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Abstract

Authorship attribution is a natural lan-
guage processing task that has been widely
studied, often by considering small or-
der statistics. In this paper, we explore a
complex network approach to assign the
authorship of texts based on their meso-
scopic representation, in an attempt to cap-
ture the flow of the narrative. Indeed, as
reported in this work, such an approach
allowed the identification of the dominant
narrative structure of the studied authors.
This has been achieved due to the abil-
ity of the mesoscopic approach to take
into account relationships between differ-
ent, not necessarily adjacent, parts of the
text, which is able to capture the story
flow. The potential of the proposed ap-
proach has been illustrated through prin-
cipal component analysis, a comparison
with the chance baseline method, and net-
work visualization. Such visualizations re-
veal individual characteristics of the au-
thors, which can be understood as a kind
of calligraphy.

1 Introduction

The ever increasing availability of public content
on the Internet — including books, tweets, and blog
posts — has implied in many new developments
in several natural language processing (NLP) ar-
eas such as machine translation, sentiment analy-
sis, and authorship attribution. Recently, advance-
ments in the latter task have been achieved by
using complex networks (Antiqueira et al., 2006;
Amancio et al., 2011; Lahiri and Mihalcea, 2013;
Marinho et al., 2016; Akimushkin et al., 2017).
The network models used in many of these
works are based on word co-occurrence. In this
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approach, each distinct word is represented by
a node, and edges connect adjacent words. Al-
though this networked representation has proven
successful in many tasks, it is not without its share
of problems. Co-occurrence networks do not por-
tray the topical structure found in many texts and
are usually devoid of community structure (de Ar-
ruda et al., 2016). In order to overcome this dis-
advantage, some techniques have been devoted to
the mesoscopic representation of texts (de Arruda
et al., 2016, 2017). de Arruda et al. (2017) pro-
posed a novel networked model, in which each
node represents a respective set of consecutive
paragraphs, while weighted edges express the sim-
ilarity between nodes. Their proposed network is
able to extract the organization and flow of text
by effectively capturing the similarity between the
blocks of text. In addition, their method was em-
ployed to distinguish between real and shuffled
texts. However, mesoscopic networks have not
been applied to tackle other NLP tasks.

Most researchers in the field of authorship at-
tribution assume that each author has a signature
(known as authorial fingerprint) that distinguishes
his/her writing from the others (Juola, 2006). So
inspired, we decided to test the hypothesis that
these authorial fingerprints are also visible at a
mesoscopic scale. At this scale, distinctive graph-
ical patterns of the course of the text emerge, akin
to a “discourse calligraphy” of the author. Thus,
in order to classify texts according to their author-
ship, we created mesoscopic networks from texts
and employed a set of topological measurements.
In particular, the main goal of this paper is to probe
whether the authors’ writing styles correlate with
the story flow of their books.

This paper is structured as follows: Section 2
briefly describes the problem and some com-
plex network approaches for authorship attribu-
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tion. The process to create mesoscopic networks
is explained in Section 3. In addition, we also de-
scribe the dataset, the selected measurements and
the machine learning algorithms in Section 3. The
obtained results are reported in Section 4. Finally,
Section 5 outlines our conclusions and prospects
for future work.

2 Related Work

Authorship attribution methods attempt to find
the most likely author of a document (Sta-
matatos, 2009). Since the seminal work conducted
by Mosteller and Wallace (1964), authorship at-
tribution has been a widely studied problem and
several different approaches have been proposed.
One of the first approaches consisted in analyzing
the frequency of common words, such as fo or the,
in order to classify political essays according to
their authorship (Mosteller and Wallace, 1964).

Since then, Mosteller and Wallace (1964)’s
method has been enhanced to incorporate differ-
ent attributes capable of qualifying writing styles.
These include lexical, character, syntactic, and se-
mantic features (Stamatatos, 2009). Simple lexical
and character features (e.g. frequency and bursti-
ness of words and characters, average lengths of
texts, and others) have been used in several works,
as reported by Grieve (2007), Koppel et al. (2009),
and Stamatatos (2009). Most of these works have
achieved good results by using, for example, the
frequency of stopwords. Examples of syntactic
information include the frequencies of POS tags
and constituency-based parsing tree rules (Baayen
et al., 1996; Gamon, 2004; Hirst and Feiguina,
2007). Finally, semantic features can be extracted
from semantic dependency graphs and from the
semantic roles associated with some words (Ga-
mon, 2004; Argamon et al., 2007).

The usage of network analysis in authorship at-
tribution has already been studied from different
perspectives. Antiqueira et al. (2006), one of the
first works in the area, extracted some measure-
ments from co-occurrence networks and discov-
ered that these could be used to characterize the
writing style of authors. Amancio et al. (2011)
combined network measurements with the distri-
bution of words to characterize the authorship of
several books. Lahiri and Mihalcea (2013) car-
ried out an in-depth authorship attribution study
using more than 100 features extracted from co-
occurrence networks. They found that local fea-

tures (those extracted from individual nodes) out-
perform global features in the authorship attribu-
tion problem.

Apart from using traditional network measure-
ments, the frequency of network motifs involving
three nodes (Milo et al., 2002) was found useful
to characterize the writing style (Marinho et al.,
2016). Instead of considering the text as a static
structure, Akimushkin et al. (2017) studied the
topology evolution of co-occurrence networks ex-
tracted from different sections of the text. Unlike
most of the previous mentioned works, in which
stopwords are usually removed, Segarra et al.
(2013) proposed an authorship attribution method
based on networks formed only by stopwords.

3 Methods

In this section, we describe the process to create
mesoscopic networks from raw texts. We also de-
tail the network measurements and machine learn-
ing methods.

3.1 Mesoscopic Approach

There are several ways to represent texts as com-
plex networks, such as co-occurrence, syntactic,
semantic or similarity networks (Mihalcea and
Radev, 2011; Cong and Liu, 2014). In this study,
we adopt the mesoscopic network approach pro-
posed by de Arruda et al. (2017). Such networks
are able to represent the text unfolding along time,
which is normally overlooked by traditional ap-
proaches. Moreover, these networks were used
to classify documents between real and shuffled
texts, using only simple statistics. The high accu-
racy rate obtained in that classification task led us
to infer that mesoscopic networks are able to rep-
resent structural aspects of real texts, such as the
organization and development of the author’s idea.

In order to create the network from a given
text (1), some preprocessing steps can be ap-
plied. In our study, we removed the stopwords,
and the remaining words were lemmatized. Fig-
ure 1 illustrates the methodology used to create
mesoscopic networks. In the first step, shown
in Figure 1(a), the text is partitioned into a set
of paragraphs, ' = (po,p1,p2,---), Where p;
is a sequence of the preprocessed words belong-
ing to the same paragraph ¢. Different from the
co-occurrence networks, where nodes represent
words, in mesoscopic networks nodes encompass
sequences of A consecutive paragraphs. More
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Figure 1: Illustration of the mesoscopic approach proposed by de Arruda et al. (2017). First, the text T’
is divided into subsequent paragraphs (a). Overlapping windows with A = 2 paragraphs are shown in
(b). Then, the tf-idf map is computed for all windows (c). Each pair of nodes (windows) 7 and j is now
connected by an edge, weighted by the cosine similarity between their respective tf-idf maps (d). Next,
in the network pruning phase, the edges with the lowest weights are removed until the network reaches
a given average degree (k). The network in (e) illustrates the obtained unweighted mesoscopic network

with (k) = 2.

specifically, each possible subsequent set with A
paragraphs, W2 = (pi,pi+1,- " , Pi+A—1), Tep-
resents a network node, as shown in Figure 1(b).
So as to account for the importance of the words

in a given paragraph, we applied the #f-idf (Man-
ning and Schiitze, 1999) statistics, which was orig-
inally proposed to quantify the importance of a
given word w in a document d given a corpus D.
A tf-idf(w, d, D) map is computed as

D

dy |’

fuwa
n

where f,, 4 is the frequency of word w in the doc-
ument d, n is the total number of words in the
document d, |D| represents the total number of
documents and d,, is the number of documents
in which w occurs at least once. In order to ap-
ply the tf-idf measurement, we considered all the
possible windows of subsequent paragraphs, WiA,
as the set of documents D (see Figure 1(c)). Fi-
nally, for each pair of nodes 7 and j, a respective
edge is created and its weight is calculated accord-
ing to the cosine similarity between tf-idf{( WZ»A, T)
and tf-idf(W#, T), where tf-idf(W/,T) is a tf-
idf vector of all words, computed from a given set
of paragraphs WiA. This step is illustrated in Fig-
ure 1(d).

In order to convert the network from weighted
to unweighted, the edges with the lowest weights
can be removed, as described in Section 3.2. It
should be noted that edges originating from adja-
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tf-idf(w, d, D) =

cent paragraphs tend to have higher weights be-
cause of the implied overlap. Figure 1(e) shows
an example of unweighted network. In our exper-
iment, we set A = 20, as empirically determined
elsewhere (de Arruda et al., 2017).

3.2 Network Pruning

Mesoscopic networks are complete weighted
graphs, i.e. every node is connected to every other
node (Newman, 2010). In this paper, we repeat-
edly removed the edges with the lowest weights
until each network reached a fixed network aver-
age degree (k). The average degree of a network
g, with E edges and N nodes, is defined as

2x B
(k) = =~ @

We used several values of (k), ranging from 5 to
50, by steps of 5.

3.3 Network Measurements

The following network measurements were ex-
tracted from the networks!. Most of these mea-
surements (apart from assortativity) apply to a sin-
gle node. So, in order to obtain more global char-
acterization, we calculated the average, standard
deviation and skewness (third moment) of each
distribution. The obtained statistics from these
distributions were then used as features in the ma-
chine learning methods.

"For most of these measurements, we used the Igraph
software package (Csardi and Nepusz, 2006)



Degree: The degree quantifies the number of
connections of a node (Costa et al., 2007). Even
though the average degree of all networks is the
same as a consequence of network pruning, the
degree of each node may still vary inside the net-
work. Therefore, we used the standard deviation
and skewness of this measurement, disregarding
the average.

Average Degree of Neighbors: The average de-
gree of neighbors (Pastor-Satorras et al., 2001)
quantifies how well connected are the neighbors
of a node.

Assortativity: As described by Newman (2003),
the assortativity quantifies how likely it is for a
given node to connect to other nodes with simi-
lar degree. Lower than zero values of assortativ-
ity are obtained when a node tends to connect to
others with very different degrees. When a node
connects only to others with the same degree, the
assortativity becomes one. Null assortativity indi-
cates that there is no correlation.

Clustering Coelfficient. This measurement re-
flects how well interconnected are the neighbors
of a given node (Watts and Strogatz, 1998).

Accessibility (h = {2,3}): The accessibility of
a node 7 is based on Shannon’s entropy (Shannon
and Weaver, 1963) of the probability of accessing
nodes at the A" concentric level, centered at 4, by
a given dynamics starting at that node (Travencolo
and Costa, 2008). Here, we adopted the self-
avoiding random walk as the reference dynamics.

Symmetry (h = {2,3,4}): This measure-
ment (Silva et al., 2016b), obtained for each node
1, quantifies the symmetry of the topology around
1. It can be understood as a normalization of
the accessibility, and includes two components:
backbone, where edges between nodes from the
same concentric level are discarded, and merged,
where nodes that share edges in the same level are
merged.

Network visualization can provide means to
better understand the structure of a given book’s
story by organizing, into an embedding space, the
topology of the obtained network. We applied a vi-
sualization methodology based on force-directed
graph drawing (Silva et al., 2016a). Specifically,
this method is based on the Fruchterman and Rein-
gold (1991) (FR) algorithm, which simulates a
system of particles, which attract and repel one an-
other. The attractive force, f,, reflects the node
connectivity, while the repulsive force, f,, acts

between all pair of nodes. A gravitational force,
fg> can also be added. We adopted f, = 0.0002,
fr =1.25,and f, = 0.001.

3.4 Machine Learning Methods

Several classifiers — Decision Trees, Random
Forest, kNN, Logistic Regressors, SVM, Naive
Bayes (Duda et al., 2000) — were tested in or-
der to choose the most adequate. Support Vec-
tor Machines (SVM) and Random Forest were se-
lected. We used the Linear SVM implementa-
tion (with default parameters), and Random Forest
with 50 trees, both available at Scikit-learn (Pe-
dregosa et al., 2011). We employed the leave-one-
out cross-validation technique, in which only one
dataset instance is used as test while all the others
are taken for training the classifier. Feature selec-
tion was attempted, but no particular subset of fea-
tures stood out. Therefore, all measurements were
considered.

4 Results and Discussion

In this section, we describe the selected dataset
and present the obtained results organized in two
parts: (i) the complete set of authors; and (ii) four
authors representing major types of works.

4.1 Dataset

In order to investigate whether authors can be dis-
tinguished by the story flow in their works, we
created mesoscopic networks from several texts.
Our dataset is composed of 100 English texts writ-
ten by 20 distinct authors (five texts per author)
extracted from Machicao et al. (2016). The se-
lected 20 authors are: Andrew Lang, Arthur Co-
nan Doyle, B. M. Bower, Bram Stoker, Charles
Darwin, Charles Dickens, Edgar Allan Poe, H. G.
Wells, Hector H. Munro (Saki), Henry James, Her-
man Melville, Horatio Alger, Jane Austen, Mark
Twain, Nathaniel Hawthorne, P. G. Wodehouse,
Richard Harding Davis, Thomas Hardy, Washing-
ton Irving, and Zane Grey. The whole dataset was
obtained from the Project Gutenberg repository?.
The complete list of used texts is available at this
link °.

4.2 Complete Set of Authors

In the first experiment, we used all the books by
all 20 authors, yielding the results presented in Ta-
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ble 1. Remarkably, though the chance baseline
for this experiment is only 5% (each author has
the same probability of being randomly selected),
our best result was as high as 35%. Moreover, 17
(48.5%) out of the 35 books correctly classified
by our method were written by only 4 authors:
namely Andrew Lang, B. M. Bower, Hector H.
Munro (Saki), and Henry James

Table 1: Accuracy rate in discriminating the au-
thorship of texts.

Average Degree Random Forest SVM
(ky =5 10% 12%
(k) =10 18% 14%
(k) =15 22% 25%
(k) =20 25% 24%
(k) =25 21% 17%
(k) =30 21% 23%
(k) =35 16% 17%
(k) =40 16% 23%
(k) =45 18% 25%
(k) =50 16% 20%
All combined 26% 35%

We also performed a pairwise classification.
The obtained results were compared with a tra-
ditional approach usually employed in the litera-
ture, the analysis of the most frequent words. For
this experiment, we used the original texts of each
book, extracted the frequency of the 20 most fre-
quent words, and then used a SVM classifier. Fig-
ure 2 shows the accuracies for the traditional fea-
tures, and Figure 3 illustrates the pairwise classifi-
cation accuracies when mesoscopic networks were
used to model each text, we did not select a single
average degree (k), but rather we combined all the
degrees listed in Table 1. The accuracies were ob-
tained with the SVM classifier.

A careful examination of Figure 2 and 3 reveals
that for some cases, except the squares with lighter
colors, our results are on par with those obtained
with the frequency of the 20 most frequent words
(mainly stopwords). Moreover, our method even
achieved higher accuracies in some combinations.
See, for example, authors Grey and Munro, for
which 7 and 6, respectively, of our results were
better than the traditional approach. One thing that
we should note, and which will be revisited in the
following subsection, is the fact that it is hard for
mesoscopic networks to distinguish Edgar Allan
Poe from Charles Darwin. In this case, we ob-

tained an accuracy rate of 50%, contrasted to 80%
achieved by the other approach.

4.3 Small Set of Authors

Out of the 20 authors considered in the previ-
ous subsection, we selected four authors, namely
Charles Darwin, Thomas Hardy, Edgar Allan Poe,
and Mark Twain. They were chosen because two
of them have several novels (Thomas Hardy and
Mark Twain), Edgar Allan Poe is best known for
writing short stories and Charles Darwin wrote
about his scientific theories and observations. The
now obtained accuracy rate in classifying them
was enhanced to 65% (Random Forests) and 50%
(SVM) by using the mesoscopic representation,
contrasted to the chance baseline of 25% obtained
for four authors. The Principal Component Anal-
ysis (PCA) (Jolliffe, 2002) considering these four
authors is presented in Figure 4.

The PCA results indicate a clear partitioning be-
tween the groups of books associated to each au-
thor. Remarkably, one of Thomas Hardy’s book
(A Changed Man and Other Tales) resulted be-
tween those of Edgar Allan Poe and Charles Dar-
win. Such a good partitioning is a consequence of
the quite different mesoscopic networks obtained
for these authors, as depicted in Figure 5.

The mesoscopic networks presented in Fig-
ure 5 unveil interesting aspects, including an unex-
pected similarity to intricate calligraphic shapes.
Note that the books which contain tales or short
stories, such as those by Edgar Allan Poe, as well
as the book A Changed Man and Other Tales,
present a similar chain-like topology with a few
cycles. Moreover, most of these cycles appear at a
relatively small scale. Interestingly, the scientific
books of Charles Darwin also present this chain-
like structure, which is probably related to the na-
ture of his writings, describing his theories, obser-
vations, and findings.

It is clear, visually, that the other books present
more complex stories, where paragraphs (nodes)
from different parts of the book sharing similar
content resulted in intersections. For example,
the book Adventures of Huckleberry Finn tells the
story of Huckleberry Finn traveling down the Mis-
sissippi river. During most of the book, he goes
through different small adventures along the river.
Another interesting point is that this book ends in
a similar setting as it begins, when Huckleberry
Finn returns to his city, which is reflected in the
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Figure 2: Accuracy rate (from O to 1) in the pairwise classification using the frequency of the 20 most
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respective return of the unfolding trajectory to its
beginning. It is important to highlight that a full
visual analysis with all the 20 authors was beyond
the scope of this experiment. Our primary goal
was to perform a preliminary investigation of the
books through geometrical approaches.

5 Conclusion

Complex network methods have been applied with
growing success to several natural language pro-
cessing tasks. In some of these approaches, a
chunk of text is represented as a co-occurrence
network, which reflects the syntactic relationship
between words (Cancho and Solé, 2001). Al-
though this is a well-known representation, it is
not without its share of problems. Those net-
works, for example, are unable to represent the
topical structure found in many texts. So as to
overcome such a limitation, a mesoscopic repre-
sentation has been recently proposed (de Arruda
et al.,, 2017). The main goal of that approach
was to take into account the semantical relation-
ship between chunks of text. More specifically, the
network nodes correspond to texts from consecu-

tive paragraphs, while the edges are weighted by
the similarity between the respective texts. Statis-
tics of some local topological measurements were
used to characterize books’ mesoscopic networks.
We tested the hypothesis that such a representation
is useful at assigning the authorship to documents.
In particular, we advocated that fingerprints left by
each author are visible at a mesoscopic scale.

The obtained accuracy rates, which in one case
surpassed by 40 percentage points the chance
baseline, suggest that the proposed approach is ca-
pable of revealing writing styles characteristics. In
addition, we performed an alternative classifica-
tion, in which all pairs of distinct authors were
considered. In some cases our method provided
better results than those obtained with traditional
features. Such a result indicates that features ob-
tained from mesoscopic networks can be used as
a complement to more traditional features of texts.
In order to better understand the unfolding of texts,
we selected authors whose works include short
stories, novels, and scientific writing. A set of
topological features was estimated and PCA pro-
jected. Interestingly, in this projected space, a
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Figure 4: PCA of the books written by Charles
Darwin, Thomas Hardy, Edgar Allan Poe, and
Mark Twain.

book of tales written by Thomas Hardy resulted
closer to Edgar Allan Poe’s books, which are also
composed of short stories. Even more surprising,
the patterns obtained by the visualization resulted
quite representative of the different types of works,
suggesting a ‘“‘calligraphy”. Such visualizations
reveal intricate discourse patterns in the books.

The goal of this paper was not to provide state-
of-the-art results for authorship attribution, given
that most traditional approaches in the literature
have achieved results as high as 90% (Grieve,
2007; Koppel et al., 2009). Instead, we report an
approach that can be used to obtain novel stylo-
metric features, as well as to complement tradi-
tional methods.

Future works could apply a similar approach to
other related tasks — such as authorship verifica-
tion, plagiarism detection, and topic segmentation
— and also extend the mesoscopic representation
to include different granularity levels, such as sen-
tences or chapters. Another possibility is to inves-
tigate the relationship between the emotional con-
tent of a text and its topology.
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Figure 5: Mesoscopic networks for 20 books of four different authors. Charles Darwin: (1) Coral Reefs,
(2) The Expression of the Emotions in Man and Animals, (3) Geological Observations on South America,
(4) The Different Forms of Flowers on Plants of the Same Species, and (5) Volcanic Islands. Thomas
Hardy: (1) A Changed Man; and Other Tales, (2) A Pair of Blue Eyes, (3) Far from the Madding Crowd,
(4) Jude the Obscure, and (5) The Hand of Ethelberta. Edgar Allan Poe: The Works of Edgar Allan Poe -
Volume (1) to (5). Mark Twain: (1) Adventures of Huckleberry Finn, (2) The Adventures of Tom Sawyer,
(3) The Prince and the Pauper, (4) A Connecticut Yankee in King Arthur’s Court, and (5) Roughing It.
The bluish nodes represent the windows formed by paragraphs from the beginning of the book and the
greenish ones represent the windows formed by paragraphs from the end of the book. The order of the
windows can be seen in the legend, where N represents the last window.
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