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Abstract

Automatic completion of frame-to-frame
(F2F) relations in the FrameNet (FN)
hierarchy has received little attention, al-
though they incorporate meta-level com-
monsense knowledge and are used in
downstream approaches. We address the
problem of sparsely annotated F2F rela-
tions. First, we examine whether the man-
ually defined F2F relations emerge from
text by learning text-based frame embed-
dings. Our analysis reveals insights about
the difficulty of reconstructing F2F rela-
tions purely from text. Second, we present
different systems for predicting F2F rela-
tions; our best-performing one uses the FN
hierarchy to train on and to ground em-
beddings in. A comparison of systems and
embeddings exposes the crucial influence
of knowledge-based embeddings to a sys-
tem’s performance in predicting F2F rela-
tions.

1 Introduction

FrameNet (FN) (Baker et al., 1998) is a lexical-
semantic resource manually built by FN experts.
It embodies the theory of frame semantics (Fill-
more, 1976): the frames capture units of mean-
ing corresponding to prototypical situations. Be-
sides FN’s definitions of frame-specific roles and
frame-evoking elements that are used for the task
of Semantic Role Labeling, it also contains man-
ual annotations for relations that connect pairs of
frames. There are thirteen frame-to-frame (F2F)
relations of which five are antonym relations (e.g.
Precedes, Is Preceded by). To give an
example, the frame “Waking up” is in relation
Precedes to the frame “Being awake”. Fig-
ure 1 further elaborates this example by demon-

strating relationships to additional frames. Table
1 lists all F2F relation names with the number
of frame pairs for each relation according to the
FN hierarchy, and also restricted counts including
only frame pairs that have lexical units (LU) in the
FN hierarchy (e.g., the frame “Waking up” can be
evoked by the LU “awake.v” of the verb “awake”).
The FN hierarchy, a report version of FN, does
not provide lexical units for 125 frames (e.g., the
frame “Sleep wake cycle” has no LU). In fact,
such frames are used as meta-frames for abstrac-
tion purposes, thus, they exist only to participate
in F2F relations with other frames (Ruppenhofer
et al., 2006). In general, each frame pair is con-
nected via only one F2F relation with occasional
exceptions and the F2F relations situate the frames
in semantic space (Ruppenhofer et al., 2006). F2F
relations are used in the context of other tasks,
such as text understanding (Fillmore and Baker,
2001), paraphrase rule generation for the system
LexPar (Coyne and Rambow, 2009) and recogni-
tion of textual entailment (Aharon et al., 2010).
Furthermore, F2F can be used as a form of com-
monsense knowledge (Rastogi and Van Durme,
2014).

The incompleteness of the FN hierarchy is a
known issue not only at the frame level (Ras-
togi and Van Durme, 2014; Pavlick et al., 2015;
Hartmann and Gurevych, 2013) but also at the

Figure 1: F2F relations example. Gray: FN hier-
archy. White arrows: missing in FN hierarchy.
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F2F Relation Name Total Restricted
Inherits from 617 383
Is inherited by 617 383
Uses 491 430
Is Used by 490 430
Subframe of 119 29
Has Subframes 117 29
Perspective on 99 15
Is Perspectivized in 99 15
Precedes 79 48
Is Preceded by 79 48
Is Causative of 48 47
See also 41 40
Is Inchoative of 16 16
Sum 2, 912 1, 913

Table 1: F2F relation pair counts and restricted
pair counts of frames with lexical units.

F2F relation level. Figure 1 exemplifies a miss-
ing precedence relation: “Fall asleep” is pre-
ceded by “Being awake” but inbetween yet an-
other frame could be added, e.g. “Biologi-
cal urge” (evoked by the predicate “tired”). Ras-
togi (2014) note a lack of research on automat-
ically enriching the F2F relations, which would
be beneficial given the large number of possible
frame pairs for a relation and their use in other
tasks. The automatic annotation of F2F relations
involves three difficulties accounted for by the na-
ture of FN. First, F2F relation annotations occur
sparsely and for the majority of pairs in each re-
lation there are few instances (see Table 1). Sec-
ond, the relations themselves have no direct lexical
correspondences in text and hence inferring them
from text is not trivial. Third, if a relation involves
a frame that does not have any lexical unit (see
restricted counts in Table 1), this frame does not
occur in text and hence inferring this relation from
text is even more difficult.

To the best of our knowledge there is no work
(a) addressing the emergence of F2F relations
from text data or (b) enriching F2F relations auto-
matically. We aim to address these problems with
the following contributions:
Contributions of the paper
1) We learn text-based frame embeddings and ex-
plore their limitations with respect to F2F relations
to check whether the manually annotated F2F re-
lations can naturally emerge from text. We find
that, concerning the methods we explored, the em-
beddings have difficulties in showing structures di-
rectly corresponding to F2F relations.
2) We transfer the relation prediction task from
research on Knowledge Graph Completion to the

case of FN and present our best-performing sys-
tem for predicting F2F relations. The system in-
volves training on the FN hierarchy and uses em-
beddings also trained on the FN hierarchy.
3) We generically demonstrate the predictions of
our best-performing system for unannotated frame
pairs and suggest its application for automatic FN
completion on the relation level.
Structure of the paper To start with, Section
2 reviews related research including algorithms
and approaches that we will apply to our pur-
poses. Next, Section 3 briefly presents the FN
data that we will work with. Then, the paper is
structured along our contributions: exploration of
F2F relations in frame embedding space (Sec 4)
and F2F Relation Prediction task (Sec 5), includ-
ing a demonstration of predictions for unannotated
frame pairs (Sec 5.3). Finally, Section 6 discusses
our insights and traces options for future work.

2 Related Work

2.1 Frame Embeddings

Frame embeddings for frame identification To
our knowledge, the only approach learning frame
embeddings is a matrix factorization approach in
the context of the task of Frame Identification
(FrameId), which is the first step in FN Semantic
Role Labeling. The state-of-the-art system (Her-
mann et al., 2014) for FrameId projects frames and
predicates with their context words into the same
latent space by using the WSABIE algorithm (We-
ston et al., 2011). Two projection matrices (one for
frames and one for predicates) are learned using
WARP loss and gradient-based updates such that
the distance between the predicate’s latent repre-
sentation and that of the correct frame are min-
imized. Consequently, latent representations of
frames will end up close to each other if they are
evoked by similar predicates and context words.
As the focus of such systems is on the FrameId
task, the latent representations of the frames are
rather a sub-step contributing to FrameId but not
studied further or applied to other tasks. We will
extract these frame embeddings and explore them
with respect to F2F relations.
Word2Vec embeddings The Neural Network
(NN) architecture of the Word2Vec algorithm
(Mikolov et al., 2013a) learns word embeddings
by either predicting a target word given its con-
text words (CBOW model) or by predicting context
words given their target word (skip-gram model).
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There are different tasks specifically designed
for the evaluation of word embeddings (Mikolov
et al., 2013b). They are formulated as analogy
questions about syntax or semantics of the form
“a is to b as c is to ”. Mikolov (2013b) sug-
gest a vector offset method based on cosine dis-
tance to solve these analogy tasks. This assumes
that relationships are expressed by vector offsets:
given two word pairs (a, b) and (c, d), the ques-
tion is to what extent the relations within the pairs
are similar. We will apply this method to frame
pairs that are connected via F2F relations in order
to find out whether the frame embeddings incor-
porate F2F relations.

There is an interest in abstracting away from
word embeddings towards embeddings for more
coarse grained units: Word2Vec is used to learn
embeddings for senses (Iacobacci et al., 2015) or
for supersenses (Flekova and Gurevych, 2016).
Iacobacci (2015) use the CBOW model on texts
annotated with BabelNet senses (Navigli and
Ponzetto, 2012). Flekova (2016) use the skip-
gram model on texts with mapped WordNet super-
senses (Miller, 1990; Fellbaum, 1990). For evalu-
ation both works are oriented towards Mikolov’s
(2013b) analogy tasks and perform qualitative
analyses for the top k most similar embeddings
for (super)senses or visualize the embeddings in
vector space. To have text-based frame embed-
dings in line with related work, we will also use
the Word2Vec algorithm to learn an additional ver-
sion for frame embeddings.

2.2 Relation Prediction

This task stems from automatic Knowledge Graph
Completion (KGC) and is known as “Link Predic-
tion” (Bordes et al., 2011, 2012, 2013). We will
transfer this task to F2F Relation Prediction for
frame pairs. For this task, knowledge-based em-
beddings are well suited, which are not learned on
text but on triples of a KG.
TransE embeddings We leverage an embedding
learning approach from KGC to obtain embed-
dings for frames and for F2F relations that are
grounded in the FN hierarchy. In translation mod-
els, all entities and relations of the triples of head-
entity, relation and tail-entity (h, r, t) are projected
into one latent vector space such that the relation-
vector connects from the head-vector to the tail-
vector as a translating vector operation. TransE
(Bordes et al., 2013) introduced the idea of mod-

eling relations as translations that operate on the
embeddings of the entities. The model is formu-
lated to minimize | h + r − t | for a training set,
with randomly initialized embeddings. The func-
tion to minimize resembles the idea of the vector
offset by Mikolov (2013b).
Answer selection model Link Prediction is
methodologically related to the key-task of An-
swer Selection from Question Answering (QA).
The task is to rank a set of possible answer can-
didates with respect to a given question (Tan et al.,
2015). State-of-the-art QA models are presented
by (Feng et al., 2015) and by (Tan et al., 2015).
They jointly learn vector representations for both
the questions and the answers. Representations of
the same dimensionality in the same space allow
one to compute the cosine similarity between these
vectors. We will orient ourselves by NN models
for Answer Selection in order to adapt the ideas to
F2F Relation Prediction. In our case, a question
corresponds to a frame pair and an answer corre-
sponds to a F2F relation. Optionally, pretrained
frame embeddings can be used as initialization.

3 Data

Textual data In order to learn frame embed-
dings on textual data with WSABIE or W2V, we
take the FrameNet 1.5 sentences provided by
the Dependency-Parsed FrameNet Corpus (Bauer
et al., 2012) which contains more than 170, 000
sentences annotated manually with frame labels
for 700 frames. We denote a frame as f where
f ∈ Ft the set of frames in the textual data.
Hierarchy data The FN hierarchy lists for each
frame of the overall 1, 019 frames the F2F rela-
tions to other frames. We denote with G the col-
lection of triples (f1, r, f2) (standing for frame
“f1 is in relation r to frame f2”), where f1 and
f2 ∈ Fh the set of frames in the FN hierarchy and
r ∈ R the set of F2F relations. As listed in Ta-
ble 2, there are 2, 912 triples in the FN hierarchy
with 1, 913 triples remaining if considering only
those where both frames have lexical units and

Corpus Frames F2F Relations
FN Hierarchy 1, 019 2, 912

FN Hierarchy restricted 894 1, 913
to frames with LU

Textual data 700 1, 447
FN 1.5 sentences

Table 2: Counts for frames and F2F relations.
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with 1, 447 triples remaining if considering only
those where both frames occur in the textual data.
We split the obtained triples whose frames have
lexical units into a training and a test set such that
the training set contains the first 70% of all the
triples for each relation.

Table 2 summarizes frame counts per data
source together with counts of F2F relations where
both frames occur in the underlying source.

4 Exploration of Frame Embeddings

We aim at empirically analyzing whether F2F rela-
tions from the FN hierarchy are mirrored in frame
embeddings learned on frame-labeled text in the
context of other tasks. Thus, we want to identify
whether a statistical analysis of text-based frame
embeddings naturally yields the FN hierarchy. In-
deed, the F2F relations are manually annotated by
expert linguists but there is no guarantee that F2F
relations can be observed in text. If these relations
could emerge from raw text it would be reassur-
ing for the definitions of the F2F relations that led
to annotations of frame pairs and furthermore the
annotations could be generated automatically. We
hypothesize that distances and directions between
frame embeddings learned on textual data can cor-
respond to F2F relations. Figure 2 exemplifies
this as known from word embeddings by Mikolov
(Mikolov et al., 2013a): it highlights two frame
pairs that are in the same relation: “Attempt” is
in relation precedes with “Success or failure”
and so is “Existence” in relation precedes with
“Ceasing to be” and the connecting vectors are
about the same direction and length.

Figure 2: Intuition for frame embeddings incorpo-
rating F2F relations in vector space.

4.1 Methods
WSABIE frame embeddings Concerning the ma-
trix factorization approach for learning text-based
frame embeddings, we use the code provided by
(Hartmann et al., 2017) as it is publically avail-
able. It is leaned on Hermann’s (2014) descrip-
tion of their state-of-the-art system and achieves
comparable results on FrameId. Our hyperpa-
rameter choices are oriented towards (Hartmann
et al., 2017): embedding dimension 100, maxi-
mum number of negative samples: 100, epochs:
1000 and initial representation of predicate and
context: concatenation of pretrained dependency-
based word embeddings (Levy and Goldberg,
2014).
Word2Vec frame embeddings Concerning the
NN approach for learning text-based frame em-
beddings, we use the Word2Vec implementation
in the python library gensim (Řehůřek and Sojka,
2010). To obtain frame embeddings we follow the
same steps as if we would learn word embeddings
on FN sentences plus we replace all predicates
with their frames. For instance, in the sequence
“Officials claim that Iran has produced bombs”
the predicates “claim” and “bombs” are replaced
by “STATEMENT” and “WEAPON” respectively.
This procedure corresponds to Flekova’s (2016)
setup for learning supersense embeddings and our
hyperparameter choices are oriented towards their
best performing ones: training algorithm: skip-
gram model, embedding dimension: 300, minimal
word frequency: 10, negative sampling of noise
words: 5, window size 2, initial learning rate:
0.025 and iterations: 10.
Prototypical relation embeddings We denote
learned embeddings with −→e1 (for frame f1). We
use the frame embeddings to infer prototypical
F2F relation embeddings −→er with the vector off-
set method in the following way: we denote with
Ir the relation-specific subset of G with all the in-
stances (f1, r, f2) for this relation (see frame pair
counts in Table 1). The vector offset−−−→oe1,e2 for two
frames (f1, f2) is the difference of their embed-
dings, see Equation 1.

offset{f1, f2} = −→e2 −−→e1 (1)

We denote with Or the relation-specific set of
vector offsets of all (f1, f2) ∈ Ir. We de-
fine the prototypical embedding −→er for a rela-
tion r as the mean over all −−−→oe1,e2 ∈ Or. For
visualizations in vector space we use t-SNE-
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plots (t-distributed Stochastic Neighbor Embed-
ding (Maaten and Hinton, 2008) algorithm).
Difficulty of associating frame pairs with pro-
totypical relations The association of the embed-
ding of a frame pair −−−→oe1,e2 ∈ Or with the correct
prototypical relation embedding −→er is easier if the
intra-relation variation (i.e. the deviation of frame
pair embeddings from their prototypical embed-
ding) is smaller than the inter-relation variation
(i.e. the distances between prototypical embed-
dings). This means, the association is easier if two
frame pairs which are members of the same F2F
relation, on average, differ less from each other as
they would differ from a member of another rela-
tion. As a way to capture this difficulty of asso-
ciation we compare the mean cosine distance be-
tween all prototypical relations embeddings −→er of
all r ∈ R to the relation-specific mean cosine dis-
tance between the frame pair embeddings in Or

and the prototypical embedding −→er .

4.2 Experiments and Results

Frame embeddings Once the frame embeddings
are learned, we perform a sanity check for frames
and most similar frame embeddings by cosine sim-
ilarity. Checking the top 10 most similar frame
embeddings confirms that known properties from
word or sense embeddings also apply to frame em-
beddings: their top 10 most similar frames are
semantically related, both for frame embeddings
learned with WSABIE and with Word2Vec. This is
exemplified in Table 3 for the two most frequently
occurring frames in the text data evoked by nouns
(“Weapon”) and by verbs (“Statement”). For both
WSABIE and Word2Vec, in many cases the most
similar frames are obviously semantically related
(which we marked in bold), with some exceptions
where it is hard to judge or related via an asso-

Top 10 most similar frames
frame WSABIE Word2Vec
Weapon Substance, Shoot projectiles, Military, Substance,

Manufacturing, Bearing arms, Operational testing,
Toxic substance, Store, Electricity,

Hostile encounter, Process completed state,
Ingredients, Information, Active substance, Range,

Smuggling, Active substance Estimated value,
Cause to make progress

Statement Evidence, Causation, Reveal secret, Telling,
Topic, Chatting, Complaining, Reasoning,

Point of dispute, Request, Communication response,
Text creation, Awareness, Reassuring,

Cognitive connection, Bragging, Questioning,
Make agreement on action, Cogitation

Communication

Table 3: Top 10 most similar frames to two ex-
emplary most frequent frames.

Figure 3: t-SNE plot of embeddings for two most
frequent relations. Small: frame pair embeddings
(offset). Large: prototypical embeddings (mean).

ciation chain. For the frame “Weapon”, the most
similar frames by Word2Vec are weaker compared
to WSABIE, however this does not allow a general
conclusion over all frames learned with Word2Vec
or WSABIE.
F2F relations To check whether the frame embed-
dings directly mirror F2F relations, we measure
the difficulty of associating frame pairs with the
correct prototypical relation embedding.

First, we visualize the frame pair embeddings
in the training set and the inferred prototypical
relation embeddings in vector space with t-SNE-
plots. Figure 3 depicts examples of WSABIE em-
beddings for the most frequently occurring F2F re-
lations inherits from and uses, and shows
that the prototypical embeddings are very close to
each other, whilst there are no separate relation-
specific clusters for frame pairs. Vector space vi-
sualizations of embeddings stemming from both,
Word2Vec and WSABIE, hint that the embeddings
have difficulties in mirroring the F2F relations.

Second, we quantify the insights from the plots
by comparing the distances between all prototyp-
ical embeddings to the mean over all mean dis-
tances between frame pair embeddings and their
prototypical embeddings. Table 4 lists these vec-
tor space (cosine) distances. It shows that the dis-
tance between the prototypical embeddings (inter-
relation) is smaller than that between frame pair
embeddings and corresponding prototypical em-
beddings (intra-relation). In other words, two
frame pairs which are members of the same rela-
tion, on average, differ as much from each other as
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Mean distances between WSABIE Word2Vec
inter-relation variation 0.73± 0.28 0.76± 0.28
(between prototypes)
intra-relation variation 0.75± 0.04 0.78± 0.05
(between frame pairs
and their prototypes)

Table 4: Cosine distances between the F2F rela-
tion embeddings.

they would differ from a member of another rela-
tion.

To sum up, we find that embeddings of frame
pairs that are in the same relation do not have
a similar vector offset which corresponds to the
F2F relation. The FN hierarchy could not be
reconstructed by the statistical analysis of text-
based embeddings because there is as much intra-
relation variation as inter-relation variation. We
conclude that, concerning the methods we ex-
plored, the frame embeddings learned with WS-
ABIE and Word2Vec have difficulties in showing
structures in vector space corresponding to F2F
relations and that F2F relations might not emerge
purely from textual data. Hence, these text-based
frame embeddings cannot be used as such to reli-
ably infer the correct relation for a frame pair but
might need some advanced learning. In the next
section, we address the prediction of F2F rela-
tions with algorithms involving learning from the
knowledge contained in the FN hierarchy.

5 Frame-to-Frame Relation Prediction

We aim at developing a system for finding the
correct F2F relation given two frames, which can
potentially be used for automatic completion of
the F2F relation annotations in the FN hierarchy.
This task transfers the principles of Link Predic-
tion from KGC to the case of FN. As the pre-
vious experiment suggested that text-based frame
embeddings do not mirror the F2F relations, we
develop a system that learns from the knowl-
edge contained in the FN hierarchy and that uses
pretrained frame embeddings as input representa-
tions. Related work in KGC also demonstrates
the strengths of representations trained directly on
the KG for this task. For our systems involv-
ing learning, we experiment with different em-
beddings as input representations: in addition to
the text-based frame embeddings, we also learn
knowledge-based embeddings for frames and for
F2F relations on the structure of the FN hierarchy
with TransE, an approach well-known from KGC.

We want to quantify which combination of pre-
trained embeddings and system is most promising
for the F2F Relation Prediction task.

5.1 Methods

TransE embeddings In addition to the text-based
frame embeddings, we also learn embeddings for
frames as well as for F2F relations by applying
the well-known translation model TransE. TransE
leverages the structure of the knowledge base,
which is in our case the FN hierarchy with the
collection of the (frame, relation, frame) triples,
and learns low dimensional vector representations
for frames and for F2F relations in the same space.
These embeddings will have the property of be-
ing learned explicitly for incorporating the anno-
tations from the FN hierarchy. Concerning this
knowledge-based approach for learning frame and
F2F relation embeddings, we use an implementa-
tion of TransE provided by (Lin et al., 2015) yield-
ing embeddings of dimension 50.
Neural network for relation selection We pro-
pose a nonlinear model based on NNs to iden-
tify the best F2F relation r between a frame pair
(f1, f2). Figure 4 demonstrates the proposed NN
architecture. Given a training instance, i.e. a triple
(f1, r, f2), we feed a vector representation for each
element into the NN. By default the input vector
representations are initialized randomly but they
can also stem from a pretraining step (more details
in Sec 5.2). Within the NN, the initial vector rep-
resentations of the two frames are combined into
an internal dense layer c, followed by the calcula-
tion of the cosine similarity between this combina-
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𝑓1 

Positive relation: 𝑟 

Embeddings Dense  
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 cos 
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Figure 4: NN architecture for training on the F2F
Relation Prediction task.
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tion and the representation for the F2F relation r.
Meanwhile, a negative relation r′ is sampled ran-
domly (by selecting a F2F relation which does not
hold between the two frames) and its vector rep-
resentation is also fed into the NN. The negative
relation is processed as the correct one, yielding
a second cosine similarity. Finally, the NN mini-
mizes the following ranking loss:

loss = max{0, m− cos(c, r) + cos(c, r′)} (2)

m is a margin and cos is the cosine similarity func-
tion. This means, the internal representations are
trained to maximize the similarity between frame
pair and correct relation and to minimize it for the
negative relation. Our hyperparameter choices are:
epochs: 550, size of dense layers: 128, dropout:
0.2, margin: 0.1, activation function: hyperbolic
tangent, batch size: 2, learning rate 0.001.

5.2 Experiments and Results

Given a triple (f3, r, f4) from the test set, we want
to predict the correct relation r for (f3, f4). As
described in Sec 3, 70% of the triples in the FN
hierarchy are used for training. Our systems are:
• 0a): rand.bsl A random guessing baseline

that chooses a relation randomly out of R.
• 0b): maj.bsl Informed majority baseline that

leverages the skewed distribution in the train-
ing set and predicts most frequent relation.
• 1: off A test of the pretrained frame embed-

dings (WSABIE and Word2Vec) as introduced
in Section 4. It computes the vector offset
−−−→oe3,e4 (therefore “off”) between the test frame
embeddings, measures the similarity with the
prototypical mean relation embeddings −→er of
the training set and ranks the relations with
respect to similarity (cosine) to output the
closest one. No further training with respect
to the FN hierarchy.
• 2: reg A test of the pretrained frame embed-

dings (WSABIE and Word2Vec) as introduced
in Section 4 involving training with respect to
the FN hierarchy. It is a multinomial logistic
regression model (therefore “reg”) that trains
the weights and biases on the training triples.
It takes the test frame embeddings e3, e4 as
input and ranks the prediction for a relation
via the softmax function.
• 3: NN NN architecture as described in Sec-

tion 5.1 for training with respect to the FN
hierarchy in the training triples. By de-

fault, it uses randomly initialized input rep-
resentations, but it can also take pretrained
representations as input: (a) the pretrained
frame embeddings (WSABIE and Word2Vec)
and inferred prototypical mean relation em-
beddings as introduced in Section 4 and (b)
the TransE frame and relation embeddings
trained on the training triples from the FN
hierarchy as introduced in Section 5.1.

To evaluate the predictions of our systems for
the F2F Relation Prediction task, we compare the
measurements of accuracy, mean rank of the true
relation and hits amongst the 5 first predictions,
see Table 5.
Accuracy measures the proportion of correctly
predicted relations amongst all predictions.
For the next two measures, not only the one pre-
dicted relation is of interest, but the ranked list of
all relations with the predicted relation at rank 1.
Mean rank measures the mean of the rank of the
true relation label over all predictions, aiming at
low mean rank (best is mr = 1).
Hits@5 measures the proportion of true relation
labels ranked in the top 5.

The random guessing baseline is a weak base-
line that is outperformed by all approaches. The
informed majority baseline, however, is a strong
baseline given the skewed distribution of F2F re-
lations in the FN hierarchy.

A comparison of this strong baseline with sys-
tem 1 using the text-based frame embeddings (WS-
ABIE and Word2Vec) and the similarity with proto-
typical relation embeddings, emphasizes the diffi-
culties of these embeddings for reconstructing the
F2F relations. Concerning accuracy scores, sys-
tem 1 performs slightly better than the strong base-
line but concerning the other two measures, mean
rank and hits at 5, it is the other way round. An-

System Embed. acc ↑ mr ↓ hits@5 ↑
0: rand.bsl - 7.69 6.5 38.46
0: maj.bsl - 22.48 3.27 87.51
1: off WSABIE 25.22 4.50 68.52
1: off Word2Vec 30.61 4.53 66.96
1: off TransE 51.13 2.99 83.30
2: reg WSABIE 35.65 3.14 84.00
2: reg Word2Vec 41.91 2.81 88.00
2: reg TransE 66.61 1.93 93.22
3: NN random 26.89 3.67 77.00
3: NN WSABIE 27.46 3.59 79.98
3: NN Word2Vec 30.55 3.27 82.61
3: NN TransE 67.73 1.83 94.39

Table 5: Performances on relation prediction task.
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other point made by system 1 is the fact that it does
not involve training on the triples but is still com-
petitive with the strong baseline that leverages the
underlying distribution from the triples. This in-
dicates that to some extent the textual frame em-
beddings still capture useful information for the
F2F Prediction Task. In a further step, we also use
the embeddings pretrained on the F2F relations
of the FN hierarchy (TransE), even if in this set-
ting we do not need to calculate prototypical rela-
tion embeddings as TransE provides embeddings
for frames and relations. Thus, system 1 uses the
TransE embeddings directly to calculate the simi-
larity of the frame embeddings’ vector offset and
the relation embeddings. The large improvement
in all performance measures shows the strength of
knowledge-based embeddings over text-based em-
beddings and confirms the difficulty of text-based
embeddings in reconstructing the F2F relations.

Performance increases with system 2, the soft-
max regression model involving learning. This
shows the effect of training with respect to the F2F
relations. It indicates that training should be in-
volved for leveraging the text-based frame embed-
dings in the F2F Prediction Task. Using embed-
dings pretrained on the F2F relations of the FN
hierarchy (TransE) instead, again leads to a large
improvement in all performance measures. This
confirms that embeddings designed to incorporate
the knowledge from the FN hierarchy are better
suited for the F2F relation prediction task and it
emphasizes the large improvement over the textual
embeddings.

Overall, we achieve best results in all per-
formance measures with system 3, the NN ap-
proach, in combination with the knowledge-based
TransE embeddings as input representations. In-
terestingly, the difference between NN and the re-
gression model is only marginal when using the
TransE embeddings, indicating the crucial influ-
ence of the knowledge-based embeddings and not
necessarily the system. Moreover, when using the
text-based WSABIE and Word2Vec the softmax re-
gression model is stronger than the NN, which
might be due to little training data. Furthermore,
the randomly initialized embeddings for system
3 could be seen as another baseline which is not
only beaten by the knowledge-based TransE em-
beddings but also by the text-based WSABIE and
Word2Vec embeddings in systems 2 and 3. This
again indicates the capability of the textual frame

Figure 5: Relation-specific analysis of the best-
performing model with respect to accuracy.

embeddings of capturing useful information for
the F2F Prediction Task to at least some extent.

The systems could reach higher scores if the
split of the data into training and test triples would
be done random per relation such that the train and
test set have some (random) relation-specific over-
lap in frames on the position f1 in the triple. But
in this case, it would not clear whether the sys-
tems would just perform “lexical memorization”
as pointed out by (Levy et al., 2015) when the test
set contains partial instances that were in the train-
ing set. We leave it for future work to contrast and
explore different splits, e.g., random split, zero-
overlap by relation or by all relations.

To sum up, on the one hand, the results con-
firm the conclusions from the exploration in Sec-
tion 4: the frame embeddings learned on frame-
labeled text in the context of other tasks are not
able to reliably mirror the F2F relations, not even
when used as input representations to a classifier.
On the other hand, our results clearly emphasize
the influence of the knowledge-based embeddings
on the performance of our best-performing sys-
tem. Thus, we propose this NN architecture in
combination with the TransE embeddings as the
first system for automatic F2F relation annotation
for frame pairs in the FN hierarchy.

Figure 5 depicts a relation-specific analysis of
the best-performing model showing good perfor-
mances (above 60% accuracy) for frequent rela-
tions, a drop for the less frequent precedence
relations and no capability at all in predicting in-
frequent relations, such as is Causative of,
see Also and is Inchoative of.

5.3 Demonstration of Predictions

We generically demonstrate the best-performing
system’s prediction for examples of frame pairs
which are not annotated so far. Looking back at
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(f1, f2) top 3 F2F relation predictions
(Biological urge, Subframe of,
Sleep wake cycle) Inherits from, Uses
(Biological urge, Is Inherited by,
Being awake) Precedes, Is Preceded by
(Biological urge, Is Inherited by,
Fall asleep) Precedes, Is Preceded by

Table 6: F2F relation predictions of best system.

the motivational example from the beginning, Fig-
ure 1 illustrated the incompleteness of the FN hier-
archy at the F2F relation level with the example
of a possibly missing precedence relation from
“Being awake” to “Biological urge” (evoked by
the predicate “tired”). Table 6 displays the top 3
F2F relation predictions for the frame pairs around
“Biological urge” in the figure. The expected F2F
relation (printed bold) is indeed amongst the top
3 predictions of the best performing system for
this example, even for the precedence relation
which is rather underrepresented in the data. If
this system was used to make suggestions to hu-
man expert annotators, they should be informed
about the system being biased against the infre-
quent relations. However, it is hard to do a proper
manual evaluation as judging the suggested re-
lations requires expert knowledge of the defini-
tions and annotation best-practices for the F2F re-
lations. We propose using the best-performing
system for semi-automatic FN completion on the
relation level in cooperation with FN annotation
experts. The system can be used to make reason-
able suggestions of relations for frame pairs and
the final decision could be made by experienced
FN annotators. This would be a first step towards
improving the incompleteness of F2F relation an-
notations in FN, which in turn could improve the
performance in other tasks that take these F2F re-
lations as input.

6 Discussion and Future Work

As the F2F relations of the FN hierarchy did not
emerge from frame embeddings learned on frame-
labeled text, the F2F relations should be seen
as meta-structures not having direct evidence in
text. On the one hand, more advanced approaches
might be needed to distill F2F relations for frames
occurring in raw text, by learning about common-
sense knowledge involving frames, and then infer-
ring the implicit relations. Here, it could also be
helpful to exploit inter-sentential clues e.g., event
chains, to enrich the frame embeddings which so

far are built on sentence-level. On the other hand,
the automatic completion of F2F relations can rely
on knowledge-based embeddings trained on the
hierarchy. To this end, an expert evaluation of
the best-performing system’s predictions for frame
pairs could give clues for further system improve-
ments. It could also yield an expert upper bound
and may pave the way for developing advanced
systems using frame embeddings for the predic-
tion of F2F relations. Finally, we plan to inves-
tigate the case of FN for embeddings learned on
both, frame-labeled texts and F2F relation annota-
tions. By having such a combination, the limita-
tion of the text-based embeddings on frames that
have LUs (and hence occur in text) can be over-
come as the knowledge-based embeddings also
have access to frames without LUs. Last but not
least, for different tasks, different representations
of frames and relations might be better suited: em-
beddings purely learned on text, or embeddings
purely learned on the FN hierarchy, or a combi-
nation of both.

7 Conclusion

We raised the question whether text-based frame
embeddings naturally mirror F2F relations in the
FN hierarchy. We set up the F2F Relation Pre-
diction task as an adaptation of the link prediction
task from KGC to the case of FN. Through this
task, we quantify the ability of systems and em-
beddings to predict F2F relations. The F2F Re-
lation Prediction task addresses the need for auto-
matically completing F2F relations that are used in
down-stream tasks. Our best-performing system
for predicting F2F relations is a NN trained on the
FN hierarchy and uses knowledge-based embed-
dings that by design incorporate the F2F relation.
It can be used to suggest more F2F relation anno-
tations in the FN hierarchy. The comparison of our
different systems and embeddings reveals insights
about the difficulty of reconstructing F2F relations
purely from text. We encourage the development
of advanced systems and embeddings for the F2F
Relation Prediction task.
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