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Abstract

Language in social media is a dynamic
system, constantly evolving and adapting,
with words and concepts rapidly emerg-
ing, disappearing, and changing their
meaning. These changes can be esti-
mated using word representations in con-
text, over time and across locations. A
number of methods have been proposed
to track these spatiotemporal changes but
no general method exists to evaluate the
quality of these representations. Previous
work largely focused on qualitative eval-
uation, which we improve by proposing a
set of visualizations that highlight changes
in text representation over both space and
time. We demonstrate usefulness of novel
spatiotemporal representations to explore
and characterize specific aspects of the
corpus of tweets collected from European
countries over a two-week period centered
around the terrorist attacks in Brussels in
March 2016. In addition, we quantita-
tively evaluate spatiotemporal representa-
tions by feeding them into a downstream
classification task – event type prediction.
Thus, our work is the first to provide both
intrinsic (qualitative) and extrinsic (quan-
titative) evaluation of text representations
for spatiotemporal trends.

1 Introduction

Language in social media presents additional chal-
lenges for textual representations. Being able to
represent texts in social media streams requires a
methodology with the following properties:

1. Capable of handling large amounts of data.
2. In a streaming rather than static fashion.
3. Across many geographic regions.

While there has been some recent work for rep-
resenting change over time in embedding spaces,
these methods largely did not take into account
geographic variation (Costa et al., 2014; Kim
et al., 2014; Kulkarni et al., 2015; Hamilton
et al., 2016b,a). Likewise, papers examining ge-
ographic variations of language tend not to ex-
amine data temporally (Bamman et al., 2014;
Kulkarni et al., 2016; Pavalanathan and Eisen-
stein, 2015; Hovy et al., 2015). Although Kulka-
rni et al. (2016) incorporate temporal informa-
tion, they treat each timestep as a separate corpus,
learning unique representations. We propose two
algorithms to learn spatiotemporal text representa-
tions from large amounts of social media data and
investigate their utility both from a qualitative and
quantitative standpoint.

Indeed, the broader question of how to evalu-
ate the quality of an embedding is one which has
received a great deal of attention (Schnabel et al.,
2015; Gladkova et al., 2016). Previous spatial and
temporal embedding algorithms have been evalu-
ated primarily with qualitative evidence, investi-
gating the ability of the embedding to capture a
small number of known meaning shifts and pro-
viding some form of visualization (Costa et al.,
2014; Kim et al., 2014; Kulkarni et al., 2015, 2016;
Hamilton et al., 2016b,a). While it is important to
capture known changes of interest, without some
form of quantitative evaluation it cannot be known
whether these embedding methods actually pro-
duce good vector spaces. Because of these issues
we not only provide the first spatiotemporal algo-
rithms for learning text embeddings from social
media data, but we also evaluate our embedding
algorithms through a variety of means.

For qualitative evaluation, we develop a set of
novel visualizations1 which allow us to investigate

1Live Demo: https://esteem.labworks.org/
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word representation shifts across space and time.
In particular, we demonstrate that the model cap-
tures temporal shifts related to events in our corpus
and these shifts vary across distinct countries. For
quantitative evaluation, we estimate the effec-
tiveness of spatiotemporal embeddings through a
downstream event-classification task, demonstrat-
ing that temporal and spatial algorithms vary in
their usefulness. We choose an extrinsic evalu-
ation task rather than the more standard intrin-
sic embedding evaluation because of recent work
demonstrating weak relationships between intrin-
sic measures and extrinsic performance (Schnabel
et al., 2015; Gladkova et al., 2016).

2 Background
Text Representations Most existing algorithms
for learning text representations model the con-
text of words using a continuous bag-of-words ap-
proach (Mikolov et al., 2013a), skip-grams with
negative sampling (Mikolov et al., 2013b), mod-
ified skip-grams with respect to the dependency
tree of the sentence (Levy and Goldberg, 2014),
or optimized ratio of word co-occurrence proba-
bilities (Pennington et al., 2014).

Text representations have been learned mainly
from well-written texts (Al-Rfou et al., 2013).
Only recent work has focused on learning embed-
dings from social media data e.g., Twitter (Pen-
nington et al., 2014). Moreover, most of the
existing approaches learn text embeddings in a
static (batch) setting. Learning embeddings from
streaming social media data is challenging be-
cause of problems such as noise, sparsity, and data
drift (Kim et al., 2014; Kulkarni et al., 2015).

Embedding Evaluation There are two principle
ways one can evaluate embeddings: (a) intrinsic
and (b) extrinsic.
(a) Intrinsic evaluations directly test syntactic

or semantic relationships between the words,
and rely on existing NLP resources e.g.,
WordNet (Miller, 1995) and subjective hu-
man judgements e.g., crowdsourcing or ex-
pert judgment.

(b) Extrinsic methods evaluate word vectors
by measuring their performance when used
for downstream NLP tasks e.g., dependency
parsing, named entity recognition etc. (Pas-
sos et al., 2014; Godin et al., 2015)

Recent work suggests that intrinsic and extrinsic
measures correlate poorly with one another (Schn-

abel et al., 2015; Gladkova et al., 2016). In many
cases we want an embedding not just to capture
relationships within the data, but also to do so in
a way which can be usefully applied. In these
cases, both intrinsic and extrinsic evaluation must
be taken into account.

Temporal Embeddings Preliminary work on
studying changes in text representations over time
has focused primarily on changes over large
timescales (e.g. decades or centuries) and in well-
structured text such as books. For instance, Kim
et al. (2014) present a method to measure change
in word semantics across the 20th century by
comparing each word’s initial meaning with its
meanings in later years. Other work explores a
wider range of corpora (all based on text from
books) and embedding methods and report sim-
ilar qualitative findings (Hamilton et al., 2016b).
What quantitative evidence they do provide is lim-
ited to intrinsic evaluations of word similarities as
well as the model’s ability to recognize a small
set of hand-selected known shifts. One attempt
at learning over time from social media comes
from Costa et al. (2014) that explore a number
of online learning methods for updating embed-
dings across timesteps. They measure the ability
of their temporal embeddings to predict Twitter
hashtags, but do not compare their results against
a non-temporal baseline which makes it difficult to
assess the usefulness of learning temporal embed-
dings. Finally, more recent work learns from Twit-
ter, among other data sources, but presents only
qualitative evaluations (Kulkarni et al., 2015).

Spatial Embeddings Work on incorporating
space into low-dimensional text representations
has been less well researched. Only recent work
presents an approach to train embedding mod-
els independently across a variety of English-
speaking countries as well as US states (Kulkarni
et al., 2016). Their model creates a general embed-
ding space which is shared across all regions, as
well as a region-specific embedding space which
captures local meaning. Although they are able to
report a number of meaning differences captured
by the model, no general quantitative evaluation
is given. The lack of extrinsic evaluation both for
temporal and spatial representations highlights a
major difficulty for future research. Although it
is clear that temporal and spatial patterns can be
captured by distributed text representations, unlike
other approaches, our work is the first to quali-
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Event Types (A) Clusters Tweets Tweet / Cluster Event Types (B) Clusters Tweets Tweet / Cluster
Arts 321 18,926 144 Politics 329 36,908 270
Business 157 8,961 276 Entertainment 315 18,977 147
Politics 190 18,729 105 Business 208 9,092 97
Justice 138 1,296 27 Crime 175 16,194 233
Conflict 101 1,623 46 Terrorism 97 1,369 41
Life 93 602 20 Transportation 46 196 15
Personnel 53 8,457 412 Celebrity 43 401 22
Contact 28 226 19 Death 35 9,021 646
Transaction 20 175 872 Health 33 178 20
Nature 20 6,960 746 Natural disaster 20 6,953 873

Table 1: Distributions of event types in two annotation schemes: A from Doddington et al. (2004) and B
from Metzler et al. (2012).

tatively and quantitatively evaluate whether these
patterns can be useful in applied tasks.

Event Type Classification To do this, we fo-
cus on event detection, a popular NLP task to de-
tect mentions of relevant real-world events within
text documents. Some earlier efforts include
TABARI (Schrodt, 2001), GDELT (Leetaru and
Schrodt, 2013), TDT (Allan, 2012) challenges,
and the Automatic Content Extraction (ACE) pro-
gram (Doddington et al., 2004). This task can take
the form of summarizing events from text (Kedzie
et al., 2016), querying information on specific
events (Metzler et al., 2012), or clustering together
event mentions (Ritter et al., 2012) that all de-
scribe the same event.

In this work, we focus on building predictive
models to classify event types from raw tweets.
Only limited work in event classification has also
tried to codify events into specific event types,
such as “political” vs. “economic” (Bies et al.,
2016). Because the desired granularity of an
event type can vary depending on the end-task,
we analyze our tweets using modified versions of
event types from the ACE program (Doddington
et al., 2004) and more topical event types defined
by Metzler et al. (2012).

3 Datasets

We make use of three datasets in our experiments.
First, we use a large corpus of European Twitter
data captured over two weeks in order to learn
text representations across time and space. For
our event classification task, we chose a subset of
tweets in the larger corpus which were made by
news accounts. These “news-worthy” tweets were
then manually annotated for event type. To lever-
age the additional available data annotated with
real-world events, we train our models on a larger
event dataset from Wikipedia and then use transfer
learning to apply it to our smaller event data.

Brussels Bombing Twitter Dataset We col-
lected a large sample of tweets (with geo-locations
and language IDs assigned to each tweet) from
240 countries in 66 languages from Twitter. Data
collection lasted two weeks, beginning on March
15th, 2016 and ending March 29th, 2016. Tweets
were filtered based on geo-location and language
tags to include only English-language tweets from
a set of 34 European countries that had at least
10,000 English tweets per day in the corpus. This
resulted in a set of 140M tweets we use to learn
different types of embeddings.

Twitter Event Dataset We selected “news-
worthy” tweets that discuss real-world events from
400M English tweets generated in 240 countries.
Our criterion for selecting ”news-worthy” tweets
was to only select tweets that contain an action
word from the connotation frame lexicon (Rashkin
et al., 2016) and either come from a verified ac-
count, from a news account e.g., @bbc, @wsj,
or contain the hashtag “#breaking” or “#news”.
We identified 600,000 English subject-predicate-
object tuples using SyntaxNet (Andor et al., 2016).

Three annotators labeled event types for all tu-
ples based on two previously defined lists of event
categories: the ACE event categories (Dodding-
ton et al., 2004) and those from a related paper on
querying event types (Metzler et al., 2012). Be-
cause of missing values for the third annotator, we
used Krippendorff’s alpha to judge inter-annotator
agreement (like Fleiss’ kappa, Krippendorff’s al-
pha is ≤ 1 with 1 indicating complete agreement
and 0 indicating random chance). This subset
of labeled clusters without ties have high inter-
annotator agreement: 0.71 and 0.78, respectively.
Finally, we subsampled our “news-worthy” tweets
to match the 34 European countries in the Brussels
dataset. We show the final number of clusters and
tweets per event category in Table 1.
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Figure 1: Top 10 classes in the Wikipedia event
dataset.

Wikipedia Event Dataset Given the small size
of our Twitter event dataset, we explore additional
resources for training an effective event detec-
tion model. We construct a larger event dataset
by scraping the English language Wikipedia Cur-
rent Events Portal from the time period of January
2010 to October 2016. Each event in this portal
is described in a short summary and is labeled by
date along with a subject heading such as Armed
Conflicts and Attacks. We use these summaries
and headings as training data for a neural network
to be used for transfer learning.

Overall, the Wikipedia event dataset contains
43,098 total event samples and 31 event type
classes. For training, we use the 42,906 samples
that correspond to the ten most frequent classes
within the dataset, approximately 99.5% of the
original data. The distribution of these ten most
frequent classes is shown in Figure 1.

4 Methodology

All embeddings were trained using gensim’s
continuous bag-of-words word2vec algo-
rithm (Řehůřek and Sojka, 2010). All of our
embeddings were 100 dimensional with em-
beddings learned over the full vocabulary. For
evaluation, we limit ourselves to vocabulary
occurring at least 1,000 times in the Brussels
dataset, resulting in a vocabulary size of 36,200.

Temporal Embeddings We build upon the
state-of-the-art algorithm to learn embed-
dings (Mikolov et al., 2013a). In order to learn
embeddings over time we separate our corpus into
8-hour windows, resulting in 45 timesteps. For
each timestep, we train a model using the previous
timestep’s embeddings to initialize the model at
time t + 1 as shown in Algorithm 1.

This results in an embedding space specific to

Algorithm 1 Temporal Text Representations
1: Initialize W(0) randomly
2: W(0) = LearnEmbeddings(C, t0)
3: for timestep t in T do
4: Initialize W(t) with W(t−1)

5: W(t) = LearnEmbeddings(C, t)

each timestep capturing any change in meaning
which has just occurred. Because timesteps are
connected through initialization, we can examine
how word representations shift over time.

Spatial Embeddings The simplest method for
learning embeddings across countries is to train a
separate set of embeddings for each country in-
dependently as shown in Algorithm 2. We use
these spatial embeddings without time to investi-
gate the ability of this simple method to capture
task-relevant information.

Algorithm 2 Spatial Text Representations
1: for country c in C do
2: Initialize W(c) randomly
3: W(c) = LearnEmbeddings(c, T )

Spatiotemporal Embeddings We train each
spatial region separately, but rather than training
over the entire corpus, we train in 8 hour time
chunks using the previous timestep for initializa-
tion as shown in Algorithm 3.

Algorithm 3 Spatiotemporal Embeddings
1: for country c in C do
2: Initialize W(0)

(c) randomly

3: W(0)

(c) = LearnEmbeddings(c, t0)
4: for timestep t in T do
5: Initialize W(t)

(c) with W(t−1)

(c)

6: W(t)

(c) = LearnEmbeddings(c, t)

Global2Specific Embeddings The disadvan-
tage of training each country’s embeddings in-
dependently is that countries with more tweets
will necessarily possess better learned embed-
dings. We explore an alternative method where
for each timestep, we train a joint embedding us-
ing tweets from all countries and use it to initialize
the country-specific embeddings on the following
timestep as shown in Algorithm 4.

By initializing with joint embeddings, high
quality vectors for infrequent words can be re-
tained across countries. In cases where a coun-
try’s usage for a word does not differ from overall
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Algorithm 4 Global2Specific Embeddings
1: Initialize G(0) randomly
2: G(0) = LearnEmbeddings(C, t0)
3: for timestep t in T do
4: for country c in C do
5: Initialize W(t)

(c) with G(t−1)

6: W(t)

(c) = LearnEmbeddings(c, t)

7: Initialize G(t) with G(t−1)

8: G(t) = LearnEmbeddings(C, t)

usage, it can still rely on the embeddings learned
from a larger data. If the meaning of a word does
change in a particular country, this will still be
captured as the model learns from that timestep.
Aligning Embeddings Following Hamilton
et al. (2016b), we use Procrustes analysis to
align embeddings across space and time for more
accurate comparison. Procrustes analysis provides
an optimal rotation of one matrix with respect to
a “target” matrix (in this case a word embedding
matrix in the joint space) by minimizing the
sum of squared (Euclidean) distances between
elements in each of the matrices.
Predictive Models for Wikipedia Events We
use subject headings from the Wikipedia event
dataset as noisy labels to train a model to predict
the ten most frequent classes within the dataset.
Weights of the LSTM layer of this model are used
to initialize the LSTM layer in the Twitter event
classification models.

We divide the Wikipedia event dataset using 10-
fold cross-validation, optimizing the network for
F1 score on the validation sets. We searched over
hyper-parameters for dropout on all layers, num-
ber of units in the fully-connected layer, activation
function (rectified linear unit, hyperbolic tangent,
or sigmoid), and batch size using the Hyperas li-
brary.2. The model was trained for 10 epochs,
implemented using Keras.3 Hyperoptimized pa-
rameters were then used to train the model on the
full dataset to be transferred to the event detec-
tion model. We compare the LSTM performance
against three simpler models trained on TFIDF
features using scikit-learn.4

Predictive Models for Twitter Events For each
word in each tweet, we first look up the appro-
priate embedding vector. If a word does not have
a corresponding embedding vector, we create an

2Hyperas: https://github.com/maxpumperla/hyperas
3Keras: https://keras.io/
4Scikit-learn: http://scikit-learn.org/

“average vector” from all the word vectors for the
appropriate embedding type, and use this as the
representation of the word. Preliminary results
indicated that averaging produced better results
than using a zero-vector. These embedding rep-
resentations of tweets are fed to a fully-connected
dense layer of 100 units. This layer is regular-
ized with 30% dropout, and its outputs are then fed
to 100 LSTM units whose weights have been ini-
tialized with the LSTM weights learned from our
Wikipedia neural network. We tried both freez-
ing these weights in the LSTM layer as well as
allowing them to be tuned in the training pro-
cess, and found that further tuning helped model
performance. The output of this LSTM layer is
then fed to another densely connected layer of 128
units regularized with 50% dropout, before pass-
ing these outputs to a final softmax layer to com-
pute class probabilities and final predictions. We
use rectified linear units as the activation func-
tion for both densely connected layers, and use
the Adam optimization algorithm with a learn-
ing rate set to 0.001. We experimented with
various other architectures, including adding 1-
dimensional convolutional and max-pooling lay-
ers between the first dense layer and the LSTM
layer, but did not find these to be advantageous.

Baselines and Evaluation Metrics As a base-
line, we compare our spatiotemporal embeddings
against openly available, pre-trained embeddings
– 300-dimensional Word2Vec embeddings trained
on Google News, and 100-dimensional GloVe em-
beddings trained on 2 billion tweets. In addition,
we evaluate three simpler classifiers on the the
5- and 10-way event classification problems. We
train logistic regression (LR), linear SVM, and a
random forest classifier (RF) with 100 decision
trees on TFIDF features from our labeled Twitter
dataset, and report micro and macro F1 scores over
10-fold c.v. in Table 4 below.

5 Results

Qualitative Evaluation We analyze the results
of temporal embeddings when trained over all
countries of the Brussels dataset in Figure 2. Time
is plotted on the x-axis with every tick indicating a
single 8-hour timestep. The distance between ticks
is proportional to the change in the keyword’s vec-
tor representation (Euclidean distance) during that
time. Vertical gray bars indicate a change greater
than one standard deviation above the mean. For
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Figure 2: Visualizing temporal embeddings: Top-3 similar keywords to the concepts Brussels and Ab-
deslam for each timestamp (similarity is measured using Euclidean distance).
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Figure 3: Visualizing spatial (country-specific) embeddings: Top-3 similar keywords to the concept EU
(European Union) for each timestamp (similarity is measured using Euclidean distance).

each timestep, the three most similar keywords are
plotted on the y-axis, with horizontal lines indi-
cating that the keyword was in the top three over
that period. We plot the keywords Brussels as well
as Abdeslam, which is the last name of a suspect
in the 2015 Paris bombing. For both words we
see large shifts in meaning both on March 18th
and 22nd. On March 18th, Salah Abdeslam was
captured in Brussels during a police raid.5 Be-
fore that date, Abdeslam was not widely men-
tioned on Twitter and the meaning of his name was
not well learned. After his capture, Twitter users
picked up the story and the embedding quickly re-
lates Abdeslam to Salah (his first name), suspect,
and wounded. Mention of Salah Abdeslam is also
visible in the most similar keywords to Brussels.
On March 22nd the Brussels bombing occurred.6

and one can see that the embedding of Brussels
quickly shifts, with belgium, terror, and attacks
remaining as the top three similar keywords for all
following timesteps.

To understand how different countries discuss
a global event, we examined keywords of inter-
est and identified for each country the top k most
similar words. Table 2 presents the top-4 similar
words to the keyword Belgium across five coun-
tries in our dataset from the spatial embeddings
learned over all timesteps. Each country refer-

5https://www.theguardian.com/world/2016/mar/18/paris-
attacks-suspect-salah-abdeslam-wounded-in-brussels-terror-
raid-reports

6http://www.bbc.com/news/world-europe-35869254

Belgium France Russia UK
killed terrorism bombers pakistan
attack suspect belgian bombing
isis bombings condolences iraq
pakistan turkey bomber lahore

Table 2: Most similar words to a query word Bel-
gium for country-specific text representations.

ences the bombing which took place on March
22nd, but each country is referring to Belgium
in different ways. Belgium and the UK, for in-
stance, draw parallels to the suicide bombing in
Lahore, Pakistan on March 27th,7 while Brussels
in France and Russia is more linked to the suspect
and bomber of the Brussels attack.

Countries discuss topics in ways that grow more
similar or distant over time. Looking at the key-
words Brussels and Radovan, we calculate the co-
sine distance between the word vectors of any two
countries and plot the three most extreme coun-
try pairs becoming more or less similar over time.
For Brussels, we see that before the terror attack
on the 22nd, there is a great amount of divergence
between countries. After the 22nd, many of these
differences disappear as can be seen in the blue
lines which indicate the three most-converging
country pairs. Belgium itself, however, continues
to diverge from other countries even after the 22nd
as can be seen in the red lines. Another event dur-
ing our corpus was the conviction and sentencing

7http://www.nytimes.com/2016/03/28/world/asia/explosion-
lahore-pakistan-park.html
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Figure 4: Converging and diverging country pairs for the keywords Brussels and Radovan. Converging
country pairs (in blue) became more similar over time than other pairs. Diverging country pairs (in red)
became more dissimilar over time.

Embedding A5 (4,325) A10 (5,480) B5 (5,017) B10 (5,940)
Macro Micro Macro Micro Macro Micro Macro Micro

Baseline 1: Word2Vec6 0.64 0.68 0.49 0.62 0.67 0.68 0.45 0.61
Baseline 2: Glove7 (2B tweets) 0.66 0.69 0.46 0.59 0.65 0.66 0.43 0.59
Static (140M tweets; upperbound) 0.81 0.82 0.53 0.69 0.78 0.79 0.53 0.72
Temporal (1.4–4.6M tweets) 0.74 0.76 0.51 0.66 0.75 0.77 0.52 0.67
Spatial (0.2M–81.7M tweets) 0.62 0.66 0.36 0.55 0.65 0.67 0.39 0.57
Spatiotemporal (2K–2.8M tweets) 0.67 0.70 0.41 0.59 0.69 0.71 0.43 0.63
Global2Specific (2K–2.8M tweets) 0.76 0.77 0.46 0.65 0.75 0.77 0.49 0.67

Table 3: Embedding evaluation results (F1) for event detection task (best performance is marked in bold).
Tweets from specific timesteps and countries make use of relevant temporal and spatial embeddings
where applicable.

of Radovan Karadžić who was found guilty on the
24th for, among many other crimes, the Srebrenica
massacre in 1995.8

While the cases listed above represent a num-
ber of real-world events that can be visualized and
captured by the embedding models, we note that
not all events will necessarily be captured in this
same way. For instance, an event discussed many
months in advance, and with many related tweets,
may not see the same shifts that characterize the
examples provided here. Still, our visualization
techniques are able to extract meaningful relations
demonstrating possible utility for social scientists
hoping to better understand their data.

Quantitative Evaluation We investigate which
of our embedding types are most useful for a
downstream event classification task. We present
a performance comparison between using our em-
beddings and using pre-trained Word2Vec and
GloVe embeddings, as well as performance com-
parison between a recurrent neural network and
three other models. The neural network uses the
same batch size, number of epochs, and 10-fold
cross-validation scheme as before. Results from
our experiments are presented in Tables 3, 4 and

8http://www.nytimes.com/2016/03/25/world/europe/radovan-
karadzic-verdict.html

5. We present results of 5- and 10-way classifica-
tion for each of the annotation schemes (A or B),
and denote these as abbreviations of the annotation
letter and number of classes e.g., A5.

Table 4 demonstrates the clear effectiveness of
our LSTM model, which outperforms all other
models in all classification tasks. At minimum, we
see a 4.2% increase in F1 score over the next best
model and in some cases we see an 8.5% increase
in F1 score. While we see the largest gains in
the 5-way classification task, we also see an 8.2%
F1macro increase in the 10-way classification task
for annotation B. This suggests that at least some
of our embeddings are more effective at capturing
information relevant to a downstream classifica-
tion task than other more straightforward linguis-
tic features such as TFIDIF weights. However, this
analysis does not determine whether the increased
predictive power of the LSTM or the increased in-
formation from our embeddings contributes most
to this performance boost.

For a more rigorous analysis of our embedding
types, we compare their effectiveness as inputs
for our LSTM for this event classification task.
This is the first attempt to quantitatively measure
the performance of spatiotemporal embeddings on
a sizable evaluation task made of non-simulated
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data. In addition to comparing the different types
of embeddings, we also compare our embeddings
against pre-trained static embeddings. Results for
these experiments are given in Table 3. We experi-
mented with increased embedding dimensionality
but find only a modest gain and therefore report
only for our 100-dimension embeddings.

We find that static embeddings trained on the
two-week corpus of Twitter data outperform pre-
trained embeddings (both Word2Vec and GloVe),
even when trained on a much larger quantity of
tweets e.g., 140M vs. the 2B used by GLoVe.
Static embeddings also outperform all spatiotem-
poral embeddings, likely due to the amount of
training data used by each embedding. The spa-
tial algorithm has the worst performance, which
also coincides with the fact that the spatial model
is unable to share information between different
locations. This differs from the temporal, spa-
tiotemporal, and Global2Specific models which
are able to share information across timesteps,
reducing data sparsity somewhat. Although we
find generally lower performance, increased data
may improve the spatiotemporal models and these
models have the additional advantage that they can
be trained online, allowing researchers to study
changes as they occur.

The difficulty for naive spatial embeddings is
countered by our Global2Specific strategy. Recall
that in the training process for these embeddings,
at each timestep a joint embedding is trained us-
ing tweets from all countries. These joint em-
beddings are then used to initialize the embedding
learned for a given country. Intuitively, this initial-
ization should result in better learned embeddings
since it leverages all of the data in the joint space
(140M tweets) as well as spatiotemporal aspects of
the data. While these embeddings do not outper-
form those learned completely in the joint space,
they demonstrate that this training process trans-
fers useful information, outperforming the spatial
and spatiotemporal embeddings.

6 Summary and Discussion

Discourse on social media varies widely over
space and time, thus, any static embedding method
will have difficulty resolving how events influence
discourse. It can be difficult to a priori define an
effective embedding scheme to capture this with-
out explicitly encoding space and time. In demon-
strating the value of spatiotemporal embeddings,

Annotation F1 LR SVM RF LSTM
A5 Macro 0.68 0.72 0.62 0.80

Micro 0.71 0.74 0.66 0.82
A10 Macro 0.42 0.48 0.41 0.53

Micro 0.61 0.64 0.58 0.69
B5 Macro 0.70 0.72 0.64 0.78

Micro 0.72 0.72 0.65 0.79
B10 Macro 0.37 0.45 0.37 0.53

Micro 0.64 0.65 0.59 0.72

Table 4: Results of baseline models and LSTM
trained on static embeddings. Best performance is
marked in bold.

A10 F1 B10 F1
Arts 0.74 Entertainment 0.79
Business 0.73 Politics 0.71
Conflict 0.73 Business 0.73
Justice 0.64 Crime 0.54
Politics 0.53 Terrorism 0.64
Life 0.56 Celebrity 0.39
Personnel 0.49 Death 0.39
Contact 0.36 Transportation 0.44
Nature 0.24 Natural disaster 0.52
Transaction 0.01 Health 0.42

Table 5: Error analysis: classification results (F1
per class) using Global2Specific embeddings.

we can clearly observe the variation in discourse
caused by significant events. We can pinpoint the
event, such as the Brussels bombing, down to the
resolution of our temporal embedding technique –
8 hours, in this case. We also observe general dif-
ferences in how discourse varies over geography.

What previous work has not made clear is
whether spatiotemporal embeddings also have
value in a quantitative sense. Our event classifica-
tion results show that simple spatiotemporal strate-
gies are not necessarily useful. The value of spa-
tiotemporal learning must be weighed against loss
of data when multiple embeddings must be sepa-
rately trained. The success of our Global2Specific
embeddings compared to other strategies demon-
strates that explicitly accounting for this loss of
data is a useful strategy. Future work will need
to investigate whether spatiotemporal embeddings
have value only when trained on very large data or
if better strategies can be incorporated to explicitly
model space and time.
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