
Biomedical Event Trigger Identification Using Bidirectional Recurrent
Neural Network Based Models

Patchigolla V S S Rahul, Sunil Kumar Sahu, Ashish Anand
Department of Computer Science and Engineering

Indian Institute of Technology Guwahati, Assam, India
rahul.rahul.pvss@gmail.com

{sunil.sahu, anand.ashish}@iitg.ernet.in

Abstract

Biomedical events describe complex inter-
actions between various biomedical enti-
ties. Event trigger is a word or a phrase
which typically signifies the occurrence of
an event. Event trigger identification is an
important first step in all event extraction
methods. However many of the current
approaches either rely on complex hand-
crafted features or consider features only
within a window. In this paper we pro-
pose a method that takes the advantage
of recurrent neural network (RNN) to ex-
tract higher level features present across
the sentence. Thus hidden state represen-
tation of RNN along with word and entity
type embedding as features avoid relying
on the complex hand-crafted features gen-
erated using various NLP toolkits. Our ex-
periments have shown to achieve state-of-
art F1-score on Multi Level Event Extrac-
tion (MLEE) corpus. We have also per-
formed category-wise analysis of the re-
sult and discussed the importance of var-
ious features in trigger identification task.

1 Introduction

Biomedical events play an important role in im-
proving biomedical research in many ways. Some
of its applications include pathway curation (Ohta
et al., 2013) and development of domain spe-
cific semantic search engine (Ananiadou et al.,
2015). So as to gain attraction among researchers
many challenges such as BioNLP’09 (Kim et al.,
2009), BioNLP’11 (Kim et al., 2011), BioNLP’13
(Nédellec et al., 2013) have been organized and
many novel methods have also been proposed ad-
dressing these tasks.

Figure 1: Example of a complex biomedical event

An event can be defined as a combination of
a trigger word and arbitrary number of argu-
ments. Figure 1 shows two events with trigger
words as “Inhibition” and “Angiogenesis” of trig-
ger types “Negative Regulation” and “Blood Vessel
Development” respectively. Pipelined based ap-
proaches for biomedical event extraction include
event trigger identification followed by event ar-
gument identification. Analysis in multiple stud-
ies (Wang et al., 2016b; Zhou et al., 2014) reveal
that more than 60% of event extraction errors are
caused due to incorrect trigger identification.

Existing event trigger identification models
can be broadly categorized in two ways: rule
based approaches and machine learning based
approaches. Rule based approaches use various
strategies including pattern matching and regular
expression to define rules (Vlachos et al., 2009).
However, defining these rules are very difficult,
time consuming and requires domain knowledge.
The overall performance of the task depends on
the quality of rules defined. These approaches of-
ten fail to generalize for new datasets when com-
pared with machine learning based approaches.
Machine learning based approaches treat the trig-
ger identification problem as a word level classi-
fication problem, where many features from the
data are extracted using various NLP toolkits
(Pyysalo et al., 2012; Zhou et al., 2014) or learned
automatically (Wang et al., 2016a,b).

In this paper, we propose an approach using
RNN to learn higher level features without the re-
quirement of complex feature engineering. We
thoroughly evaluate our proposed approach on



MLEE corpus. We also have performed category-
wise analysis and investigate the importance of
different features in trigger identification task.

2 Related Work

Many approaches have been proposed to ad-
dress the problem of event trigger identification.
Pyysalo et al. (2012) proposed a model where var-
ious hand-crafted features are extracted from the
processed data and fed into a Support Vector Ma-
chine (SVM) to perform final classification. Zhou
et al. (2014) proposed a novel framework for trig-
ger identification where embedding features of the
word combined with hand-crafted features are fed
to SVM for final classification using multiple ker-
nel learning. Wei et al. (2015) proposed a pipeline
method on BioNLP’13 corpus based on Condi-
tional Random Field (CRF) and Support vector
machine (SVM) where the CRF is used to tag
valid triggers and SVM is finally used to identify
the trigger type. The above methods rely on var-
ious NLP toolkits to extract the hand-crafted fea-
tures which leads to error propagation thus affect-
ing the classifier’s performance. These methods
often need to tailor different features for different
tasks, thus not making them generalizable. Most
of the hand-crafted features are also traditionally
sparse one-hot features vector which fail to cap-
ture the semantic information.

Wang et al. (2016b) proposed a neural net-
work model where dependency based word em-
beddings (Levy and Goldberg, 2014) within a win-
dow around the word are fed into a feed for-
ward neural network (FFNN) (Collobert et al.,
2011) to perform final classification. Wang et al.
(2016a) proposed another model based on convo-
lutional neural network (CNN) where word and
entity mention features of words within a window
around the word are fed to a CNN to perform fi-
nal classification. Although both of the methods
have achieved good performance they fail to cap-
ture features outside the window.

3 Model Architecture

We present our model based on bidirectional RNN
as shown in Figure 2 for the trigger identification
task. The proposed model detects trigger word as
well as their type. Our model uses embedding fea-
tures of words in the input layer and learns higher
level representations in the subsequent layers and

Figure 2: Model Architecture

makes use of both the input layer and higher level
features to perform the final classification. We
now briefly explain about each component of our
model.

3.1 Input Feature Layer

For every word in the sentence we extract two
features, exact word w ∈ W and entity type e ∈
E. Here W refers the dictionary of words and E
refers to dictionary of entities. Apart from all the
entities, E also contains a None entity type which
indicates absence of an entity. In some cases the
entity might span through multiple words, in that
case we assign every word spanned by that entity
the same entity type.

3.2 Embedding or Lookup Layer

In this layer every input feature is mapped to a
dense feature vector. Let us say that Ew and Ee
be the embedding matrices of W and E respec-
tively. The features obtained from these embed-
ding matrices are concatenated and treated as the
final word-level feature (l) of the model.

The Ew ∈ Rnw×dw embedding matrix is ini-
tialized with pre-trained word embeddings and Ee
∈ Rne×de embedding matrix is initialized with
random values. Here nw, ne refer to length of the
word dictionary and entity type dictionary respec-
tively and dw, de refer to dimension of word and
entity type embedding respectively.

3.3 Bidirectional RNN Layer

RNN is a powerful model for learning fea-
tures from sequential data. We use both LSTM
(Hochreiter and Schmidhuber, 1997) and GRU
(Chung et al., 2014) variants of RNN in our ex-



periments as they handle the vanishing and ex-
ploding gradient problem (Pascanu et al., 2012)
in a better way. We use bidirectional version of
RNN (Graves, 2013) where for every word for-
ward RNN captures features from the past and the
backward RNN captures features from future, in-
herently each word has information about whole
sentence.

3.4 Feed Forward Neural Network

The hidden state of the bidirectional RNN layer
acts as sentence-level feature (g), the word and
entity type embeddings (l) act as a word-level
features, are both concatenated (1) and passed
through a series of hidden layers (2), (3) with
dropout (Srivastava et al., 2014) and an output
layer. In the output layer, the number of neurons
are equal to the number of trigger labels. Finally
we use Softmax function (4) to obtain probabil-
ity score for each class.

f = gk ⊕ lk (1)

h0 = tanh(W0f + b0) (2)

hi = tanh(Wihi−1 + bi) (3)

p(y|x) = Softmax(Wohi + bo) (4)

Here k refers to the kth word of the sentence, i
refers to the ith hidden layer in the network and
⊕ refers to concatenation operation. Wi,Wo and
bi,bo are parameters of the hidden and output lay-
ers of the network respectively.

3.5 Training and Hyperparameters

We use cross entropy loss function and the model
is trained using stochastic gradient descent. The
implementation1 of the model is done in python
language using Theano (Bergstra et al., 2010) li-
brary. We use pre-trained word embeddings ob-
tained by Moen et al. (2013) using word2vec tool
(Mikolov et al., 2013).

We use training and development set for hyper-
parameter selection. We use word embeddings of
200 dimension, entity type embeddings of 50 di-
mension, RNN hidden state dimension of 250 and
2 hidden layers with dimension 150 and 100. In
both the hidden layers we use dropout of 0.2.

1Implementation is available at https:
//github.com/rahulpatchigolla/
EventTriggerDetection

4 Experiments and discussion

4.1 Dataset Description

We use MLEE (Pyysalo et al., 2012) corpus for
performing our trigger identification experiments.
Unlike other corpora on event extraction it covers
events across various levels from molecular to or-
ganism level. The events in this corpus are broadly
divided into 4 categories namely “Anatomical”,
“Molecular”, “General”, “Planned” which are
further divided into 19 sub-categories as shown in
Table 1. Here our task is to identify correct sub-
category of an event. The entity types associated
with the dataset are summarized in Table 2.

Category Trigger label Train count Test count

Anatomical

Cell Proliferation (CELLP) 82 43
Development (DEV) 202 98
Blood Vessel Development (BVD) 540 305
Death (DTH) 57 36
Breakdown (BRK) 44 23
Remodeling (REMDL) 22 10
Growth (GRO) 107 56

Molecular

Synthesis (SYN) 13 4
Gene Expression (GENEXP) 210 132
Transcription (TRANS) 16 7
Catabolism (CATA) 20 4
Phosphorylation (PHO) 26 3
Dephosphorylation (DEPHO) 2 1

General

Localization (LOC) 282 133
Binding (BIND) 102 56
Regulation (REG) 362 178
Positive Regulation (PREG) 654 312
Negative Regulation (NREG) 450 233

Planned Planned Process (PLP) 407 175

Table 1: Statistics of event triggers in MLEE corpus

Category Entity label Train count Test count

Molecule
Drug or Compound 637 307
Gene or Gene Product 1961 1001

Anatomy

Organism Subdivision 27 22
Anatomical System 10 8
Organ 123 53
Multi-tissue Structure 348 166
Tissue 304 122
Cell 866 332
Cellular Component 105 40
Developing Anatomical Structure 4 2
Organism Substance 82 60
Immaterial Anatomical Entity 11 4
Pathological Formation 553 357

Organism Organism 485 237

Table 2: Statistics of entities in MLEE corpus

4.2 Experimental Design

The data is provided in three parts as training,
development and test sets. Hyperparameters are
tuned using development set and then final model
is trained on the combined set of training and de-
velopment sets using the selected hyperparame-
ters. The final results reported here are the best
results over 5 runs.

https://github.com/rahulpatchigolla/EventTriggerDetection
https://github.com/rahulpatchigolla/EventTriggerDetection
https://github.com/rahulpatchigolla/EventTriggerDetection


Figure 3: Confusion matrix of trigger classes with abbreviations mentioned in Table 1

We have used micro averaged F1-score as the
evaluation metric and evaluated the performance
of the model by ignoring the trigger classes with
counts ≤ 10 in test set while training and consid-
ered them directly as false-negative while testing.

4.3 Performance comparison with Baseline
Models

We compare our results with baseline models
shown in Table 3. Pyysalo et al. (2012) defined a
SVM based classifier with hand-crafted features.
Zhou et al. (2014) also defined a SVM based clas-
sifier with word embeddings and hand-crafted fea-
tures. Wang et al. (2016a) defined window based
CNN classifier. Apart from the proposed models
we also compare our results with two more base-
line methods FFNN and CNNψ which are our im-
plementations. Here FFNN is a window based
feed forward neural network where embedding
features of words within the window are used to
predict the trigger label (Collobert et al., 2011).
We chose window size as 3 (one word from left

and one word from right) after tuning it in vali-
dation set. CNNψ is our implementation of win-
dow based CNN classifier proposed by Wang et al.
(2016a) due to unavailability of their code in pub-
lic domain. Our proposed model have shown
slight improvement in F1-score when compared
with baseline models. The proposed model’s abil-
ity to capture the context of the whole sentence is
likely to be one of the reasons of improvement in
performance.

We perform one-side t-test over 5 runs of F1-
Scores to verify our proposed model’s perfor-
mance when compared with FFNN and CNNΨ.
The p value of the proposed model (GRU) when
compared with FFNN and CNNψ are 8.57×10−07

and 1.178 × 10−10 respectively. This indicates
statistically superior performance of the proposed
model.

4.4 Category Wise Performance Analysis

The category wise performance of the proposed
model is shown in Table 4. It can be observed that



Method Precision Recall F1-Score
SVM (Pyysalo et al., 2012) 81.44 69.48 75.67

SVM+We (Zhou et al., 2014) 80.60 74.23 77.82
CNN (Wang et al., 2016a) 80.67 76.76 78.67

FFNN 77.53 75.55 76.53
CNNψ 80.75 69.36 74.62

Proposed (LSTM) 78.58 78.84 78.71
Proposed (GRU) 79.78 78.45 79.11

Table 3: Comparison of performance of our model with base-
line models

model’s performance in anatomical and molecu-
lar categories are better than general and planned
categories. We can also infer from the confusion
matrix shown in Figure 3 that positive regulation,
negative regulation and regulation among general
category and planned category triggers are caus-
ing many false positives and false negatives thus
degrading the model’s performance.

Trigger Category Precision Recall F1-Score
Anatomical 88.86 83.06 85.87
Molecular 88.80 73.51 80.43
General 75.69 78.53 77.09
Planned 67.63 67.24 67.43
Overall 79.78 78.45 79.11

Table 4: Category wise performance of the model

4.5 Further Analysis

In this section we investigate the importance of
various features and model variants as shown in
Table 5. Here Ew and Ee refer to using word and
entity type embedding as a feature in the model, l
and g refer to using word-level and sentence-level
feature respectively for the final prediction. For
example, Ew + Ee and g means using both word
and entity type embedding as the input feature for
the model and g means only using the global fea-
ture (hidden state of RNN) for final prediction.

Index Method F1-Score
1 Ew and g 76.52
2 Ew and l + g 77.59
3 Ew + Ee and g 78.70
4 Ew + Ee and l + g 79.11

Table 5: Affect on F1-Score based on feature analysis and
model variants

Examples in Table 6 illustrate importance of
features used in best performing models. In phrase
1 the word “knockdown”, is a part of an en-
tity namely “round about knockdown endothelial

cells” of type “Cell” and in phrase 2 it is trigger
word of type “Planned Process”, methods 1 and 2
failed to differentiate both of them because of no
knowledge about the entity type. In phrase 3 “im-
paired” is a trigger word of type “Negative Regu-
lation” methods 1 and 3 failed to correctly iden-
tify but when reinforced with word-level feature
the model succeeded in identification. So, we can
say that Ee feature and l+ g model variant help in
improving the model’s performance.

Index Phrase

1
silencing of directional migration
in round about knockdown
endothelial cells

2
we show that PSMA inhibition
knockdown or deficiency decrease

3
display altered maternal hormone
concentrations indicative of an
impaired trophoblast capacity

Table 6: Example phrases for Further Analysis

5 Conclusion and Future Work

In this paper we have proposed a novel approach
for trigger identification by learning higher level
features using RNN. Our experiments have shown
to achieve state-of-art results on MLEE corpus. In
future we would like to perform complete event
extraction using deep learning techniques.

References
Sophia Ananiadou, Paul Thompson, Raheel Nawaz,

John McNaught, and Douglas B Kell. 2015.
Event-based text mining for biology and func-
tional genomics. Briefings in functional genomics
14(3):213–230.

James Bergstra, Olivier Breuleux, Frédéric Bastien,
Pascal Lamblin, Razvan Pascanu, Guillaume Des-
jardins, Joseph Turian, David Warde-Farley, and
Yoshua Bengio. 2010. Theano: A cpu and gpu math
compiler in python. In Proc. 9th Python in Science
Conf . pages 1–7.

Junyoung Chung, Çaglar Gülçehre, KyungHyun Cho,
and Yoshua Bengio. 2014. Empirical evaluation of
gated recurrent neural networks on sequence model-
ing. CoRR abs/1412.3555.

Ronan Collobert, Jason Weston, Léon Bottou, Michael
Karlen, Koray Kavukcuoglu, and Pavel Kuksa.
2011. Natural language processing (almost) from
scratch. J. Mach. Learn. Res. 12:2493–2537.



Alex Graves. 2013. Generating sequences with recur-
rent neural networks. CoRR abs/1308.0850.

Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long
short-term memory. Neural Comput. pages 1735–
1780.

Jin-Dong Kim, Tomoko Ohta, Sampo Pyysalo, Yoshi-
nobu Kano, and Jun’ichi Tsujii. 2009. Overview
of bionlp’09 shared task on event extraction. In
Proceedings of the Workshop on Current Trends in
Biomedical Natural Language Processing: Shared
Task. Association for Computational Linguistics,
pages 1–9.

Jin-Dong Kim, Sampo Pyysalo, Tomoko Ohta, Robert
Bossy, Ngan Nguyen, and Jun’ichi Tsujii. 2011.
Overview of bionlp shared task 2011. In Proceed-
ings of the BioNLP Shared Task 2011 Workshop. As-
sociation for Computational Linguistics, pages 1–6.

Omer Levy and Yoav Goldberg. 2014. Dependency-
based word embeddings. In ACL 2014. pages 302–
308.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor-
rado, and Jeff Dean. 2013. Distributed representa-
tions of words and phrases and their compositional-
ity. In Advances in neural information processing
systems. pages 3111–3119.

Hans Moen, Sampo Pyysalo, Filip Ginter, Tapio
Salakoski, and Sophia Ananiadou. 2013. Distribu-
tional semantics resources for biomedical text pro-
cessing.

Claire Nédellec, Robert Bossy, Jin-Dong Kim, Jung-
Jae Kim, Tomoko Ohta, Sampo Pyysalo, and Pierre
Zweigenbaum. 2013. Overview of bionlp shared
task 2013. In Proceedings of the BioNLP Shared
Task 2013 Workshop. Association for Computational
Linguistics, pages 1–7.

Tomoko Ohta, Sampo Pyysalo, Rafal Rak, Andrew
Rowley, Hong-Woo Chun, Sung-Jae Jung, Chang-
hoo Jeong, Sung-pil Choi, and Sophia Ananiadou.
2013. Overview of the pathway curation (pc) task
of bionlp shared task 2013 .

Razvan Pascanu, Tomas Mikolov, and Yoshua Bengio.
2012. Understanding the exploding gradient prob-
lem. CoRR, abs/1211.5063 .

Sampo Pyysalo, Tomoko Ohta, Makoto Miwa, Han-
Cheol Cho, Jun’ichi Tsujii, and Sophia Ananiadou.
2012. Event extraction across multiple levels of bi-
ological organization. Bioinformatics 28(18):575–
581.

Nitish Srivastava, Geoffrey E Hinton, Alex Krizhevsky,
Ilya Sutskever, and Ruslan Salakhutdinov. 2014.
Dropout: a simple way to prevent neural networks
from overfitting. Journal of Machine Learning Re-
search 15(1):1929–1958.

Andreas Vlachos, Paula Buttery, Diarmuid O
Séaghdha, and Ted Briscoe. 2009. Biomedical
event extraction without training data. In Pro-
ceedings of the Workshop on Current Trends in
Biomedical Natural Language Processing: Shared
Task. Association for Computational Linguistics,
pages 37–40.

Jian Wang, Honglei Li, Yuan An, Hongfei Lin, and Zhi-
hao Yang. 2016a. Biomedical event trigger detec-
tion based on convolutional neural network. Inter-
national Journal of Data Mining and Bioinformatics
15(3):195–213.

Jian Wang, Jianhai Zhang, Yuan An, Hongfei Lin, Zhi-
hao Yang, Yijia Zhang, and Yuanyuan Sun. 2016b.
Biomedical event trigger detection by dependency-
based word embedding. BMC Medical Genomics
9(2):45.

Xiaomei Wei, Qin Zhu, Chen Lyu, Kai Ren, and
Bo Chen. 2015. A hybrid method to extract triggers
in biomedical events. Journal of Digital Information
Management 13(4):299.

Deyu Zhou, Dayou Zhong, and Yulan He. 2014.
Event trigger identification for biomedical events ex-
traction using domain knowledge. Bioinformatics
30(11):1587–1594.


