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Abstract

Many domain adaptation approaches rely
on learning cross domain shared represen-
tations to transfer the knowledge learned
in one domain to other domains. Tradi-
tional domain adaptation only considers
adapting for one task. In this paper, we
explore multi-task representation learning
under the domain adaptation scenario. We
propose a neural network framework that
supports domain adaptation for multiple
tasks simultaneously, and learns shared
representations that better generalize for
domain adaptation. We apply the pro-
posed framework to domain adaptation
for sequence tagging problems consider-
ing two tasks: Chinese word segmenta-
tion and named entity recognition. Exper-
iments show that multi-task domain adap-
tation works better than disjoint domain
adaptation for each task, and achieves the
state-of-the-art results for both tasks in the
social media domain.

1 Introduction

Many natural language processing tasks have
abundant annotations in formal domain (news ar-
ticles) but suffer a significant performance drop
when applied to a new domain, where only a small
number of annotated examples are available. The
idea behind domain adaptation is to leverage an-
notations from high-resource (source) domains to
improve predictions in low-resource (target) do-
mains by training a predictor for a single task
across different domains.

Domain adaptation work tends to focus on
changes in data distributions, e.g.  different
words are used in each domain. Domain adapta-
tion methods include unsupervised (Blitzer et al.,
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2006) and supervised (Daumé III, 2007) variants,
depending on whether there exists no or some
training data in the target domain. This paper con-
siders the case of supervised domain adaptation,
where we have a limited amount of target domain
training data, but much more training data in a
source domain.

Work on domain adaptation mostly follows two
approaches: parameter tying (i.e. linking simi-
lar features during learning) (Dredze and Cram-
mer, 2008; Daumé III, 2007, 2009; Finkel and
Manning, 2009; Kumar et al., 2010; Dredze et al.,
2010), and learning cross domain representations
(Blitzer et al., 2006, 2007; Glorot et al., 2011;
Chen et al., 2012; Yang and Eisenstein, 2015).
Often times, domain adaptation is formulated as
learning a single model for the same task across
domains, although with a focus on maximiz-
ing target domain performance. This is simi-
lar in spirit to multi-task learning (MTL) (Caru-
ana, 1997) which jointly learns models for sev-
eral tasks, for example. learning a single data
representation common to each task (Ando and
Zhang, 2005; Collobert et al., 2011; Liu et al.,
2016c; Peng and Dredze, 2016; Yang et al., 2016;
Liu et al., 2016a). Given the similarity between
domain adaptation and MTL, it is natural to ask:
can domain adaptation benefit from jointly learn-
ing across several tasks?

This paper investigates how MTL can in-
duce better representations for domain adaptation.
There are several benefits. First, learning multi-
ple tasks provides more training data for learning.
Second, MTL provides a better inductive learn-
ing bias so that the learned representations bet-
ter generalize. Third, considering several tasks in
domain adaptation opens up the opportunities to
adapt from a different domain and a different task,
a mismatch setting which has not previously been
explored. We present a representation learning
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framework based on MTL that incorporates pa-
rameter tying strategies common in domain adap-
tation. Our framework is based on a bidirec-
tional long short-term memory network with a
conditional random fields (BiLSTM-CRFs) (Lam-
ple et al., 2016) for sequence tagging. We consider
sequence tagging problem since they are common
in NLP applications and have been demonstrated
to benefit from learning representations (Lample
et al., 2016; Yang et al., 2016; Peng and Dredze,
2016; Ma and Hovy, 2016).
This paper makes the following contributions:

* A neural MTL domain adaptation framework
that considers several tasks simultaneously
when doing domain adaptation.

* A new domain/task mismatch setting: where
you have two datasets from two different, but
related domains and tasks.

* State-of-the-art results on Chinese word seg-
mentation and named entity recognition in
social media data.

2 Model

We begin with a brief overview of our model, and
then instantiate each layer with specific neural ar-
chitectures to conduct multi-task domain adapta-
tion for sequence tagging. Figure 1 summarizes
the entire model presented in this section.

A representation learner that is shared across all
domains and tasks, and learns robust data repre-
sentations for features. This feeds a domain pro-
jection layer, with one projection for each domain
that transforms the learned representations for dif-
ferent domains into the same shared space. As
a result, the final layer of task specific models,
which learns feature weights for different tasks,
can be shared across domains since the learned
representations (features) for different domains
are now in the same space. The framework is flex-
ible in both the number of tasks and domains. In-
creasing the number of domains linearly increases
domain projection parameters, with the number
of other model parameters unchanged. Similarly,
increasing the number of tasks only linearly in-
creases the number of task specific model param-
eters. If there is only one domain, then the frame-
work reduces to a multi-task learning framework,
and similarly, the framework reduces to a standard
domain adaptation framework if there is only one
task.
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Figure 1: An overview of our proposed model
framework. The bottom layer is shared by all tasks
and domains. The domain projections contain one
projection per domain and the task specific models
(top layer) contain one model per task.

The shared representation learner, domain pro-
jections and task specific models can be instanti-
ated based on the application. In this paper, we fo-
cus on sequence tagging problems. We now intro-
duce our instantiated neural architecture for multi-
task domain adaptation for sequence tagging.

2.1 BILSTM for representation learning

Long short-term memory (LSTM) (Hochreiter and
Schmidhuber, 1997) is a type of recurrent neural
network (RNN) that models interdependencies in
sequential data. It addresses the vanishing or ex-
ploding gradients (Bengio et al., 1994; Pascanu
et al., 2013) problems of vanilla RNNs by using
a series of gates (input, forget and output gates) to
control how memory is propagated in the hidden
states of the model, and thus effectively captures
long-distance dependencies between the inputs.
Many NLP applications use bi-directional
LSTMs (BiLSTM) (Dyer et al., 2015) to scan both
left-to-right and right-to-left, which capture left
and right context. The hidden vectors produced
by both LSTMs are concatenated to form the final
output vector hy EZ & E BiLSTMs have be-
come a common building block for learning rep-
resentations in NLP and have achieved impres-
sive performance in problems such as sequence
tagging (Lample et al., 2016; Yang et al., 2016;
Ma and Hovy, 2016), relation classification (Xu
et al., 2015; Zhang et al., 2015), and syntactic
parsing (Kiperwasser and Goldberg, 2016; Cross



and Huang, 2016). We use a BiLSTM as our rep-
resentation learner. It produces a hidden vector for
each token in the sentence, which we denote as:

)

where 1., denotes the whole input sequence of
length n, and ¢ denotes the ¢-th position. The rep-
resentation for the whole sequence is thus denoted
ash = hi.p,.

hy = BiLSTM (211, )

2.2 Domain Projections

Domain adaptation requires learning a shared rep-
resentation that generalizes across domains. Ide-
ally, parameter estimation of the BiLSTM should
learn to produce such robust features. However,
this may place a heavy burden on the BiLSTM;
it does not know the identity of each domain yet
must still learns how to map two heterogeneous
input types to the same representation. To re-
duce this burden, we introduce a domain projec-
tion layer, which relies on explicit domain spe-
cific transformation functions to produce shared
representations. We place this transformation be-
tween the representation learner and the task spe-
cific predictor to alleviates pressure on the repre-
sentation learner to learn cross domain representa-
tions. Note that the domain projection layer works
Jjointly with the representation learner to produce
shared representations. We experiment with two
simple strategies for domain projections which are
based on previous lines of work in domain adapta-
tion.

2.2.1 Domain Masks

The first strategy is inspired by Daumé III (2007)
and Yang and Hospedales (2015), which split the
representations into several regions, with one re-
gion shared among domains, and others specific
for each domain. As a result, the BiLSTM repre-
sentation learner will learn to put the features that
are suitable to be shared across domains into the
shared region, and domain specific features to the
corresponding region for the domain.

We implement this strategy by defining domain
masks my, which is a vector for the dth domain.
The mask 1m, has value 1 for the effective dimen-
sions of domain d and domain shared region, and
0 for all other dimensions. For example, assume
we have two domains and a k dimensional hid-
den vector for features, the first k/3-dimensions is
shared between the two domains, while the & /341
to 2k/3 dimensions are used only for domain 1,
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and the remaining dimensions for domain 2. The
mask for domain 1 and domain 2 would be:

- -

1, 0],

ms = [1,0, 1.
We can then apply these masks directly to the hid-

den vectors h learned by the BiLSTM to produce
a projected hidden state h:

mi = [T)

2

~

h=my;0Oh, 3)
where © denotes element-wise multiplication.
Since only a subset of the dimensions are used as
features in each domain, the BiILSTM will be en-
couraged to learn to partition the dimensions of the
output hidden vectors into domains.

Note that in Daumé III (2007), the domain
masks operate on hand engineered features, thus
only affect feature weights. However, here the do-
main masks will change the parameters learned in
BiLSTMs as well, changing the learned features.
Therefore, training data from one domain will also
change the other domains’ representation. When
we jointly train with data from all domains, the
model has to balance the training objectives for all
domains simultaneously.

2.2.2 Linear Projection

The second domain adaptation strategy we explore
is a linear transformation to each domain, denoted
as Ty. Given a k-dimensional vector representa-
tion h, Ty is a k x k matrix that projects the learned
BiLSTM hidden vector to a common space that
can be used by a shared task specific model. We
use the transformation:

“

We learn Ty for each domain jointly with other
model parameters. While this model has greater
freedom in learning representations across do-
mains, it relies on the training data to learn a good
transformation, and does not explicitly partition
the representations into domain regions.

2.3 Task Specific Neural-CRF Models

Multi-task domain adaptation simultaneously con-
siders several tasks adapting domains since the re-
lated tasks would help induce more robust data
representations for domain adaptation. Addition-
ally, it enables leveraging more data to learn better
domain projections. The goal of a task specific
model is to learn parameters to project the shared



representations to the desired outputs for the corre-
sponding task. Different tasks that define different
output spaces need separate task specific models.

For our applications to sequence tagging prob-
lems, we choose Conditional Random Fields
(CRFs) (Lafferty et al., 2001) as task specific mod-
els, since it is widely used in previous work and
is shown to benefit from learning representations
(Peng and Dredze, 2015; Lample et al., 2016; Ma
and Hovy, 2016). These “Neural-CRFs” define
the conditional probability of a sequence of labels
given the input as:

p(y"lz W) =

H?:l eXp (WTF(yi'zlv yf) 1/)(mk)))

7k

where ¢ indexes the position in the sequence, F' is
the feature function, and +(z*) defines a transfor-
mation of the original input, in our case v (x*)
BiLSTM (z*). ZF is the partition function de-
fined as:
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2.3.1 Sharing Task Specific Models

We could create a CRF decoder for each task and
domain. This is the practice of some (Yang and
Hospedales, 2015) who consider domain adapta-
tion, or multi-domain learning, a special case of
MTL, and learn separate models for the same task
from different domains.

Instead, we argue that learning a single model
for a task regardless of the number of domains
draws strong connections to the traditional domain
adaptation literature. It enjoys the benefit of in-
creasing the amount of training data for each task
by considering different domains, and better han-
dles the problem of shifts in data distributions by
explicitly considering different domains. There-
fore, we use a single CRF per task, shared across
all domains.

3 Parameter Estimation

The proposed neural architecture for multi-task
domain adaptation can be trained end-to-end by
maximizing data log-likelihood. As there are
D x T ! datasets, the final loss function is a linear
combination of the log-likelihood of each dataset.
For simplicity, we give each dataset equal weight
when forming the linear combination.

'D denotes the number of domains and T the number of
tasks
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Training Model training is a straightforward ap-
plication of gradient based back-propagation. We
use alternating optimization among each dataset
with stochastic gradient descent (SGD). To pre-
vent training from skewing the model to a specific
dataset due to the optimization order, we subsam-
ple the number of instances used in each epoch
with a fraction A\ w.r.t. the smallest dataset size,
which is tuned as a hyper-parameter on develop-
ment data. A separate learning rate is tuned for
each dataset, and we decay the learning rate when
results on development data do not improve af-
ter 5 consecutive epochs. We train for up to 30
epochs and use early stopping (Caruana et al.,
2001; Graves et al., 2013) as measured on devel-
opment data. We select the best model for each
dataset based on hyper-parameter tuning. We use
dropout on the embeddings and the BiLSTM out-
put vectors as in Ma and Hovy (2016).

Initialization We use pre-trained Chinese em-
beddings provided by Peng and Dredze (2015)
with dimension 100. All other model parameters
are initialized uniformly at random in the range of
[—1,1].

Inference For training the CRFs, we use
marginal inference and maximize the marginal
probabilities of the labels in the training data. At
test time, the label sequence with highest condi-
tional probability y* = argmax p(y|x; ) is ob-
tained by MAP inference.

Hyper-parameters Our hyper-parameters in-
clude the initial learning rate (per dataset, in the
range of [0.005, 0.01, 0.02]), the dropout rate for
the input embedding and the hidden vectors (in the
range of [0, 0.1, 0.2]), and the subsample coeffi-
cient for each setting (in the range of [5, 10, 15]).
We tune these hyper-parameter using beam search
on development data. For convenience, the em-
bedding and the LSTM hidden vector dimensions
are set to 100 and 150 respectively.

4 Experimental Setup

We test the effectiveness of the multi-task domain
adaptation framework on two sequence tagging
problems: Chinese word segmentation (CWS) and
named entity recognition (NER). We consider two
domains: news and social media, with news the
source domain and social media the target domain.



Dataset #Train #Dev #Test
SighanCWS 39,567 4,396 4,278
SighanNER 16,814 1,868 4,636
WeiboCWS 1,600 200 200
WeiboNER 1,350 270 270

Table 1: Datasets statistics.

4.1 Datasets

We consider two domains: news and social me-
dia for the two tasks: CWS and NER. This re-
sults in four datasets: news CWS data comes
from the SIGHAN 2005 shared task (SighanCWS)
(Emerson, 2005), news NER data comes from the
SIGHAN 2006 shared task (SighanNER) (Levow,
2006), social CWS data (WeiboSeg) created by
Zhang et al. (2013), and social NER data (Wei-
boNER) created by Peng and Dredze (2015).

Both SighanCWS and SighanNER contain sev-
eral portions?; we use those for simplified Chi-
nese (PKU and MSR respectively). The datasets
do not have development data, so we hold out the
last 10% of training data for development. Sighan-
NER contains three entity types (person, organiza-
tion and location), while WeiboNER is annotated
with four entity types (person, organization, loca-
tion and geo-political entity), including named and
nominal mentions. To match the two tag sets, we
only use named mentions in WeiboNER and merge
geo-political entities and locations. The 2000 an-
notated instances in WeiboSeg were meant only
for evaluation, so we split the data ourselves us-
ing an 8:1:1 split for training, development, and
test. Hyper-parameters are tuned on the develop-
ment data and we report the precision, recall, and
F1 score on the test portion. Detailed data statis-
tics is shown in Table 1.

4.2 Baselines

We consider two baselines common in domain
adaptation experiments. The first baseline only
considers a single dataset at a time (separate) by
training separate models just on in-domain train-
ing data. The second baseline (mix) uses out-of-
domain training data for the same task by mix-
ing it with the in-domain data. For both the base-
lines, we use the BILSTM-CRFs neural architec-

>The portions are annotated by different institutes, and
cover both traditional and simplified Chinese
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Figure 2: The effect of training data size on so-
cial media CWS (top) and NER (bottom) tasks.
With more in-domain training data we see dimin-
ishing returns from domain adaptation. Our pro-
posed multi-task domain adaptation framework is
also applicable for unsupervised domain adapta-
tion (with no in-domain training data).

ture (Lample et al., 2016), which achieved state-
of-the-art results on NER and other sequence tag-
ging tasks (Peng and Dredze, 2016; Ma and Hovy,
2016; Yang et al., 2016).

S Experimental Results

5.1 Main Results

Table 2 presents the results for domain adaptation
to the target domain (social media) test data . The
baseline method Mix improves over Separate as it
benefits from the increased training data. The sin-
gle task domain adaptation models are a special
case of the proposed multi-task domain adapta-
tion framework: with only one task specific model
in the top layer (CWS or NER). Both of our ap-
proaches (domain mask and linear projection) im-
prove over the baseline methods. Knowing the do-
main of the training data helps the model better
learn effective representations. Finally, we see fur-
ther improvements in the multi-task domain adap-
tation setting. By considering additional tasks in



Settings Datasets CWS NER
Methods Prec Recall F1 Prec Recall F1
Baseline Separate 86.2 85.7 86.0 57.2 42.1 48.5
Mix 87.0 86.1 86.5 60.9 44.0 ol1.1
Domain Adapt D'omain M'ask' 88.7 87.1 87.9 68.2 48.6 56.8
Linear Projection 88.0 87.5 87.7 73.3 45.8 56.4
. Domain Mask 89.7 88.3 89.0 60.2 52.3 59.9
Multi-task DA | 4 Projection | 89.1 886 889 | 686 495 575

Table 2: Test results for CWS and Chinese NER on the target social media domain. The first two rows
are baselines (Section 4.2,) followed by two domain adaptation models that only considers one task a
time. The last two rows are the proposed multi-task domain adaptation framework building upon the two
domain adaptation models, respectively. Domain adaptation models leverage out-of-domain training data
and significantly improve over the Separate baseline, as well as the Mix baseline which trains with the
out-of-domain data without considering domain shift. Multi-task domain adaptation further significantly
improves over traditional domain adaptation on both domain adaptation models and achieved the new

state-of-the-art results on the two tasks.

addition to domains, we achieve new state-of-the-
art results on the two tasks. We compare to the
best published results from Zhang et al. (2013) and
Peng and Dredze (2016) with F1 scores of 87.5%
(CWS) and 55.3% (NER), respectively.

Statistical Significance We measures statistical
significance using McNemars chi-square test (Mc-
Nemar, 1947) for paired significant test. We
treated the predicted spans (not tokens) that agreed
with the ground truth as positive, otherwise nega-
tive. For the NER task, we only count the spans
that corresponds to named entities. We compare
the best baseline (mix) and the two domain adapta-
tion models, as well as between the domain adap-
tation models and their multi-task domain adap-
tation counterpart. Both the domain adaptation
models significantly improved over the mix base-
line (p < 0.01), and the multi-task domain adap-
tation methods significantly improved over their
single task domain adaptation counterpart (p <
0.01). We cannot conduct paired significance tests
with the best published results since we do not
have access to their outputs.

5.2 In-domain Training Data

We also conducted several experiments to show
the flexibility of our multi-task domain adaptation
framework and analyze the behavior of the models
by varying the training data.

We first consider the effect of in-domain train-
ing data size. Figure 2 shows the test F1 for the
Separate baseline which only considers in-domain
training data compared with both a single-task do-
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main adaptation model and a multi-task domain
adaptation model. For simplicity, we only show
the curve for the Domain Mask variant. As ex-
pected, we observe diminishing returns with addi-
tional in-domain training data on both tasks, but
domain adaptation and multi-task domain adapta-
tion methods suffer less from the diminishing re-
turn, especially on the NER task (Figure 2a). The
curves for domain adaptation and multi-task do-
main adaptation also appear to be smoother, as
they leverage more data to learn input represen-
tations, and thus are more robust.

When we have no in-domain training data, the
problem reduces to unsupervised domain adap-
tation. Our framework applies here as well,
and multi-task domain adaptation achieves perfor-
mance close to the Separate baseline with only
200 in-domain training examples.

5.3 Model Variations

The multi-task domain adaptation framework is
flexible regarding the number of domains and
tasks, thus the number of datasets. Table 3 shows
the results for several model variations, grouped
by the number of training datasets. With one
dataset, it is just the standard supervised learning
setting, which reduces to our Separate baseline.
With two datasets, the framework can do multi-
task learning (with two datasets from the same do-
main but different tasks), single task domain adap-
tation (with two datasets for the same task but
from different domains), and a novel mismatch
setting (with two datasets from both different do-
mains and different tasks). As shown in the second



Dataset Numbers Datasets CWS NER
Methods Prec  Recall F1 Prec  Recall F1
One Dataset Separate 86.2 85.7 86.0 | 57.2 42.1 48.5
Multi-task 87.7 86.2 86.9 | 59.1 44.9 51.1
Two Datasets Domain Adaptation | 88.7 87.1 87.9 | 68.2 48.6 56.8
Mismatch 87.8 86.3 87.1 | 60.8 45.0 51.7
Four Datasets All Multi-task 88.7 87.7 88.2 | 67.2 48.5 56.4
Multi-task DA 89.7 88.3 89.0 | 60.2 52.3 59.9

Table 3: Model variations grouped by number of training datesets.

section of Table 3, including additional training
data — no matter from another task, domain or both
— always improves the performance. A hidden fac-
tor not shown in the table is the additional dataset’s
size. For multi-task learning, since we are look
at the social media domain, the additional dataset
size is small. This is probably the reason why the
Mismatch setting leveraging data from a different
task and domain surprisingly outperformed multi-
task learning. Domain adaptation enjoys both the
benefits of a large amount of additional training
data and an aligned task, thus achieving the best
results among the two dataset settings.

When conducting multi-task domain adapta-
tion, we are leveraging four datasets. One concern
is that the performance gains only come from ad-
ditional training data, instead of the deliberately
designed framework (Joshi et al., 2012). We thus
also compare with a strategy which treats the same
task for a different domain as a different task. The
corresponding neural architecture is a shared Bil-
STM with four separate task-specific models: we
call it the All Multi-task setting. The results show
that explicitly modeling data domains gives ex-
tra benefit than blindly throwing in more training
data. We found the same benefits when experi-
menting with three datasets (instead of 2 or 4).

6 Related Work

The previous work on domain adaptation exclu-
sively focused on building a unified model for a
task across domain. However, we argue that a flex-
ible framework for domain adaptation on several
tasks simultaneously would be beneficial. To the
best of our knowledge, the work that is closest to
ours is Yang and Hospedales (2015), which pro-
vided a unified perspective for multi-task learning
and multi-domain learning (a more general case
of domain adaptation) under the same perspective
of representation learning. However, they only fo-
cused on exploring the common ground of multi-
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task learning and multi-domain learning, and did
not explore the possibility of having multi-task
learning to help domain adaptation. We briefly
review previous work on domain adaptation and
multi-task learning below.

6.1 Domain Adaptation

In domain adaptation, or more general multi-
domain learning, the goal is to learn a single model
that can produce accurate predictions for multi-
ple domains. An important characteristic of learn-
ing across domains is that each domain represents
data drawn from a different distribution, yet share
many commonalities. The larger the difference be-
tween these distributions, the larger the general-
ization error when learning across domains (Ben-
David et al., 2010; Mansour et al., 2009).

As aresult, a long line of work in multi-domain
learning concerns learning shared representations,
such as through identifying alignments between
features (Blitzer et al., 2007, 2006), learning with
deep networks (Glorot et al., 2011), using trans-
fer component analysis (Pan et al., 2011), learning
feature embeddings (Yang and Eisenstein, 2015)
and kernel methods for learning low dimensional
domain structures (Gong et al., 2012), among oth-
ers. Another line sought for feature weight tying
(Dredze and Crammer, 2008; Daumé III, 2007,
2009; Finkel and Manning, 2009; Kumar et al.,
2010; Dredze et al., 2010) to transfer the learned
feature weights across domains.

We combined the two lines and explored joint
learning with multiple tasks.

6.2 Multi-task Learning

The goal of MTL (Caruana, 1997; Ando and
Zhang, 2005) is to improve performance on dif-
ferent tasks by learning them jointly.

With recent progress in deep representation
learning, new work considers MTL with neural
networks in a general framework: learn a shared



representations for all the tasks, and then a task
specific predictor. The representations shared by
tasks go from lower level word representations
(Collobert and Weston, 2008; Collobert et al.,
2011), to higher level contextual representations
learned by Recurrent Neural Networks (RNNs)
(Liu et al., 2016b; Yang et al., 2016; Peng et al.,
2017) or other neural architectures (Liu et al.,
2016a; Sggaard and Goldberg, 2016; Benton et al.,
2017). MTL has helped in many NLP tasks,
such as sequence tagging (Collobert et al., 2011;
Peng and Dredze, 2016; Sggaard and Goldberg,
2016; Yang et al., 2016), text classification (Liu
et al., 2016b,a), and discourse analysis (Liu et al.,
2016c).

We expand the spectrum by exploring how
multi-task learning can help domain adaptation.

7 Conclusion

We have presented a framework for multi-task
domain adaptation, and instantiated a neural ar-
chitecture for sequence tagging problems. The
framework is composed of a shared representation
learner for all datasets, a domain projection layer
that learns one projection per domain, and a task-
specific model layer that learns one set of feature
weights per task. The proposed neural architecture
can be trained end-to-end, and achieved the state-
of-the-art results for Chinese word segmentation
and NER on social media domain.

With this framework in mind, there are several
interesting future directions to explore. First, we
considered common domain adaptation schemas
with our domain mask and linear projection. How-
ever, there are many more sophisticated methods
that we can consider integrating into our model
(Blitzer et al., 2007; Yang and Eisenstein, 2015).
Second, we only experimented with sequence tag-
ging problems. However, the proposed framework
is generally applicable to other problems such as
text classification, parsing, and machine transla-
tion. We plan to explore these applications in the
future. Finally, our work draws on two traditions
in multi-domain learning: parameter sharing (on
the task specific models) and representation learn-
ing (the shared representation learner). We plan to
explore how other domain adaptation methods can
be realized in a deep architecture.
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