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Abstract

This paper describes our participation in
BUCC 2017 shared task: identifying parallel
sentences in comparable corpora. Our goal
is to leverage continuous vector representa-
tions and distributional semantics with a min-
imal use of external preprocessing and post-
processing tools. We report experiments that
were conducted after transmitting our results.

1 Introduction

Traditional approaches for parallel sentence iden-
tification from comparable corpora rely on ma-
chine learning models with the use of features
measured by statistical machine translation (SMT)
systems. Munteanu and Marcu (2005) present
how to extract parallel sentences from newspaper
articles using general and alignment features to
train a binary maximum entropy classifier. Abdul-
Rauf and Schwenk (2009) use an SMT-based sys-
tem on comparable corpora to translate the source
language side to detect corresponding parallel sen-
tences on the target language side. While continu-
ous vector representations of words and sentences
estimated by neural language models and neural
networks (Bengio et al., 2003; Collobert and We-
ston, 2008) have been successfully applied to a va-
riety of natural language processing tasks, rang-
ing from handwriting generation (Graves, 2013)
to machine translation (Sutskever et al., 2014),
few efforts have been devoted to parallel sentence
identification. Ferrero et al. (2017) successfully
use word embeddings for cross-language plagia-
rism detection, which can be considered a similar
task to ours.

The primary objective of our proposed approach
is to assess whether we are able to identify paral-
lel sentences using a scalable and flexible method
by relying on recent advances in neural language
modeling and deep learning architectures to elim-

inate the need for any domain specific feature en-
gineering. We want to evaluate the feasibility of
a model learnt from distributional semantics alone
in a “pure” setting by using as few external tools
as possible. Our approach can be considered as a
first attempt to accomplish the proposed task us-
ing a deep learning framework. Our aim is not
to attain state-of-the-art performance, but to open
interesting directions to enable researchers to ad-
vance research with this important task.

In fact, in the following sections we report the
approach of our two-day effort to participate on
this year’s shared task. Due to the short limit of
time, we used models pretrained on a standard par-
allel corpus. The details of our approach will be
described elsewhere. In this paper we report what
we learned so far and few experiments that were
conducted after submitting our results.

2 Approach

2.1 Model

Our model architecture is a bidirectional recur-
rent neural network with gated recurrent units (Bi-
GRU) (Cho et al., 2014) built for both the source
language and target language sentences. The Bi-
GRU encodes each sentence in both directions to
generate two continuous vector representation of
the sentence,

−→
h i and

←−
h i. The forward network

processes the input sentence and updates its recur-
rent state from the first token until the last one.
The backward network processes the input sen-
tence in reverse direction. The concatenation of
the final recurrent state in both directions is the
sentence representation hi = [

−→
h i ;
←−
h i].

Once both source and target sentence represen-
tations have been encoded, hS

i and hT
i , we mea-

sure the semantic similarity between the two sen-
tences to estimate the probability that they are par-
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allel:

p(yi = 1|hS
i ,h

T
i ) = σ(hS>

i MhT
i + b) (1)

where M and b are model parameters, σ is the sig-
moid function, yi = 1 if the sentence pair is par-
allel and yi = 0 otherwise. The model outputs a
positive instance if a sentence pair gets a probabil-
ity score higher than a decision threshold λ:

ŷi =

{
1 if p(yi = 1|hS

i ,h
T
i ) ≥ λ

0 otherwise
(2)

We train our model by minimizing the cross en-
tropy of our labeled sentence pairs (xS

i ,x
T
i , yi)

that we feed in our BiGRU, where xS
i =

(wS
i,1, . . . ,w

S
i,|xS

i |) is a source sentence and xT
i =

(wT
i,1, . . . ,w

T
i,|xT

i |) is a target sentence. wS
i,t and

wT
i,t are the continuous word representation (word

embeddings) of the words in the source and tar-
get sentences, respectively. We use a parallel cor-
pus made of N parallel sentence pairs (xS

i ,x
T
i ),

for i ∈ {1, . . . , N}. For every pair of parallel
sentences we add negative examples by randomly
selecting 5 negative sentence pairs (xS

i ,x
T
j ), for

j 6= i.

2.2 Candidate filtering

Very often, identifying parallel sentences in com-
parable corpora is an extremely unbalanced classi-
fication task because the number of sentence pairs
to be examined is potentially the Cartesian prod-
uct between sentence pairs in the corpora. This
is not an issue for small comparable corpora, e.g.
two Wikipedia articles. However, in our case we
are given two monolingual corpora of approxi-
mately 370,000 and 270,000 sentences, for a po-
tential of 9.99e10 pairs of sentences to evalu-
ate. To reduce the size and the noise of the can-
didate sentence pairs, traditional approaches ap-
ply candidate filters such as sentence length ratio,
bilingual dictionary word overlap, word alignment
conditions from SMT and information retrieval
systems (Resnik and Smith, 2003; Munteanu and
Marcu, 2005; Abdul-Rauf and Schwenk, 2009).

Following our idea to evaluate the feasibility of
an approach using only distributional representa-
tions, for each sentence we learned its continu-
ous vector representation and created our set of
candidate sentence pairs by using the n-best co-
sine similarity score between each source sentence

and every target sentences. Since we are work-
ing with vector representations, doing the Carte-
sian product is tractable. To estimate the vec-
tor representation of each sentence, sS

i and sT
i ,

we employ a distributional bag-of-words approach
where word embeddings have been mapped to a
shared vector space, i.e. cross-lingual word em-
beddings (Gouws et al., 2015). The sentence rep-
resentation is the normalized sum over the word
embeddings present in it:

sS
i =

∑
t w

S
i,t

|∑t w
S
i,t|2

(3)

3 Experiments

In this section we present experiments that were
conducted after the submission of our results.
First, we describe the resources used to perform
the shared task, the training settings and the eval-
uation metrics.

3.1 Dataset

We only participated to the fr-en language pair,
making use only of our models pretrained on the
Europarl v7 English to French parallel corpus
from WMT’151. To create our training set, 500K
parallel sentence pairs are randomly selected. The
vocabulary sizes range between 103K to 119K for
English and 126K to 140K for French depend-
ing on the digit preprocessing method (see Sec-
tion 4.2). We tokenize the dataset with the scripts
from Moses2 and all words are lowercased. Empty
sentence pairs are removed.

For the shared task, we replaced all digits with
0 (e.g. 1982→0000).

3.2 Training settings

We use TensorFlow3 (Abadi et al., 2016) to train
our models. The dimension of the BiGRU recur-
rent state is 200 in each direction with word em-
beddings of dimension 300. We train our mod-
els using a mini-batch size of 128 and Adam opti-
mizer (Kingma and Ba, 2014) with a learning rate
of 2e-4 for a total of 10 epochs. We augment our
training examples with new negative examples by
sampling 5 negative sentence pairs for each paral-
lel sentence pair. We apply gradient clipping to a
value of 5.

1http://www.statmt.org/wmt15/translation-task.html
2https://github.com/moses-smt/mosesdecoder
3https://github.com/tensorflow/tensorflow
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Cross-lingual word embeddings used for candi-
date filtering are trained for 10 epochs with the
BilBOWA toolkit4 (Gouws et al., 2015) by using
the 2M sentence pairs of Europarl both as mono-
lingual and parallel training data. We use the de-
fault parameters with word embedding dimension
of 300 and a subsampling rate of value 1e-4.

3.3 Evaluation metrics

For the evaluation of our models we present the
precision, recall and F1 scores as mentioned on the
shared task website5.

3.4 Details

Candidate filtering To obtain our candidate sen-
tence pairs we apply our n-best cosine similarity
filter as described in Section 2.2. For the shared
task we applied the filter on the shared task test set,
but for the experiment reported here we applied it
to the shared task training set. A low n value will
result in fewer candidate sentence pairs to evaluate
and can be detrimental to the recall score. On the
other hand, a high value can lead to an undesirable
number of candidate sentence pairs and potentially
a lower precision score due to a higher number of
false positive examples. We evaluate the loss of
parallel sentences in the training set with respect
to the value of n.
Digits preprocessing While observing our sys-
tem’s outputs during the shared task we noticed a
substantial number of false positive examples due
to digits being replaced to 0. Consequently, we an-
alyze our approach by measuring the impact of the
following preprocessing choices for training and
evaluating our model: (i) keep digits; (ii) replace
digits to 0; (iii) remove digits. For this experiment
we create validation sets by using the 9,086 pairs
of parallel sentences from the shared task train-
ing set and adding 50M randomly selected nega-
tive sentence pairs. Hence, 0.018% of the sentence
pairs are considered parallel.
Model evaluation Whereas in the previous exper-
iment we report results on experimental noisy val-
idation sets matching the optimal decision thresh-
old λ, in this experiment we evaluate our approach
in a real inference setting on the shared task train-
ing set using a 40-best cosine similarity filter and
a fixed λ value of 0.99.

4https://github.com/gouwsmeister/bilbowa
5https://comparable.limsi.fr/bucc2017/bucc2017-

task.html

n found found (%) ∆ (%) pairs ∆ (%)

1 6,891 75.84 369,810
10 7,824 86.11 13.54 3,698,100 900.00
20 8,020 88.27 2.51 7,396,200 100.00
30 8,114 89.30 1.17 11,094,300 50.00
40 8,190 90.14 0.94 14,792,400 33.33
50 8,243 90.72 0.65 18,490,500 25.00
60 8,279 91.12 0.44 22,188,600 20.00
70 8,311 91.47 0.39 25,886,700 16.67
80 8,340 91.79 0.35 29,584,800 14.29
90 8,370 92.12 0.36 33,282,900 12.5

100 8,388 92.32 0.22 36,981,000 11.11
1000 8,752 96.32 4.34 369,810,000 900.00

Table 1: Parallel sentences found from the n-best
cosine similarity filter. The ∆ columns are the per-
centage increase in number of parallel sentences
found and candidate sentence pairs.

4 Results

4.1 Candidate filtering
In Table 1 we present the information regarding
the number of parallel sentences and number of
candidate sentence pairs obtained by augmenting
the value of n for our candidate filtering method
described in 2.2. We see that our cosine similarity
filter is able to capture most of the parallel sen-
tence pairs, even for low n values. For n = 1, we
are surprised to see that such a simple approach us-
ing pretrained cross-lingual word embeddings on
the Europarl dataset is able to capture 75.84% of
the parallel sentence pairs found in the shared task
training set. By looking at the ∆ columns, we an-
ticipate that there is a precision-recall trade-off by
increasing n. For example, if we increase from a
30-best to a 40-best filter, we increase the recall
score at most by 0.94%. On the other hand, we
augment the number of candidate sentence pairs
to evaluate by 33.33%, increasing the risk of false
positive examples and a lower precision score. For
the shared task we naively used n = 100.

4.2 Digits preprocessing
In this experiment we trained two new models on
Europarl; by keeping or removing digits. In Ta-
ble 2 we report the precision, recall and F1 scores
for our three different approaches evaluated on
validation sets made of the 9,086 parallel sen-
tences and 50M randomly selected sentences from
the shared task training set. The precision-recall
curves with respect to different decision threshold
values λ are reported in Figure 1. We observe that
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Model Precision (%) Recall (%) F1 (%)

Digits 83.25 65.86 73.54
Digits to 0 71.41 56.38 63.01
No digits 79.65 63.86 70.89

Table 2: Performance of our models trained on
Europarl with three different digits preprocessing
method and evaluated on our validation sets made
from the shared task training set.

Figure 1: Precision-Recall curve for our models
trained on Europarl with three different digits pre-
processing method and evaluated on our validation
sets made from the shared task training set.

naively replacing the digits to 0, as we did for the
shared task, is actually the worst option.

4.3 Model evaluation

Equipped with a filter that seems to work well and
a better model trained on a parallel corpus with
digits, we expect to obtain a performance in the
range of those presented in Section 4.2. Unfortu-
nately for us, it is not the case. Table 3 presents
the results we obtained by using our model trained
on Europarl with digits, using the 40-best list and
λ = 0.99. One may wonder what happened to
our surprisingly low precision score. The prob-
lem arises from a combination of how the model is
trained on negative examples and how we filtered
our candidate sentence pairs. Since our model out-
puts a positive instance for two sentences shar-
ing an high level of semantic similarity, by filter-
ing the 40 nearest target sentences for each source
sentence, we created a pool of candidate sentence
pairs that our model outputted as positive most of
the time. That being said, those sentence pairs still
exist in the Cartesian product of the training set.
Thus, the proposed training procedure adding neg-

Decision Threshold Precision (%) Recall (%) F1 (%)

0.99 12.10 70.95 20.67

Table 3: Performance of our models trained on Eu-
roparl with digits using the 40-best cosine similar-
ity filter.

ative examples randomly selected from the train-
ing set is definitely not adequate and needs to be
replaced by a more effective procedure. For fu-
ture work, instead of random sampling, we pro-
pose to apply the n-best cosine similarity filter on
our model’s training set in a way to select negative
examples from the n-best list to train it. A post-
processing step could also be useful.

5 Discussion

The idea toward an end-to-end sentence driven
approach using deep neural networks for parallel
sentence identification is compelling. However,
there is much room for improvement. We pre-
sented that our initial approach learned on distri-
butional semantics alone has weak points that need
to be addressed. With its current architecture and
setting, the main issue is the low precision score
due to the large amount of false positive exam-
ples our system outputs, acting more as a quasi-
parallel sentences extractor. The source of this is-
sue comes from the random sampling procedure
used to add negative examples to the training set.
We have seen that even for a low value n, our sim-
ple distributional bag-of-words n-best filter is ca-
pable of capturing most parallel sentences found
in the comparable corpora, leading to a potentially
good recall score. A promising next step would
be to use the same n-best filter on our training set
and to select negative examples from the n-best
list to train our model. We anticipate that select-
ing negative examples that are similar to the source
sentence will allow our approach to capture finer
semantic granularities and to have a better preci-
sion score. Furthermore, a model trained on neg-
ative examples of higher quality should allow us
to use a lower optimal decision threshold λ, which
increases the recall score.
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