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Abstract

We propose a recurrent neural model that
generates natural-language questions from
documents, conditioned on answers. We
show how to train the model using a com-
bination of supervised and reinforcement
learning. After teacher forcing for standard
maximum likelihood training, we fine-tune
the model using policy gradient techniques
to maximize several rewards that measure
question quality. Most notably, one of these
rewards is the performance of a question-
answering system. We motivate question
generation as a means to improve the per-
formance of question answering systems.
Our model is trained and evaluated on the
recent question-answering dataset SQuAD.

1 Introduction

People ask questions to improve their knowledge
and understanding of the world. Questions can be
used to access the knowledge of others or to direct
one’s own information-seeking behavior. Here we
study the generation of natural-language questions
by machines, based on text passages. This task
is synergistic with machine comprehension (MC),
which pursues the understanding of written lan-
guage by machines at a near-human level. Because
most human knowledge is recorded in text, this
would enable transformative applications.

Many machine comprehension datasets have
been released recently. These generally comprise
(document, question, answer) triples (Hermann
et al., 2015; Hill et al., 2015; Rajpurkar et al., 2016;
Trischler et al., 2016a; Nguyen et al., 2016), where
the goal is to predict an answer, conditioned on a
document and question. The availability of large

∗Equal contribution.
†Supported by funding from Maluuba.

Text Passage

in 10661,2 , duke william ii3 of normandy conquered england
killing king harold ii at the battle of hastings. the invading
normans and their descendants4 replaced the anglo-saxons
as the ruling class of england.

Questions Generated by our System
1) when did the battle of hastings take place?
2) in what year was the battle of hastings fought?
3) who conquered king harold ii at the battle of hastings?
4) who became the ruling class of england?

Table 1: Examples of conditional question genera-
tion given a context and an answer from the SQuAD
dataset, using the scheme referred to as RPPL + QA
below. Bold text in the passage indicates the an-
swers used to generate the numbered questions.

labeled datasets has spurred development of in-
creasingly advanced models for question answer-
ing (QA) from text (Kadlec et al., 2016; Trischler
et al., 2016b; Seo et al., 2016; Wang et al., 2016;
Shen et al., 2016).

In this paper we reframe the standard MC task:
rather than answering questions about a document,
we teach machines to ask questions. Our work
has several motivations. First, we believe that pos-
ing appropriate questions is an important aspect
of information acquisition in intelligent systems.
Second, learning to ask questions may improve the
ability to answer them. Singer and Donlan (1982)
demonstrated that having students devise questions
before reading can increase scores on subsequent
comprehension tests. Third, answering the ques-
tions in most existing QA datasets is an extractive
task – it requires selecting some span of text within
the document – while question asking is compar-
atively abstractive – it requires generation of text
that may not appear in the document. Fourth, ask-
ing good questions involves skills beyond those
used to answer them. For instance, in existing QA
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datasets, a typical (document, question) pair speci-
fies a unique answer. Conversely, a typical (docu-
ment, answer) pair may be associated with multi-
ple questions, since a valid question can be formed
from any information or relations which uniquely
specify the given answer. Finally, a mechanism to
ask informative questions about documents (and
eventually answer them) has many practical appli-
cations, e.g.: generating training data for question
answering (Serban et al., 2016; Yang et al., 2017),
synthesising frequently asked question (FAQ) doc-
umentation, and automatic tutoring systems (Lind-
berg et al., 2013).

We adapt the sequence-to-sequence approach
of Cho et al. (2014) for generating questions, con-
ditioned on a document and answer: first we en-
code the document and answer, then output ques-
tion words sequentially with a decoder that condi-
tions on the document and answer encodings. We
augment the standard encoder-decoder approach
with several modifications geared towards the ques-
tion generation task. During training, in addition
to maximum likelihood for predicting questions
from (document, answer) tuples, we use policy
gradient optimization to maximize several auxil-
iary rewards. These include a language-model-
based score for fluency and the performance of a
pretrained question-answering model on generated
questions. We show quantitatively that policy gra-
dient increases the rewards earned by generated
questions at test time, and provide examples to il-
lustrate the qualitative effects of different training
schemes. To our knowledge, we present the first
end-to-end, text-to-text model for question genera-
tion.

2 Related Work

Recently, automatic question generation has re-
ceived increased attention from the research com-
munity. It has been harnessed, for example, as a
means to build automatic tutoring systems (Heil-
man and Smith, 2010; Ali et al., 2010; Lindberg
et al., 2013; Labutov et al., 2015; Mazidi and
Nielsen, 2015), to reroute queries to community
question-answering systems (Zhao et al., 2011),
and to enrich training data for question-answering
systems (Serban et al., 2016; Yang et al., 2017).

Several earlier works process documents as in-
dividual sentences using syntactic (Heilman and
Smith, 2010; Ali et al., 2010; Kumar et al., 2015)
or semantic-based parsing (Mannem et al., 2010;

Lindberg et al., 2013), then reformulate questions
using hand-crafted rules acting on parse trees.
These traditional approaches generate questions
with a high word overlap with the original text
that pertain specifically to the given sentence by
re-arranging the sentence parse tree. An alterna-
tive approach is to use generic question templates
whose slots can be filled with entities from the doc-
ument (Lindberg et al., 2013; Chali and Golestani-
rad, 2016). Labutov et al. (2015), for example, use
ontology-derived templates to generate high-level
questions related to larger portions of the document.
These approaches comprise pipelines of indepen-
dent components that are difficult to tune for final
performance measures.

More recently, neural networks have enabled
end-to-end training of question generation sys-
tems. Serban et al. (2016) train a neural system to
convert knowledge base (KB) triples into natural-
language questions. The head and the relation form
a context for the question and the tail serves as the
answer. Similarly, we assume that the answer is
known a priori, but we extend the context to en-
compass a span of unstructured text. Mostafazadeh
et al. (2016) use a neural architecture to gener-
ate questions from images rather than text. Con-
temporaneously with this work, Yang et al. (2017)
developed generative domain-adaptive networks,
which perform question generation as an auxiliary
task in training a QA system. The main goal of
their question generation is data augmentation, thus
questions themselves are not evaluated. In contrast,
our work focuses primarily on developing a neural
model for question generation that could be ap-
plied to a variety of downstream tasks that includes
question answering.

Our model shares similarities with recent end-
to-end neural QA systems, e.g. Seo et al. (2016);
Wang et al. (2016). I.e., we use an encoder-decoder
structure, where the encoder processes answer and
document (instead of question and document) and
our decoder generates a question (instead of an an-
swer). While existing question answering systems
typically extract the answer from the document, our
decoder is a fully generative model.

Finally, we relate the recent body of works
that apply reinforcement learning to natural lan-
guage generation, such as Li et al. (2016); Ranzato
et al. (2016); Kandasamy and Bachrach (2017);
Zhang and Lapata (2017). We similarly apply
a REINFORCE-style (Williams, 1992) algorithm
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to maximize various rewards earned by generated
questions.

3 Encoder-Decoder Model for Question
Generation

We adapt the simple encoder-decoder architecture
first outlined by Cho et al. (2014) to the ques-
tion generation problem. Particularly, we base our
model on the attention mechanism of Bahdanau
et al. (2015) and the pointer-softmax copying mech-
anism of Gulcehre et al. (2016). In question gener-
ation, we can condition our encoder on two differ-
ent sources of information (compared to the single
source in neural machine translation (NMT)): a
document that the question should be about and an
answer that should fit the generated question. Next,
we describe how we adapt the encoder and decoder
architectures in detail.

3.1 Encoder

Our encoder is a neural model acting on two in-
put sequences: the document, D = (d1, . . . , dn)
and the answer, A = (a1, . . . , am). Sequence el-
ements di, aj ∈ RDe are given by embedding
vectors (Bengio et al., 2001).

In the first stage of encoding, similar to current
question answering systems, e.g. (Seo et al., 2016),
we augment each document word embedding with
a binary feature that indicates if the document word
belongs to the answer. Then, we run a bidirec-
tional long short-term memory (Hochreiter and
Schmidhuber, 1997) (LSTM) network on the aug-
mented document sequence, producing annotation
vectors hd = (hd1, . . . ,h

d
n). Here, hdi ∈ RDh is the

concatenation of the network’s forward (~hdi ) and
backward hidden states ( ~hdi ) for input token i, i.e.,
hdi = [~hdi ; ~hdi ].

1

Our model operates on QA datasets where the
answer is extractive; thus, we encode the answer A
using the annotation vectors corresponding to the
answer word positions in the document. We assume
that, without loss of generality, A consists of the
sequence of words (ds, . . . , de) in the document,
s.t. 1 ≤ s ≤ e ≤ n. We concatenate the annota-
tion sequence (hds , . . . ,h

d
e) with the correspond-

ing answer word embeddings (as, . . . , ae), i.e.,
[hdj ; aj ], s ≤ j ≤ e, then apply a second bidi-
rectional LSTM (biLSTM) over the resulting se-
quence of vectors to obtain the extractive condition

1We use the notation [·; ·] to denote concatenation of two
vectors throughout the paper.

encoding ha ∈ RDh . We form ha by concatenat-
ing the final hidden states from each direction of
the biLSTM.

We also compute an initial state s0 ∈ RDs for
the decoder using the annotation vectors and the
extractive condition encoding:

r = Lha +
1
n

|D|∑
i

hdi , s0 = tanh (W0r + b0) ,

where L ∈ RDh×Dh , W0 ∈ RDs×Dh , and b0 ∈
RDs are model parameters.2

3.2 Decoder
Our decoder is a neural model that generates out-
puts yt sequentially to yield the question sequence
Q = {yt}. At each time-step t, the decoder models
a conditional distribution parametrized by θ,

pθ(yt|y<t, D,A), (1)

where y<t represents the outputs at earlier time-
steps. In question generation, output yt is a word
sampled according to (1).

When formulating questions based on docu-
ments, it is common to refer to phrases and entities
that appear directly in the text. We therefore incor-
porate into our decoder a mechanism for copying
relevant words fromD. We use the pointer-softmax
formulation (Gulcehre et al., 2016), which has two
output layers: the shortlist softmax and the location
softmax. The shortlist softmax places a distribu-
tion over words in a predefined output vocabulary.
The location softmax is a pointer network (Vinyals
et al., 2015) that places a distribution over doc-
ument tokens to be copied. A source switching
network enables the model to interpolate between
these distributions.

In more detail, the decoder is a recurrent neu-
ral network. Its internal state, st ∈ RDs , evolves
according to the long short-term memory up-
date (Hochreiter and Schmidhuber, 1997), i.e.,

st = LSTM(st−1, yt−1,vt), (2)

where vt is a the context vector computed from the
document and answer encodings.

At every time-step t, the model computes a soft-
alignment score over the document to decide which
words are more relevant to the question being gen-
erated. As in a traditional NMT architecture, the de-
coder computes a relevance weight αtj for the jth

2Let |X| denote the length of sequence X .
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word in the document when generating the tth word
in the question. Alignment score vector αt ∈ R|D|
is computed with a single layer feedforward neural
network f(·) using the tanh(·) activation function.
The scores αt are also used as the location softmax
distribution. The network defined by f(·) com-
putes energies according to (3) for the alignments,
and the normalized alignments αtj are computed
as in (4):

etj = exp(f(hdj , ha, yt, st−1)), (3)

αtj =
exp(etj)∑T
i=1 exp(eij)

. (4)

To compute the context vector vt used in (2), we
first construct context vector ct for the document
and then concatenate it with ha:

ct =
|D|∑
i=1

αtihdi , (5)

vt = [ct; ha]. (6)

We use a deep output layer (Pascanu et al., 2013)
at each time-step for the shortlist softmax vector ot.
This layer fuses the information coming from st,
vt and yt−1 through a simple MLP to predict the
word logits for the softmax as in (7). Parameters of
the softmax layer are denoted as Wo ∈ R|V |×Dh

and bo ∈ R|V |, where |V | is the size of the shortlist
vocabulary (we used 2000 words).

et = g(st,vt, yt−1)
ot = softmax(Woet + bo) (7)

A source switching variable zt enables the model
to interpolate between document copying and gen-
eration from shortlist. It is computed by an MLP
with two hidden layers using tanh units (Gulcehre
et al., 2016). Similarly to the computation of the
shortlist softmax, the switching network takes st,
vt and yt−1 as inputs. Its output layer generates
the scalar zt through the logistic sigmoid activation
function.

Finally, pθ(yt|y<t, D,A) is approximated by the
full pointer-softmax pt ∈ R|V |+|D| by concatenat-
ing ot and αt after both are weighted by zt:

pt = [ztot; (1 − zt)αt]. (8)

As is standard in NMT, during decoding we use a
beam search (Graves, 2012) to maximize (approx-
imately) the conditional probability of an output
sequence. We discuss this in more detail in the
following section.

3.3 Training
The model is trained initially to minimize the neg-
ative log-likelihood of the training data under the
model distribution,

L = −
∑
t

log pθ(yt|y<t, D,A), (9)

where, in the decoder as defined in (2), the previ-
ous token yt−1 comes from the source sequence
rather than the model output (this is called teacher
forcing).

Based on our knowledge of the task, we intro-
duce additional training signals to aid the model’s
learning. First, we encourage the model not to gen-
erate answer words in the question. We use the soft
answer-suppression constraint given in (10) with
the penalty hyperparameter λs; Ā denotes the set
of words that appear in the answer but not in the
ground-truth question:

Ls = λs
∑
t

∑
ā∈Ā

pθ(yt = ā|y<t, D,A). (10)

We also encourage variety in the output words to
counteract the degeneracy often observed in NLG
systems towards common outputs (Sordoni et al.,
2015). This is achieved with a loss term that maxi-
mizes entropy in the output softmax (8), i.e.,

Le = λe
∑
t

pTt log pt. (11)

4 Policy Gradient Optimization

As described above, we use teacher forcing to train
our model to generate text by maximizing ground-
truth likelihood. Teacher forcing introduces critical
differences between the training phase (in which
the model is driven by ground-truth sequences) and
the testing phase (in which the model is driven by
its own outputs) (Bahdanau et al., 2016). Signif-
icantly, teacher forcing prevents the model from
making and learning from mistakes during training.
This is related to the observation that maximizing
ground-truth likelihood does not teach the model
how to distribute probability mass among exam-
ples other than the ground-truth, some of which
may be valid questions and some of which may be
completely incoherent. This is especially problem-
atic in language, where there are often many ways
to say the same thing. A reinforcement learning
(RL) approach, by which a model is rewarded or
penalized for its own actions, could mitigate these
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issues – though likely at the expense of reduced sta-
bility during training. A properly designed reward,
maximized via RL, could provide a model with
more information about how to distribute probabil-
ity mass among sequences that do not occur in the
training set (Norouzi et al., 2016).

We investigate the use of RL to fine-tune our
question generation model. Specifically, we per-
form policy gradient optimization following a pe-
riod of “pretraining” on maximum likelihood, using
a combination of scalar rewards correlated to ques-
tion quality. We detail this process below. To make
clear that the model is acting freely without teacher
forcing, we indicate model-generated tokens with
ŷt and sequences with Ŷ .

4.1 Rewards
Question answering (QA) One obvious mea-
sure of a question’s quality is whether it can be
answered correctly given the context document D.
We therefore feed model-generated questions into
a pretrained question-answering system and use
that system’s accuracy as a reward. We use the re-
cently proposed Multi-Perspective Context Match-
ing (MPCM) (Wang et al., 2016) model as our
reference QA system, sans character-level encod-
ing. Broadly, that model takes in a generated ques-
tion Ŷ and a document D, processes them through
bidirectional recurrent neural networks, applies an
attention mechanism, and points to the start and
end tokens of the answer in D. After training a
MPCM model on the SQuAD dataset, the reward
RQA(Ŷ ) is given by MPCM’s answer accuracy on
Ŷ in terms of the F1 score, a token-based measure
proposed by Rajpurkar et al. (2016) that accounts
for partial word matches:

RQA(Ŷ ) = F1(Â, A), (12)

where Â = MPCM(Ŷ ) is the answer to the gener-
ated question by the MPCM model. Optimizing the
QA reward could lead to ‘friendly’ questions that
are either overly simplistic or that somehow cheat
by exploiting quirks in the MPCM model. One ob-
vious way to cheat would be to inject answer words
into the question. We prevented this by masking
these out in the location softmax, a hard version of
the answer suppression loss (10).

Fluency (PPL) Another measure of quality is
a question’s fluency – i.e., is it stated in proper,
grammatical English? As simultaneously proposed
in Zhang and Lapata (2017), we use a language

model to measure and reward the fluency of gener-
ated questions. In particular, we use the perplexity
assigned to Ŷ by an LSTM language model:

RPPL(Ŷ ) = −2−
1
T

∑T
t=1 log2 pLM(ŷt|ŷ<t), (13)

where the negation is to reward the model for mini-
mizing perplexity. The language model is trained
through maximum likelihood estimation on over
80, 000 human-generated questions from SQuAD
(the training set).

Combination For the total scalar reward earned
by the word sequence Ŷ , we also test a weighted
combination of the individual rewards:

RPPL + QA(Ŷ ) = λQARQA(Ŷ ) + λPPLRPPL(Ŷ ),

where λQA and λPPL are hyperparameters. The in-
dividual reward functions use neural models to tune
the neural question generator. This is reminiscent
of recent work on GANs (Goodfellow et al., 2014)
and actor-critic methods (Bahdanau et al., 2016).
We treat the reward models as black boxes, rather
than attempting to optimize them jointly or back-
propagate error signals through them. We leave
these directions for future work.

We also experimented with several other rewards,
most notably the BLEU score (Papineni et al.,
2002) between Ŷ and the ground-truth question for
the given document and answer, and a softer mea-
sure of similarity between output and ground-truth
based on skip-thought vectors (Kiros et al., 2015).
Empirically, we were unable to obtain consistent
improvements on these rewards through training,
though this may be an issue with hyperparameter
settings.

4.2 REINFORCE
We use the REINFORCE algorithm (Williams,
1992) to maximize the model’s expected reward.
For each generated question Ŷ , we define the loss

LRL = −EŶ∼π(Ŷ |D,A)[R(Ŷ )], (14)

where π is the policy to be trained. The policy is
a distribution over discrete actions, i.e. words ŷt
that make up the sequence Ŷ . It is the distribution
induced at the output layer of the encoder-decoder
model (8), initialized with the parameters deter-
mined through likelihood optimization.3

3The policy also depends on the switch values but we omit
these for brevity.
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REINFORCE approximates the expectation in
(14) with independent samples from the policy dis-
tribution, yielding the policy gradient

∇LRL ≈
∑
t=1

∇ log π(ŷt|ŷ<t, D,A)
R(Ŷ )− µR

σR
.

(15)
The optional µR and σR are the running mean and
standard deviation of the reward, which push R(Ŷ )
toward zero mean and unit variance. This “whiten-
ing” of rewards is a simple version of PopArt (van
Hasselt et al., 2016), and we found empirically that
it stabilized learning.

It is straightforward to combine policy gradient
with maximum likelihood, as both gradients can be
computed by backpropagating through a properly
reweighted sequence-level log-likelihood. The se-
quences for policy gradient are sampled from the
model and weighted by a whitened reward, and the
likelihood sequences are sampled from the training
set and weighted by 1.

4.3 Training Scheme

Instead of sampling from the model’s output distri-
bution, we use beam-search to generate questions
from the model and approximate the expectation in
Eq. 14. Empirically we found that rewards could
not be improved through training without this ap-
proach. Randomly sampling from the model’s dis-
tribution may not be as effective for estimating the
modes of the generation policy and it may intro-
duce more variance into the policy gradient.

Beam search keeps a running set of candidates
that expands and contracts adaptively. At each
time-step t, k output words that maximize the prob-
abilities of their respective paths are selected and
added to the candidate sequences, where k is the
beam size. The probabilities of these candidates
are given by their accumulated log-likelihood up to
t.4

Given a complete sample from the beam search
and its accumulated log-likelihood, the gradient
in (15) can be estimated as follows. After calcu-
lating the reward with a sequence generated by
beam search, we use the sample to teacher-force
the decoder so as to recreate exactly the model
states from which the sequence was generated.
The model can then be accurately updated by cou-

4We also experimented with a stochastic version of beam
search by randomly sampling k words from top-2k predictions
sorted by candidate sequence probability at each time step.
No performance improvement was observed.

pling the parameter-independent reward with the
log-likelihood of the generated sequence. This ap-
proach adds a computational overhead but it signifi-
cantly increases the initial reward values earned by
the model and stabilizes policy gradient training.

We also further tune the likelihood during policy
gradient optimization to prevent the model from
overwriting its earlier training. We combine the
policy gradient update to the model parameters,
∇LRL, with an update from ∇L based on teacher
forcing on the ground-truth signal.

5 Experiments

5.1 Dataset

We conducted our experiments on the SQuAD
dataset for machine comprehension (Rajpurkar
et al., 2016), a large-scale, human-generated cor-
pus of (document, question, answer) triples. Doc-
uments are paragraphs from 536 high-PageRank
Wikipedia articles covering a variety of subjects.
Questions are posed by crowdworkers in natural
language and answers are spans of text in the re-
lated paragraph highlighted by the same crowd-
workers. There are 107,785 question-answer pairs
in total, including 87,599 training instances and
10,570 development instances.

5.2 Baseline Seq2Seq System

Our baseline system, denoted “Seq2Seq,” is based
on the encoder-decoder architecture with attention
and pointer-softmax outlined in Bahdanau et al.
(2015) and Gulcehre et al. (2016). This is essen-
tially the model outlined in Section 3, with a few
key differences: (i) since the baseline was origi-
nally designed for translation, its encoder and de-
coder vocabularies are separate; (ii) the baseline
conditions question generation on the answer sim-
ply by setting ha as the average of the document
encodings corresponding to the answer positions in
D; (iii) the baseline has no constraint on generating
answer words in the question (Equation (10)); and
(iv) the baseline does not include the entropy-based
loss defined in (11).

5.3 Quantitative Evaluation

We use several automatic evaluation metrics to
judge the quality of generated questions with re-
spect to the ground-truth questions from the dataset.
We are undertaking a large-scale human evaluation
to determine how these metrics align with human
judgments. The first metric is BLEU (Papineni
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NLL BLEU F1 QA PPL

Seq2Seq 45.8 4.9 31.2 45.6 153.2

Our System 35.3 10.2 39.5 65.3 175.7
+ PG (RPPL) 35.7 9.2 38.2 61.1 155.6
+ PG (RQA) 39.8 10.5 40.1 74.2 300.9
+ PG (RPPL+QA) 39.0 9.2 37.8 70.2 183.1

Question LM - - - - 87.7
MPCM - - - 70.5 -

Table 2: Automatic metrics on SQuAD’s dev set.
NLL is the negative log-likelihood. BLEU and F1
are computed with respect to the ground-truth ques-
tions. QA is the F1 obtained by the MPCM model
answers to generated questions and PPL is the per-
plexity computed with the question language model
(LM) (lower is better). PG denotes policy gradient
training. The bottom two lines report performance
on ground-truth questions.

Text Passage

...the court of justice accepted that a requirement to speak
gaelic to teach in a dublin design college could be justified as
part of the public policy of promoting the irish language.

Generated Questions
1) what did the court of justice not claim to do?

2) what language did the court of justice say should be justified
as part of the public language?

3) what language did the court of justice decide to speak?

4) what language did the court of justice adopt a requirement
to speak?

5) what language did the court of justice say should be justified
as part of?

Table 3: Examples of generated questions given a
context and an answer. Questions are generated by
the five systems in Table 2, in order.

et al., 2002), a standard in machine translation,
which computes {1,2,3,4}-gram matches between
generated and ground-truth questions. Next we use
F1, which focuses on unigram matches (Rajpurkar
et al., 2016). We also report fluency and QA per-
formance metrics used in our reward computation.
Fluency is measured by the perplexity (PPL) of
the generated question computed by the pretrained
question language model. The PPL score is propor-
tional to the marginal probability p(Ŷ ) estimated
from the corpus. The QA performance is measured
by running the pretrained MPCM model on the
generated questions and measuring F1 between the
predicted answer and the conditioning answer.

5.4 Results and qualitative analysis

Our results for automatic evaluation on SQuAD’s
development set are presented in Table 2. Imple-
mentation details for all models are given in the
supplementary material. One striking feature is
that BLEU scores are quite low for all systems
tested, which relates to our earlier argument that a
typical (document, answer) pair may be associated
with multiple semantically-distinct questions. This
seems to be born out by the result since most gen-
erated samples look reasonable despite low BLEU
scores (see Tables 1, 3).

Our system vs. Seq2Seq Comparing our model
to the Seq2Seq baseline, we see that all metrics im-
prove notably with the exception of PPL. Interest-
ingly, our system performs worse in terms of PPL
despite achieving lower negative log-likelihood.
This, along with the improvements in BLEU, F1
and QA, suggests that our system learns a more
powerful conditional model at the expense of ac-
curately modelling the marginal distribution over
questions. It is likely challenging for the model to
allocate probability mass to rarer keywords that are
helpful to recover the desired answer while also
minimizing perplexity. We illustrate with samples
from both models, specifically the first two samples
in Table 3. The Seq2Seq baseline generated a well-
formed English question, which is also quite vague
– it is only weakly conditioned on the answer. On
the other hand, our system’s generated question is
more specific, but still not correct given the con-
text and perhaps less fluent given the repetition of
the word language. We found that our proposed
entropy regularization helped to avoid over-fitting
and worked nicely in tandem with dropout: the
training loss for our regularized model was 26.6
compared to 22.0 for the Seq2Seq baseline that
used only dropout regularization.

Policy gradient (RPPL: λPPL = 0.1) Policy gra-
dient training with the negative perplexity of the
pretrained language model improves the genera-
tor’s PPL score as desired, which approaches that
of the baseline Seq2Seq model. However, QA, F1,
and BLEU scores decrease. This aligns with the
above observation that fluency and answerability
(as measured by the automatic scores) may be in
competition. As an example, the third sample in
Table 3 is more fluent than the previous examples
but does not refer to the desired answer.
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Training Generated Questions QA PPL

RPPL what was the name of the library that was listed on the grainger market? 0 73.2
RQA the grainger market architecture was listed in 1954 by what? 100 775

RQA+PPL what language did the grainger market architecture belong to? 0 257

RPPL what are the main areas of southern california? 0 114
RQA southern california is famous for what? 16.6 269

RQA+PPL what is southern california known for? 16.6 179

RPPL what was the goal of the imperial academy of medicine? 19.1 44.3
RQA why were confucian scholars attracted to the medical profession? 73.7 405

RQA+PPL what did the confucian scholars believe were attracted to the medical schools? 90.9 135

RPPL what is an example of a theory that can be solved in theory? 0 38
RQA in complexity theory, it is known as what? 100 194

RQA+PPL what is an example of a theory that can cause polynomial-time solutions to be useful? 100 37

Table 4: Comparison of questions from different reward combinations on the same text and answer.

Policy gradient (RQA: λQA = 1.0) Policy gra-
dient is very effective at maximizing the QA re-
ward, gaining 8.9% in accuracy over the improved
Seq2Seq model and improving most other metrics
as well. The fact that QA score is 3.7% higher than
that obtained on the ground-truth questions sug-
gests that the question generator may have learned
to exploit MPCM’s answering mechanism, and the
higher reported perplexity suggests questions under
this scheme may be less fluent. We explore this in
more detail below. The fourth sample in Table 3,
in contrast to the others, is clearly answered by the
context word gaelic as desired.

Policy gradient (RPPL + QA: λPPL = 0.25, λQA =
0.5) We attempted to improve fluency and an-
swerability in tandem by combining QA and PPL
rewards. The PPL reward adds a prior towards ques-
tions that look natural. According to Table 2, this
optimization scheme yields a good balance of per-
formance, improving over the maximum-likelihood
model by a large margin in terms of QA perfor-
mance and gaining back some PPL. In the sample
shown in Table 3, however, the question is specific
to the answer but ends prematurely.

In Table 4 we provide additional generated sam-
ples from the different PG rewards. This table
reveals one of the ‘tricks’ encouraged by the QA
reward for improving MPCM performance: ques-
tions are often phrased with the interrogative ‘wh’
word at the end. This gives the language high per-
plexity, since such questions are rarer in the train-
ing data, but brings the question form closer to the
form of the source text for answer matching.

5.5 Discussion

Looking through examples revealed certain difficul-
ties in the task and some pathologies in the model
that should be rectified through future work.

Entities and Verbs Similar entities and related
verbs are often swapped, e.g., miami for jack-
sonville in a question about population. This issue
could be mitigated by biasing the pointer softmax
towards the document for certain word types.

Abstraction We desire a system that generates
interesting questions, which are not limited to re-
ordering words from the context but exhibit some
abstraction. Rewards from existing QA systems do
not seem beneficial for this purpose. Questions gen-
erated through NLL training show more abstraction
at the expense of decreased specificity.

Commonsense and Reasoning Commonsense
understanding appears critical for generating ques-
tions that are well-posed and show abstraction from
the original text. Likewise, the ability to reason
about and compose relations between entities could
lead to more abstract and interesting questions. The
existing model has no such capacities.

Evaluation Due to the large number of possi-
ble questions given a predefined answer, it is
challenging to evaluate the outputs using stan-
dard overlap-based metrics such as BLEU. In this
sense, question generation from text is similar to
other tasks with large output spaces (Galley et al.,
2015) and may benefit from corpora with multi-
ple ground-truth questions associated to a quality
rating (Mostafazadeh et al., 2016).
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6 Conclusion and Future Work

We proposed a recurrent neural model that gener-
ates natural-language questions conditioned on text
passages and predefined answers. We showed how
to train this model using a combination of maxi-
mum likelihood and policy gradient optimization,
and demonstrated both quantitatively and quali-
tatively how several reward combinations affect
the generated outputs. We are now undertaking
a human evaluation to determine the correlation
between rewards and human judgments, improving
our model, and testing on additional datasets.

One of our interests is to build models that
seek information autonomously through question
asking, as people do. This would entail, among
other things, the direct sampling of interesting,
informative questions from documents, i.e., mod-
elling distribution p(Q|D) rather than the distri-
bution conditioned on the answer, p(Q|D,A), as
in this work. The present work may serve as a
useful first step toward this goal, since the larger
problem can be tackled by factorizing p(Q|D) =∑

A p(Q|D,A)p(A|D) and first sampling a docu-
ment’s likely answers according to modelled distri-
bution p(A|D).
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Supplementary Material

A Implementation details

All models are implemented using Keras (Chollet,
2015) with Theano (Theano Development Team,
2016) backend. We used Adam (Kingma and Ba,
2014) with an initial learning rate 2e-4 for both
maximum likelihood and policy gradient updates.
Word embeddings were initialized with the GloVe
vectors (Pennington et al., 2014) and updated dur-
ing training. The hidden size for all RNNs is 768.

Dropout (Srivastava et al., 2014) is applied with
a rate of 0.3 to the embedding layers as well as all
the RNNs (between both input-hidden and hidden-
hidden connections).

Both λs for answer-suppression and λe for en-
tropy maximization are set to 0.01. We used beam
search with a beam size of 32 in all experiments.
The reward weights used in policy gradient training
are listed in Table 5. These parameters are selected
using grid search based on validation QA reward.

QAMPCM PPLQuest. LM

λQA 1.0 -
λPPL - 0.1

λPPL+QA 0.5 0.25

Table 5: Hyperparameter settings for policy gradi-
ent training.
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