
gle” without any understanding of the key pred-
icates (what is a “square”?) or relations (what is
“on-top-of”?). LC therefore includes a ground-
ing component which converts the output of the
semantic parser into executable grounded repre-
sentations that can be directly used by PS. This
component obtains definitions of predicates from
M and uses a geometric reasoner to identify feasi-
ble shape placements. The reasoner assigns loca-
tion coordinates to each shape relative to the best
bounding box it can find for the entire configura-
tion, given the grid boundaries. A full description
and its grounding process are given in Figure 3.

Grounding succeeds immediately if the agent is
given a complete goal description, as in Task 1.
Grounding fails if the goal description is incom-
plete or unknown, as in Tasks 2 and 3. In these
cases, a clarification query Q is issued and passed
to LP.

Formally, a complete goal description of
a target configuration is defined as a tuple
G = 〈{〈si, idi,∧kd

(k)
i 〉}i∈S ,∧j∈[S×S]fj〉, where

S is the list of shapes and si, idi and ∧kd
(k)
i are the

shape name, identifier, and dimension attributes
of shape i respectively. f encodes pair-wise
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Human: “Build a square of size 3. Then, construct a
row of 4 blocks above the square. The left end
of the row should be above the upper right cor-
ner of the square.”

Parse: square(a) ∧ size(a, 3) ∧ row(b)
∧ width(b, 4) ∧ . . .

Ground: square(0, 2, 3), row(2, 5, 4)

Plan: (putdown b1 0.0 0.0), (putdown b2
1.0 0.0), (putdown b3 2.0 0.0), . . .

Figure 3: A fully-specified goal description for the
configuration in Figure 1 and its path through the
architecture. The geometric reasoner inferred that
the bounding box’s lower left corner is at (0, 2),
which is also the lower left corner of the square.

spatial relations between shapes. A complete goal
description for the configuration in Figure 1 is
〈{〈row, a, width = 4〉, 〈square, b, size = 3〉},
spatialRelation(a, b, upperRightCorner)〉.

An incomplete goal description GI is a
goal description where the values of one or
more dimensional or spatial attributes are miss-
ing: GI = G − x, where x = xd ∪ xf (with
xd ⊆ {di}i∈S and xf ⊆ {f}) is the missing infor-
mation. In this case, a query Q asks for values
of the missing dimensions or spatial relations (i.e.,
Q = x). An incomplete goal description for Fig-
ure 1 is 〈{〈row, a, width = null〉, 〈square, b,
size = 3〉},null〉. Here, the width of the row
and the spatial relation between the shapes are un-
known.

An unknown goal description GU occurs when
one or more of the shapes in a goal description are
not known to the agent (i.e., the memory module
M does not contain their definitions): GU = G
if ∃si: si ∈ S, si /∈ M. In this case, a query
Q asks for additional clarification about the un-
known concepts (i.e., Q = Define(si)). Figure 1
could be described with a new concept Foo /∈ M:
G = Foo(p) ∧ dim1(p, 3) ∧ dim2(p, 4).
4.2 Memory

A key challenge for communicating agents is the
necessity to learn the interpretation of new con-
cepts (e.g. names of unknown shapes, spatial re-
lations, or actions)1 that arise during the com-
munication with the human. In our agent, the
Memory module stores lifted representations of
these acquired concepts that are parameterized for
the configuration’s dimensions, and hence gener-
alize beyond the specific instances encountered by

1We currently restrict ourselves to unknown shapes.

Human: “Build a 3 by 4 Foo.”
Parse: Foo(p) ∧ dim1(p, 3) ∧ dim2(p, 4)

Query: Define(Foo)

System: “Sorry, I don’t know what ‘Foo’ is. Could you
describe how to build the Foo for me using
rows, columns, squares, and rectangles?”

Human: “Build a square of size 3. Then, construct a
row of 4 blocks above the square. The left end
of the row should be above the upper right cor-
ner of the square.”

Lift: Foo(p) ∧ dim1(p, ?d1) ∧ dim2(p, ?d2)→
square(a) ∧ size(a, ?d1) ∧
row(b) ∧ width(b, ?d2) ∧ spatial−rel(. . .

Figure 4: A dialogue triggered by the unknown
word “Foo” for the configuration in Figure 1. LC
issues a query that prompts a request to define
“Foo” in terms of known shapes. This definition
is first parsed and grounded as in Figure 3, then
learned by being lifted and stored in M (?dk iden-
tifies dimension variables).

the agent. When the agent receives an unknown
goal, it asks the human for a definition of the un-
known concept and expects a new goal descrip-
tion GN that defines it in terms of known concepts.
This definition is then added to the agent’s domain
knowledge stored in M.

Learning a new concept is done via a “lifting”
process, as follows:

1. When an unknown goal description GU is re-
ceived, LC issues a query QU which is then
realized and posed to the human by LP.

2. LC receives a natural language response con-
taining a new goal description GN . If GN

contains any unknown concepts, the previous
step must be called recursively. Once GN is
complete, it is grounded and passed to PS.

3. If a successful plan was generated for GN , the
concept declaration and goal definition are
lifted by converting the given dimension and
relative location constants to variables while
ensuring parameter sharing between the new
concept and its definition. A mapping is
created and inserted into M. Lifting ensures
generalization over arbitrary examples of the
new learned concept.

Figure 4 illustrates an example of a description
that elicits a query from the system for further in-
formation and the subsequent resolution process.
Our present implementation of lifting is restric-
tive. The challenges in handling the general learn-
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ing setting and potential principled approaches
will be discussed in later sections.

4.3 Problem Solving

The problem solving module reasons about the
configurations communicated to it as conjunctive
logical expressions and generates a set of prob-
lem solving steps (plan) to achieve the given target
configuration as the output. The problem solving
module proceeds in an anytime fashion and gener-
ates a partial plan as far as possible. We employ
a Hierarchical Task Network (HTN) planner (Erol
et al., 1994; Nau et al., 2003; Ghallab et al., 2004)
that searches for plans in a space of task decom-
positions. HTN allows for reasoning over different
levels of abstraction, tasks and sub-tasks as well as
primitive actions and is more intuitive for humans.

4.4 Dialogue Mediation

The role of the dialogue mediator in our frame-
work is to guide the interaction with the human
and delegate the tasks of parsing, planning, and
query realization to the LC, PS, and LP modules
respectively. The DM interacts with a GUI frame-
work that allows for back-and-forth textual inter-
action between the human and the system as well
as a visualization component that displays the out-
put of the problem solver as block configurations
on a grid. Via this framework, the DM accepts
user-described goal descriptions and prompts the
user to reword their utterances, clarify missing in-
formation, and define new shapes as needed.

The DM is also responsible for keeping track
of the cumulative information gained about a goal
configuration over a dialogue sequence in or-
der to backtrack the states of the semantic pars-
ing and problem solving components if mistakes
occur during the interaction. In the semantic
parser, backtracking consists of restoring the hid-
den states of the parser that were seen at a par-
ticular time of the interaction before the mistake
was made. Backtracking in the problem solver in-
volves deleting or modifying items in its goal de-
scription G. But, since the parser conditions hid-
den states on all previously seen sentences, the
DM is not able to selectively delete or replace in-
formation at arbitrary points in the timeline of the
dialogue. Hence, our experiments process goal
descriptions on a sentence-by-sentence basis, al-
lowing for clarifying questions to be made and re-
solved per-sentence.

Our current agent uses a rule-based dialogue
mediator (implemented as a finite state machine),
which alternates between four sets of states:

1. Goal description parsing and planning.
Given an input user description of a goal
configuration, DM passes this input through
the LC and PS pipeline, backtracking and
requesting a rewording if either module en-
counters a failure.

2. Querying for and resolving clarifications.
When LC returns a a query Q asking for
values of missing dimensional or spatial fea-
tures, DM requests that information from the
user via the LP module (e.g., “What is the
width of the row?”). The user may respond
with a well-formed sentence describing the
missing feature value (“The width of the row
is 4”) or with a fragment containing the de-
sired information (“It’s 4,” “4,” “Width is 4”).
Given the context of the original query Q,
DM extracts the value via a heuristic and re-
forms the user input into a well formed sen-
tence, then returns to State 1 to handle the
updated description.

3. New shape learning. When LC returns a
query Q indicating an unknown shape or con-
cept, DM requests the user to describe the de-
sired configuration using known shapes (i.e.,
rows, columns, squares, and rectangles). The
description handling process proceeds regu-
larly as in State 1 until the user indicates they
are finished defining their new concept. This
triggers the learning process to lift and store
the definition in M; the new concept can then
immediately be used like any known concept
in future user descriptions.

4. Shape verification. Every time the plan for
an individual shape in a configuration has
been resolved, DM outputs the plan to the
visualization component and asks the user if
the configuration up until that point in the di-
alogue is correct. If the user indicates that
something is wrong, DM removes the entire
shape from the history of the parsing and
planning components and asks the user to
retry describing the shape from scratch. Once
the shape has been verified, however, no fur-
ther modifications may be made to that shape.
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# Shapes Task 1 Task 2

1 100% 100%
2 64% 52%

Table 1: Accuracies for Task 1 and Task 2.

For our experiments, a simplified version of this
dialogue mediator was used to feed examples
through the system pipeline. More details can be
found in Section 5.

4.5 Language Generation
Our current system uses a predominantly
template-based approach to generate user queries.
For clarification questions, we use a simple
rule-based approach for clarifying questions that
increases the level of question explicitness if the
user continually fails to understand the question or
respond in an appropriate manner. For example,
if the query Q requests the width of a particular
row, clarification questions may range from the
very contextual “What’s the width?” to the fully
explicit “What is the width of the row you are
currently building?”

5 Methodology and Experiments

Although we ultimately wish to evaluate our
agent’s live interactions with real human users, our
current experiments feed it synthetically gener-
ated descriptions. For the descriptions with miss-
ing information, we randomly choose dimensional
and/or spatial information to omit for every shape,
providing the missing information in a follow-up
response upon system query. We also generate
sentences with descriptions with unknown terms
that have to be clarified in further interactions. Af-
ter a full interaction has been carried out (or halted
early due to system comprehension failure), we
automatically verify the system’s output configu-
ration against the gold configuration.

Input consisting of sentences describing various
block configurations and their corresponding log-
ical forms was produced using a template-based
generation system. A subset of this data was used
for training the semantic parser; the rest was used
for the following experiments. The generation sys-
tem was set up to create configurations random-
izing over shape types, sizes, and relative loca-
tions, and the templates for the sentences were de-
signed to introduce lexical and grammatical vari-
ety. Overall, the generation system is able to pro-

Human: Build a square of size 3. Then, construct a row
of 4 blocks above the square. The left end of
the row should be above the upper right corner
of the square.

System: Is this okay so far? (y/n)
Human: yes
System: Great!

Figure 5: Task 1 (Complete descriptions)

duce tens of thousands of different configuration
descriptions.

Generated descriptions contain one sentence
(for single shapes) and up to three sentences (for
two shapes). The sentences have an average length
of approximately ten words. Multi-sentence de-
scriptions pose special challenges for semantic
parsing due to the need to resolve coreference
across sentences. Thus, increasing the number of
shapes in a configuration dramatically increases
the complexity of the parsing task.

The COG system was evaluated on three sepa-
rate tasks as outlined in Section 2; we present the
results below.

5.1 Task 1: Complete Descriptions
In the first part of the experiment, we test COG’s
ability to handle complete descriptions of config-
urations (see Figure 5 for an example dialogue).
The parameter that we change in the course of this
experiment is the number of primitive shapes used
to build the configuration, which we vary from 1
to 2. For each parameter setting we have 50 test
instances; this totals 100 test instances of com-
plete descriptions with no missing information.
COG’s accuracy in interpreting these descriptions
is shown in the left column of Table 1. The drop in
accuracy in moving from one to two shapes is due
to the drop in performance of the semantic parser
when dealing with complex descriptions.

5.2 Task 2: Missing Information
In this experiment, we test COG’s ability to pro-
cess descriptions with missing information (see
Figure 6 for an example dialogue). The sys-
tem handles these situations by asking clarification
questions, obtaining responses and building the
configuration by incorporating these subsequent
responses. Again, we vary the number of primitive
shapes in the configuration from 1 to 2 and have 25
test instances for each case. Further, each primi-
tive shape could potentially have either or both the
dimension and relative spatial position missing in
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Human: Form a column.
System: What is its height?
Human: 5 blocks
System: Is this okay so far? (y/n)
Human: yes
System: Cool! Please continue to describe your config-

uration.
Human: Finally, form a vertical line of size 5 to the

right of the column.
System: Can you describe the second column’s location

relative to the first?
Human: Ensure that the top end of the vertical line is

next to the third row of the column.
System: Is this okay so far? (y/n)

Figure 6: Task 2 (Missing information)

the initial description. For example, in a configu-
ration involving 2 shapes, there could potentially
be 3 pieces of information missing. The 25 test
instances are generated such that the number of
missing information pieces in a single instance is
uniformly random in [1, 3]. COG’s accuracy in in-
terpreting incomplete descriptions is shown in the
right column of Table 1. As before, the drop in
accuracy in moving from one to two shapes is due
to the drop in performance of the semantic parser
when dealing with complex descriptions. The ac-
curacy is further impacted by the interaction, there
are more opportunities for the parser to misinter-
pret a natural language utterance.

5.3 Task 3: Learning New Shapes
In the final experiment, we evaluate COG’s abil-
ity to learn new shapes (see Figure 7 for an ex-
ample dialogue). We teach it five descriptions of
new shapes, the results of which are presented in
Table 2. Each new shape is defined using descrip-
tions consisting of primitives (e.g., rows, columns,
squares, and rectangles) of certain dimensions. We
then tested the ability of the system to generalize
and build other instances of the new shapes with
altered dimensions. The “Outcome” column indi-
cates whether the system was able to correctly lift
all of the parameters of the input shape. Note that,
when the dimension of a new shape consists of the
sum of two dimensions (as in the third and fifth ex-
amples), parameter lifting fails for that dimension.

6 Discussion and Future Work

The goal of this paper was to present and study a
new agent architecture that supports natural, sym-
metric communication with humans in the context

Human: Construct a balloon of height 3 and width 4.
System: Sorry, I don’t know what ‘balloon’ is. Can you

describe how to build the balloon for me using
rows, columns, squares, and rectangles?

Human: Build a column of height 3. Then, build a 4
by 4 square above the column. Ensure that the
second column of the square is above the top
end of the column.

System: Is this okay so far? (y/n)
Human: yes
System: Great! I’ve now learned what a balloon is.

· · ·
Human: Build a balloon of height 2 and width 7.
System: Is this okay so far? (y/n)

Figure 7: Task 3 (Learning new shapes)

of performing a real world task. Even in the simu-
lated environment considered here, we had to ad-
dress a number of challenges. First, language un-
derstanding to support task execution differs from
e.g. standard semantic parsing in that it requires
grounded meaning representations that can be ex-
ecuted and whose grounding may depend on the
particular situation. Second, agents needs to be
able to identify, request, and incorporate missing
information that prevents task execution. Finally,
agents need to be able to identify and learn the in-
terpretation of new terms introduced during the in-
teraction with the user.

Our current implementation has a number of
obvious shortcomings. A primary bottleneck of
COG is the semantic parser. If the input descrip-
tions are not parsed correctly, there is very little
the system can do to recover beyond asking for a
rephrasing from the human. This creates problems
when we attempt to experiment with complex con-
figurations that involve three or more shapes. In
these cases, the parser struggles to correctly iden-
tify the spatial relations for the third shape. Future
work needs to address how to better handle longer
and more complex descriptions.

Additionally, as the performance of Task 2
indicates, the dialogue mediator sometimes has
problems translating partial responses into com-
plete sentences that the parser can handle robustly.
More work is required to develop a better treat-
ment of implicit arguments, coreference, and dis-
course referents that are commonly present in
these types of responses.

The generation component is also limited.
For example, we currently cannot produce in-
structions for new shapes. We have also de-
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Initial
Descriptions

Further Explanations Outcomes

Box of width 5
and height 3

Construct a rectangle of width 5 blocks and height 3 blocks. All parameters
lifted correctly

Balloon of width 4
and height 3

Build a column of height 3. Then, build a 4 by 4 square above the column.
Ensure that the second column of the square is above the top end of the column.

All parameters
lifted correctly

Balloon of width 4
and height 7

Build a column of height 3. Then, build a 4 by 4 square above the column.
Ensure that the second column of the square is above the top end of the column.

Failed to lift
height of balloon

L of height 6 and
width 3

Build a column of 6 blocks. Then, build a row of 3 blocks to the right of the
column. Make sure that the left end of the row is to the right of the bottom end

of the column.

All parameters
lifted correctly

L of height 6 and
width 4

Build a column of 6 blocks. Then, build a row of 3 blocks to the right of the
column. Make sure that the left end of the row is to the right of the bottom end

of the column.

Failed to lift
width of L

Table 2: Task 3 results for learning new shapes. We initially provide descriptions containing new shape
terms with their parameters (left column). When prompted for further clarification, we then provide the
descriptions in the middle column. After the shapes were learned, we instructed COG to build more
instances of these new shapes while varying the size parameters to test how well the lifting worked; the
result of this is in the right column.

veloped a grammar-based realizer inspired by
OpenCCG (White and Baldridge, 2003; White,
2006) that operates over the first-order semantic
representations used by our agent. We plan to
augment the realizer’s semantic lexicon with the
learned definitions of predicates for new shapes,
allowing our system to generate natural language
instructions describing the new configurations.

One of the key challenges of the scenario we
envision (and a fundamental problem in language
acquisition) is the necessity to generalize across
situations. This is required in order to learn gen-
eral concepts from a few specific instances. At this
point, our agent is able to generalize from a sin-
gle example, but our learning mechanism is rather
naive, and we can only handle simple parame-
ter lifting from the primitive components of the
new shape. To illustrate this, consider an exam-
ple where we want to teach the system the shape
“balloon”. To do so, we must specify the dimen-
sions of the square and column separately; con-
sequently, the system will learn that the height of
a “balloon” corresponds only to the height of the
column (see Table 2). However, ideally we would
like the system to learn a parameterization of “bal-
loon” where the balloon’s height corresponds to
the sum of the square and column heights.

Our next step will focus on improving this
mechanism. One possible direction involves
the use of Inductive Logic Programming to in-
duce high-level hypotheses from observations and

background domain knowledge. One key chal-
lenge here, beyond learning, is a way to incorpo-
rate more complex learned hypotheses into our ar-
chitecture in such a way that other components in
our system can make use of it. A second chal-
lenge is that the agent is learning from a human
that has limited knowledge, and little patience, so
we cannot expect to see a large number of exam-
ples. We will consider the use of probabilistic
logic models which can handle both issues by ex-
plicitly including the trade-off in the optimization
function (Odom et al., 2015).

A final challenge is the application of our agent
to new domains. Currently, the memory module
contains all the knowledge required to plan and
produce comprehensible responses. This declara-
tive approach should generalize well to some sim-
ple enough domains, but will need to be extended
to deal with more involved tasks and domains.
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