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Abstract

In this paper we propose a neural network
model with a novel Sequential Attention
layer that extends soft attention by assign-
ing weights to words in an input sequence
in a way that takes into account not just
how well that word matches a query, but
how well surrounding words match. We
evaluate this approach on the task of read-
ing comprehension (on the Who did What
and CNN datasets) and show that it dra-
matically improves a strong baseline—the
Stanford Reader—and is competitive with
the state of the art.

1 Introduction

Soft attention (Bahdanau et al., 2014), a differen-
tiable method for selecting the inputs for a com-
ponent of a model from a set of possibilities, has
been crucial to the success of artificial neural net-
work models for natural language understanding
tasks like reading comprehension that take short
passages as inputs. However, standard approaches
to attention in NLP select words with only very in-
direct consideration of their context, limiting their
effectiveness. This paper presents a method to
address this by adding explicit context sensitivity
into the soft attention scoring function.

We demonstrate the effectiveness of this ap-
proach on the task of cloze-style reading compre-
hension. A problem in the cloze style consists of
a passage p, a question q and an answer a drawn
from among the entities mentioned in the pas-
sage. In particular, we use the CNN dataset (Her-
mann et al., 2015), which introduced the task into
widespread use in evaluating neural networks for
language understanding, and the newer and more

∗ These authors contributed equally to this work.

Figure 1: The Sequential Attention Model. RNNs
first encode the question into a vector j and the
document into a sequence of vectors H . For each
word index i in the document, a scoring vector
γi is then computed from j and hi using a func-
tion like the partial bilinear function shown here.
These vectors are then used as inputs to another
RNN layer, the outputs of which (ηi) are summed
elementwise and used as attention scores (αi) in
answer selection.

carefully quality-controlled Who did What dataset
(Onishi et al., 2016).

In standard approaches to soft attention over
passages, a scoring function is first applied to ev-
ery word in the source text to evaluate how closely
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that word matches a query vector (here, a func-
tion of the question). The resulting scores are then
normalized and used as the weights in a weighted
sum which produces an output or context vector
summarizing the most salient words of the input,
which is then used in a downstream model (here,
to select an answer).

In this work we propose a novel scoring func-
tion for soft attention that we call Sequential At-
tention (SA), shown in Figure 1. In an SA model,
a mutiplicative interaction scoring function is used
to produce a scoring vector for each word in the
source text. A newly-added bidirectional RNN
then consumes those vectors and uses them to pro-
duce a context-aware scalar score for each word.
We evaluate this scoring function within the con-
text of the Stanford Reader (Chen et al., 2016),
and show that it yields dramatic improvements
in performance. On both datasets, it is outper-
formed only by the Gated Attention Reader (Dhin-
gra et al., 2016), which in some cases has access
to features not explicitly seen by our model.

2 Related Work

In addition to Chen et al. (2016)’s Stanford Reader
model, there have been several other modeling ap-
proaches developed to address these reading com-
prehension tasks.

Seo et al. (2016) introduced the Bi-Directional
Attention Flow which consists of a multi-stage hi-
erarchical process to represent context at different
levels of granularity; it use the concatenation of
passage word representation, question word repre-
sentation, and the element-wise product of these
vectors in their attention flow layer. This is a more
complex variant of the classic bi-linear term that
multiplies this concatenated vector with a vector
of weights, producing attention scalars. Dhingra
et al. (2016)’s Gated-Attention Reader integrates a
multi-hop structure with a novel attention mecha-
nism, essentially building query specific represen-
tations of the tokens in the document to improve
prediction. This model conducts a classic dot-
product soft attention to weight the query repre-
sentations which are then multiplied element-wise
with the context representations, and fed into the
next layer of RNN. After several hidden layers that
repeat the same process, the dot product between
the context representation and the query is used to
compute a classic soft-attention.

Outside the task of reading comprehension

there has been other work on soft attention over
text, largely focusing on the problem of attending
over single sentences. Luong et al. (2015) study
several issues in the design of soft attention mod-
els in the context of translation, and introduce the
bilinear scoring function. They also propose the
idea of attention input-feeding where the original
attention vectors are concatenated with the hidden
representations of the words and fed into the next
RNN step. The goal is to make the model fully
aware of the previous alignment choices.

In work largely concurrent to our own, Kim
et al. (2017) explore the use of conditional random
fields (CRFs) to impose a variety of constraints on
attention distributions achieving strong results on
several sentence level tasks.

3 Modeling

Given the tuple (passage, question, answer), our
goal is to predict Pr(a|d, q) where a refers to an-
swer, d to passage, and q to question. We define
the words of each passage and question as d =
d1, .., dm and q = q1, ..., ql, respectively, where
exactly one qi contains the token @blank, repre-
senting a blank that can be correctly filled in by the
answer. With calibrated probabilities Pr(a|d, q),
we take the argmaxa Pr(a|d, q) where possible
a’s are restricted to the subset of anonymized en-
tity symbols present in d. In this section, we
present two models for this reading comprehen-
sion task: Chen et al. (2016)’s Stanford Reader,
and our version with a novel attention mechanism
which we call the Sequential Attention model.

3.1 Stanford Reader

Encoding Each word or entity symbol is
mapped to a d-dimensional vector via embedding
matrix E ∈ Rd×|V |. For simplicity, we de-
note the vectors of the passage and question as
d = d1, .., dm and q = q1, ..., ql, respectively.
The Stanford Reader (Chen et al., 2016) uses bidi-
rectional GRUs (Cho et al., 2014) to encode the
passage and questions. For the passage, the hid-
den state is defined: hi = concat(

−→
hi,
←−
hi). Where

contextual embeddings di of each word in the pas-
sage are encoded in both directions.

←−
hi = GRU(

←−−
hi+1,di) (1)

−→
hi = GRU(

−−→
hi−1,di) (2)
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And for the question, the last hidden representa-
tion of each direction is concatenated:

j = concat(
−→
jl ,
←−
j1 ) (3)

Attention and answer selection The Stanford
Reader uses bilinear attention (Luong et al., 2015):

αi = softmaxi(jWhi) (4)

Where W is a learned parameters matrix of the
bilinear term that computes the similarity between
j and hi with greater flexibility than a dot prod-
uct. The output vector is then computed as a linear
combination of the hidden representations of the
passage, weighted by the attention coefficients:

o =
∑

αihi (5)

The prediction is the answer, a, with highest prob-
ability from among the anonymized entities:

a = argmax
a∈p∩entities

MT
a o (6)

Here, M is the weight matrix that maps the output
to the entities, and Ma represents the column of a
certain entity. Finally a softmax layer is added on
top of MT

a o with a negative log-likelihood objec-
tive for training.

3.2 Sequential Attention
In the Sequential Attention model instead of pro-
ducing a single scalar value αi for each word in
the passage by using a bilinear term, we define the
vectors γi with a partial-bilinear term1. Instead
of doing the dot product as in the bilinear term, we
conduct an element wise multiplication to produce
a vector instead of a scalar:

γi = j ◦Whi (7)

Where W is a matrix of learned parameters. It
is also possible to use an element-wise multiplica-
tion, thus prescinding the parameters W:

γi = j ◦ hi (8)

We then feed the γi vectors into a new bidirec-
tional GRU layer to get the hidden attention ηi
vector representation.

←−ηi = GRU(←−−ηi+1,γi) (9)
1Note that doing softmax over the sum of the terms of the

γi vectors would lead to the same αi of the Stanford Reader.

−→ηi = GRU(−−→ηi−1,γi) (10)

We concatenate the directional η vectors to be
consistent with the structure of previous layers.

ηi = concat(−→ηi ,←−ηi ) (11)

Finally, we compute the α weights as below, and
proceed as before.

αi = softmaxi(1>ηi]) (12)

o =
∑

αihi (13)

a = argmax
a∈p∩entities

MT
a o (14)

4 Experiments and Results

We evaluate our model on two tasks, CNN and
Who did What (WDW). For CNN, we used the
anonymized version of the dataset released by
Hermann et al. (2015), containing 380,298 train-
ing, 3,924 dev, and 3,198 test examples. For
WDW we used Onishi et al. (2016)’s data gener-
ation script to reproduce their WDW data, yielding
127,786 training, 10,000 dev, and 10,000 test ex-
amples.2 We used the strict version of WDW.

Training We implemented all our models in
Theano (Theano Development Team, 2016) and
Lasagne (Dieleman et al., 2015) and used the Stan-
ford Reader (Chen et al., 2016) open source im-
plementation as a reference. We largely used the
same hyperparameters as Chen et al. (2016) in
the Stanford Reader: |V | = 50K, embedding
size d = 100, GloVe (Pennington et al., 2014)
word embeddings3 for initialization, hidden size
h = 128. The size of the hidden layer of the bidi-
rectional RNN used to encode the attention vec-
tors is double the size of the one that encodes the
words, since it receives vectors that result from the
concatenation of GRUs that go in both directions,
η ∈ R256. Attention and output parameters were

2In the WDW data we found 340 examples in the strict
training set, 545 examples in the relaxed training set, 20 ex-
amples in the test set, and 30 examples in the validation set
that were not answerable because the anonymized answer en-
tity did not exist in the passage. We removed these examples,
reducing the size of the WDW test set by 0.2%, to 9,980. We
believe this difference is not significant and did not bias the
comparison between models.

3The GloVe word vectors used were pretrained with 6 bil-
lion tokens with an uncased vocab of 400K words, and were
obtained from Wikipedia 2014 and Gigaword 5.
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Model WDW Strict CNN

Attentive Reader 53% 63%
Stanford Reader 65.6% 73.4%

+ SA partial-bilinear 67.2% 77.1%
Gated Att. Reader 71.2% 77.9%

Table 1: Accuracy on WDW and CNN test sets

initialized from a U ∼ (−0.01, 0.01) while GRU
weights were initialized from a N ∼ (0, 0.1).
Learning was carried out with SGD with a learn-
ing rate of 0.1, batch size of 32, gradient clipping
of norm 10 and dropout of 0.2 in all the vertical
layers4 (including the Sequential Attention layer).
Also, all the anonymized entities were relabeled
according to the order of occurrence, as in the
Stanford Reader. We trained all models for 30
epochs.

4.1 Results

Who did What In our experiments the Stanford
Reader (SR) achieved an accuracy of 65.6% on the
strict WDW dataset compared to the 64% that On-
ishi et al. (2016) reported. The Sequential Atten-
tion model (SA) with partial-bilinear scoring func-
tion got 67.21%, which is the second best perfor-
mance on the WDW leaderboard, only surpassed
by the 71.2% from the Gated Attention Reader
(GA) with qe-comm (Li et al., 2016) features and
fixed GloVe embeddings. However, the GA model
without qe-comm features and fixed embeddings
performs significantly worse at 67%. We did not
use these features in our SA models, and it is likely
that adding these features could further improve
SA model performance. We also experimented
with fixed embeddings in SA models, but fixed
embeddings reduced SA performance.

Another experiment we conducted was to add
100K training samples from CNN to the WDW
data. This increase in the training data size
boosted accuracy by 1.4% with the SR and 1.8%
with the Sequential Attention model reaching a
69% accuracy. This improvement strongly sug-
gests that the gap in performance/difficulty be-
tween the CNN and the WDW datasets is partially
related to the difference in the training set sizes

4We also tried increasing the hidden size to 200, using
200d GloVe word representations and increasing the dropout
rate to 0.3. Finally we increased the number of hidden en-
coding layers to two. None of these changes resulted in sig-
nificant performance improvements in accordance with Chen
et al. (2016).

which results in overfitting.

CNN For a final sanity check and a fair compar-
ison against a well known benchmark, we ran our
Sequential Attention model on exactly the same
CNN data used by Chen et al. (2016).

The Sequential Attention model with partial-
bilinear attention scoring function took an average
of 2X more time per epoch to train vs. the Stanford
Reader. However, our model converged in only 17
epochs vs. 30 for the SR. The results of training
the SR on CNN were slightly lower than the 73.6%
reported by Chen et al. (2016). The Sequential At-
tention model achieved 77.1% accuracy, a 3.7%
gain with respect to SR.

4.1.1 Model comparison on CNN
After achieving good performance with SA we
wanted to understand what was driving the in-
crease in accuracy. It is clear that SA has more
trainable parameters compared to SR. However,
it was not clear if the additional computation re-
quired to learn those parameters should be allo-
cated in the attention mechanism, or used to com-
pute richer hidden representations of the passage
and questions. Additionally, the bilinear parame-
ters increase the computational requirements, but
their impact on performance was not clear. To an-
swer these questions we compared the following
models: i) SR with dot-product attention; ii) SR
with bilinear attention; iii) SR with two layers (to
compute the hidden question and passage repre-
sentations) and dot-product attention; iv) SR with
two layers and bilinear attention; v) SA with ele-
mentwise multiplication scoring function; vi) SA
with partial-bilinear scoring function.

Surprisingly, the element-wise version of SA
performed better than the partial-bilinear version,
with an accuracy of 77.3% which, to our knowl-
edge, has only been surpassed by Dhingra et al.
(2016) with their Gated-Attention Reader model.

Additionally, 1-layer SR with dot-product atten-
tion got 0.3% lower accuracy than the 1-layer SR
with bilinear attention. These results suggest that
the bilinear parameters do not significantly im-
prove performance over dot-product attention.

Adding an additional GRU layer to encode
the passage and question in the SR model in-
creased performance over the original 1-layer
model. With dot-product attention the increase
was 1.1% whereas with bilinear attention, the in-
crease was 1.3%. However, these performance in-
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Figure 2: Representative sample output for the Stanford Reader and our model.

Model CNN Params

SR, dot prod. att. 73.1% 5.44× 106

SR, bilinear att. 73.4% 5.50× 106

SR, 2-layer, dot prod. att. 74.2% 5.83× 106

SR, 2-layer, bilinear att. 74.7% 5.90× 106

SA, element-wise att. 77.3% 5.73× 106

SA, partial-bilinear att. 77.1% 5.80× 106

Table 2: Accuracy on CNN test sets and number of
trainable parameters for various Stanford Reader
(SR) and Sequential Attention (SA) models.

creases were considerably less than the lift from
using an SA model (and SA has fewer parameters).

4.2 Discussion

The difference between our Sequential Attention
and standard approaches to attention is that we
conserve the distributed representation of simi-
larity for each token and use that contextual in-
formation when computing attention over other
words. In other words, when the bilinear atten-
tion layer computes αi = softmaxi(jWhi), it
only cares about the magnitude of the resulting αi

(the amount of attention that it gives to that word).
Whereas if we keep the vector γi we can also
know which were the dimensions of the distributed
representation of the attention that weighted in that
decision. Furthermore, if we use that information
to feed a new GRU, it helps the model to learn how
to assign attention to surrounding words.

Compared to Sequential Attention, Bidirec-
tional attention flow uses a considerably more
complex architecture with a query representations
for each word in the question. Unlike the Gated
Attention Reader, SA does not require intermedi-
ate soft attention and it uses only one additional
RNN layer. Furthermore, in SA no dot product is
required to compute attention, only the sum of the

elements of the η vector. SA’s simpler architecture
performs close to the state-of-the-art.

Figure 2 shows some sample model behavior.
In this example and elsewhere, SA results in less
sparse attention vectors compared to SR, and this
helps the model assign attention not only to poten-
tial target strings (anonymized entities) but also to
relevant contextual words that are related to those
entities. This ultimately leads to richer semantic
representations o =

∑
αihi of the passage.

Finally, we found: i) bilinear attention does
not yield dramatically higher performance com-
pared to dot-product attention; ii) bilinear parame-
ters do not improve SA performance; iii) Increas-
ing the number of layers in the attention mech-
anism yields considerably greater performance
gains with fewer parameters compared to increas-
ing the number of layers used to compute the hid-
den representations of the question and passage.

5 Conclusion and Discussion

In this this paper we created a novel and simple
model with a Sequential Attention mechanism that
performs near the state of the art on the CNN and
WDW datasets by improving the bilinear and dot-
product attention mechanisms with an additional
bi-directional RNN layer. This additional layer al-
lows local alignment information to be used when
computing the attentional score for each token.
Furthermore, it provides higher performance gains
with fewer parameters compared to adding an ad-
ditional layer to compute the question and passage
hidden representations. For future work we would
like to try other machine reading datasets such
as SQuAD and MS MARCO. Also, we think that
some elements of the SA model could be mixed
with ideas applied in recent research from Dhin-
gra et al. (2016) and Seo et al. (2016). We believe
that the SA mechanism may benefit other tasks as
well, such as machine translation.
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