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Abstract

In this paper, we present an analysis of
feature extraction methods via dimension-
ality reduction for the task of biomedi-
cal Word Sense Disambiguation (WSD).
We modify the vector representations in
the 2-MRD WSD algorithm, and evalu-
ate four dimensionality reduction meth-
ods: Word Embeddings using Continu-
ous Bag of Words and Skip Gram, Sin-
gular Value Decomposition (SVD), and
Principal Component Analysis (PCA). We
also evaluate the effects of vector size on
the performance of each of these meth-
ods. Results are evaluated on five stan-
dard evaluation datasets (Abbrev.100, Ab-
brev.200, Abbrev.300, NLM-WSD, and
MSH-WSD). We find that vector sizes of
100 are sufficient for all techniques except
SVD, for which a vector size of 1500 is
preferred. We also show that SVD per-
forms on par with Word Embeddings for
all but one dataset.

1 Introduction

Word Sense Disambiguation (WSD) is the
task of automatically identifying the intended
sense (or concept) of an ambiguous word based on
the context in which the word is used. Automati-
cally identifying the intended sense of ambiguous
words improves the performance of clinical and
biomedical applications such as medical coding
and indexing for quality assessment, cohort dis-
covery (Plaza et al., 2011; Preiss and Stevenson,
2015), and other secondary uses of data such as
information retrieval and extraction (Stokoe et al.,
2003), and question answering systems (Ferrandez
et al., 2006). These capabilities are becoming es-
sential tasks due to the growing amount of in-
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formation available to researchers, the transition
of health care documentation towards electronic
health records, and the push for quality and effi-
ciency in health care.

Previous methods using distributional context
vectors have been shown to perform well for the
task of WSD. One problem with distributional
vectors is the sparseness of the vectors and noise
(defined here as information that does not aid in
the discrimination between word senses). Word
embeddings have become an increasingly popular
method to reduce the dimensionality of vector rep-
resentations, and have been shown to be a valu-
able resource for NLP tasks including WSD (Sab-
bir et al., 2016).

Prior to word embeddings, (Deerwester et al.,
1990) proposed Latent Semantic Indexing (LSI)
which reduces dimensionality using the factor
analysis technique, singular value decomposition
(SVD). When performing SVD, some informa-
tion is lost. Intuitively the lost information is
noise, and its removal causes the similarity and
non-similarity between words to be more dis-
cernible (Pedersen, 2006).

Similar to SVD is principal component analy-
sis (PCA). PCA transforms the vectors into a new
basis of principal components, which are created
by orthogonal linear combinations of the original
features. Each principal component captures as
much variance in the data as possible while main-
taining orthogonality. Dimensionality reduction is
performed by removing principal components that
capture little variance.

In this paper, we evaluate the performance of
word embeddings, SVD, and PCA for dimension-
ality reduction for the task of knowledge-based
WSD. Explicit vectors are trained on Medline ab-
stracts and performance is evaluated on five refer-
ence standards. Specifically, the contributions of
this paper are an analysis of:



e Vector Representation: SVD, PCA, and word
embeddings using continuous bag of words
(CBOW) and skip-gram are evaluated as di-
mensionality reduction techniques applied to
the task of knowledge-based WSD. Evalua-
tion is performed on several standard evalu-
ation datasets, and compared against explicit
co-occurrence vectors as a baseline.

e Dimensionality: the dimensionality of the re-
duced vectors is a parameter, and the value
can effect performance. We evaluate each
vector representation’s performance at di-
mensionalities of 100, 200, 500, 1000, and
1500.

2 Related Work

Existing biomedical WSD methods can be clas-
sified into three groups: unsupervised (Brody and
Lapata, 2009; Pedersen, 2010), supervised (Zhong
and Ng, 2010; Stevenson et al., 2008), and
knowledge-based methods (Navigli et al., 2011).
Unsupervised methods use the distributional char-
acteristics of an outside corpus and do not rely on
sense information or a knowledge source (Peder-
sen, 20006).

Supervised methods use machine learning al-
gorithms to assign senses to instances contain-
ing the ambiguous word. Although supervised
methods have the best performance, they require
training data for each target word to be disam-
biguated. Whether this is done manually or au-
tomatically, it is infeasible to create such data on a
large scale. Recently, (Sugawara et al., 2015) cre-
ated a supervised system that uses word2vec word
embeddings as input to a support vector machine
classifier. They compare the word vectors gener-
ated by word2vec with the word vectors generated
by SVD, and show that word2vec slightly outper-
forms SVD with vector dimensionality of 300.

Knowledge-based methods do not use manu-
ally or automatically generated training data, but
instead use information from an external knowl-
edge source (e.g. taxonomy). These knowledge-
based methods can be classified into two cate-
gories, graph-based and vector-based approaches.
Here, we focus on vector-based approaches as it
relates to this research.

(Humphrey et al., 2006) introduce a vector-
based method that assigns a sense to a target word
by first identifying its semantic type with the as-
sumption that each possible sense has a distinct

semantic type. In this method, semantic type (st-
) vectors are created for each possible semantic
type. The st-vectors consist of binary values for
each one word term in the United Medical Lan-
guage System (UMLS); a one if that word has a
sense of the semantic type, else a zero. A tar-
get word (tw-) vector is created using the words
surrounding the target word. The cosine of the
angle between the tw-vector and each of the st-
vectors is calculated and the sense whose st-vector
is closest to the tw-vector is assigned to the target
word. The limitation of this method is that two
possible senses may have the same semantic type.
For example, the term cortices can refer to either
the cerebral cortex (CO007776) or the kidney cor-
tex (C0022655), both of which have the same se-
mantic type, “Body Part, Organ, or Organ Compo-
nent”. Analysis of the 2009 Medline data ! shows
that there are 1,072,902 terms in Medline that ex-
ist in the UMLS of which 35,013 are ambiguous
and 2,979 have two or more senses with the same
semantic type. This indicates that approximately
12% of the ambiguous words cannot be disam-
biguated using the knowledge-based methods dis-
cussed above, and another method is required.

(Jimeno-Yepes et al., 2011) attempt to address
this limitation by introducing two methods, MRD
and 2-MRD. In these methods a sense vector (s-
vector) is created for each possible sense of a tar-
get word using the definition information from the
UMLS. A target word (tw-) vector is created using
the words surrounding the target word. The co-
sine of the angle between the tw-vector and each
of the s-vectors is calculated and the sense whose
s-vector is closest to the tw-vector is assigned to
the target word. The MRD method uses the words
within the definition weighted based on their oc-
currence statistics across definitions in the UMLS.
The 2-MRD method (discussed more fully in Sec-
tion 3) uses second-order context vectors to repre-
sent the concept’s definition.

(Pakhomov et al., 2016) and (Tulkens et al.,
2016) explore using the 2-MRD method in con-
junction with word embeddings, and evaluate their
performance with varying training corpora. Their
results are promising, however evaluation is lim-
ited to a single dataset (MSH-WSD), vector size is
not varied, and they do not compare performance
with different word2vec models.

"http://mbr.nlm.nih.gov/index.shtml



3 Method

We modify the vector representations of the 2-
MRD WSD algorithm using four different vec-
tor representations: SVD, PCA, and word embed-
dings using continuous bag of words (CBOW) and
skip-gram. Explicit vectors are word-by-word co-
occurrence vectors, and are used as a baseline. The
disadvantage of explicit vectors is that the word-
by-word co-occurrence matrix is sparse and sub-
ject to noise introduced by features that do not dis-
tinguish between the different senses of a word.
The goal of the dimensionality reduction tech-
niques is to generate vector representations that re-
duce this type of noise. Each method is described
in detail here.

3.1 2-MRD Algorithm

In this section we describe the 2-MRD WSD algo-
rithm at a high level: a vector is created for each
possible sense of an ambiguous word, and the am-
biguous word itself. The appropriate sense is then
determined by computing the cosine similarity be-
tween the vector representing the ambiguous word
and each of the vectors representing the possible
senses. The sense whose vector has the smallest
angle between it and the vector of the ambiguous
word is chosen as the most likely sense.

To create a vector for a possible sense, we
first obtain a textual description of sense from
the UMLS, which we refer to as the extended
definition. Each sense, from our evaluation set,
was mapped to a concept in the UMLS, there-
fore, we use the sense’s definition plus the def-
inition of its parent/children and narrow/broader
relations and associated synonymous terms. Af-
ter the extended definition is obtained, we create
the second-order vector by first creating a word
by word co-occurrence matrix in which the rows
represent the content words in the extended defi-
nition, and the columns represent words that co-
occur in Medline abstracts with the words in the
definition. Each word in the extended definition
is replaced by its corresponding vector, as given
in the co-occurrence matrix. The centroid of these
vectors constitutes the second order co-occurrence
vector that is used to represent the sense.

The second-order co-occurrence vector for the
ambiguous word is created in a similar fashion,
only rather than using words in the extended defi-
nition, we use the words surrounding the word in
the instance. Second-order co-occurrence vectors

were first described by (Schiitze, 1998) and ex-
tended by (Purandare and Pedersen, 2004) and
(Patwardhan and Pedersen, 2006) for the task of
word sense discrimination. Later, (Mclnnes et al.,
2011; Jimeno-Yepes et al., 2011) adapted these
vectors for the task of disambiguation rather than
discrimination.

3.2 Singular Value Decomposition

Singular Value Decomposition (SVD), used in La-
tent Semantic Indexing, is a factor analysis tech-
nique to decompose a matrix, M into a product of
three simpler matrices, such that M = U - - V7T,
The matrices U and V' are orthonormal and . is a
diagonal matrix of eigenvalues in decreasing or-
der. Limiting the eigenvalues to d, we can re-
duce the dimensionality of our matrix to My =
Ug-%q- VdT. The columns of U, correspond to
the eigenvectors of M. Typically this decomposi-
tion is achieved without any loss of information.
Here though, SVD reduces a word-by-word co-
occurrence matrix from thousands of dimensions
to hundreds, and therefore the original matrix can-
not be perfectly reconstructed from the three de-
composed matrices. The intuition is that any infor-
mation lost is noise, the removal of which causes
the similarity and non-similarity between words to
be more discernible (Pedersen, 2006).

3.3 Principal Component Analysis

Principal Component Analysis (PCA) is similar to
SVD, and is commonly used for dimensionality
reduction. The goal of PCA is to map data to a new
basis of orthogonal principal components. These
principal components are linear combinations of
the original features, and are ordered by their vari-
ance. Therefore, the first principal components
capture the most variance in the data. Under the
assumption that the dimensions with the most vari-
ance are the most discriminative, dimensions with
low variance (the last principal components) can
safely be removed with little information loss.
PCA may be performed in a variety of ways,
however the implementation we chose makes the
parallels between PCA and SVD clear. First the
co-occurrence matrix, M is centered to produce
the matrix C. Centering consists of subtracting
the mean of each column from values in that col-
umn. PCA is sensitive to scale, and this pre-
vents the variance of features with higher absolute
counts from dominating. Mathematically, this al-
lows us to compute the principal components us-



ing SVD on C. This is because CT'C is propor-
tional to the covariance matrix of M, and is used
in the calculation of SVD. Applying SVD to C,
such that C = U - ¥ - VT, the principal compo-
nents are obtained by the product of U and X (e.g.
Mpca = U - %). For dimensionality reduction
all but the first d columns of Mpc 4 are removed.
This captures as much variation in the data with
the fewest possible dimensions.

3.4 Word embeddings

The word embeddings method, proposed by
(Mikolov et al., 2013), is a neural network based
approach that learns a representation of a word-
word co-occurrence matrix. The basic idea is
that a neural network is used to learn a series of
weights (hidden layer with in the neural network)
that either maximizes the probability of a word
given the surrounding context, referred to as the
continuous bag of words (CBOW) approach, or
to maximize the probability of the context given
a word, referred to as the Skip-gram approach;

For either approach, the resulting hidden layer
consists of a matrix where each row represents a
word in the vocabulary and columns a word em-
bedding. The basic intuition behind this method
is that words closer in meaning will have vectors
closer to each other in this reduced space.

4 Data

4.1 Training Data

We develop our vectors using co-occurrence in-
formation from Medline 2. Medline is a biblio-
graphic database containing around 23 million ci-
tations to journal articles in the biomedical do-
main and is maintained by National Library of
Medicine. The 2015 Medline Baseline encom-
passes approximately 5,600 journals starting from
1948, and contains 22,775,609 citations, of which
13,835,206 contain abstracts. In this work, we use
Medline titles and abstracts from 1975 to present
day to generate word embeddings, and to generate
the co-occurrence matrix of explicit vectors that is
the input into SVD and PCA. Prior to 1975, only
2% of the citations contained an abstract.

4.2 Evaluation Data

We evaluate using several standard WSD evalua-
tion datasets which include the following.

“http://mbr.nlm.nih.gov/Download/index.shtml

Abbrev. The Abbrev dataset 3 developed by
Stevenson, et al. (Stevenson et al., 2009) contains
examples of 300 ambiguous abbreviations found
in MEDLINE that were initially presented by (Liu
et al., 2001). The data set was automatically re-
created by identifying the abbreviations and long-
forms (unabbreviated terms) in MEDLINE ab-
stracts, and replacing the long-form in the abstract
with its abbreviation. The abbreviations’ long-
forms were manually mapped to concepts in the
UMLS by Stevenson, et al. Each abstract contains
approximately 216 words. The datasets consist of
a set of 21 different ambiguous abbreviations for
which the number of labeled instances of those
abbreviations varies. Abbrev.100 contains 100 in-
stances, Abbrev.200 contains 200, and Abbrev.300
contains 300 labeled instances. Two abbreviations
contain less than 200 instances, and three abbre-
viations contain less than 300 instances, and are
omitted from Abbrev.200 and Abbrev.300 respec-
tively. The average number of long-forms per ab-
breviation is 2.6 and the average majority sense
across all subsets is 70%.

NLM-WSD. The National Library of
Medicine’s Word Sense Disambiguation (NLM-
WSD) dataset 4 developed by (Weeber et al.,
2001) contains 50 frequently occurring ambiguous
words from the 1998 MEDLINE baseline. Each
ambiguous word in the NLM-WSD dataset con-
tains 100 ambiguous instances randomly selected
from the abstracts totaling to 5,000 instances.
The instances were manually disambiguated by
11 evaluators who assigned the ambiguous word
to a concept (CUI) in the UMLS, or assigned
the concept as “None” if none of the possible
concepts described the term. The average number
of senses per term is 2.3, and the average majority
sense is 78%.

MSH-WSD. The National Library of
Medicine’s MSH Word Sense Disambiguation
(MSH-WSD) dataset > developed by (Jimeno-
Yepes et al., 2011) contains 203 ambiguous terms
and abbreviations from the 2010 MEDLINE base-
line. Each target word contains approximately
187 instances, has 2.08 possible senses, and has a
54.5% majority sense. Out of 203 target words,
106 are terms, 88 are abbreviations, and 9 have
possible senses that are both abbreviations and

*http://nlp.shef.ac.uk/BioWSD/downloads/corpora
“http://wsd.nlm.nih.gov
Shttp://wsd.nlm.nih.gov
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Figure 1: Comparison between accuracy of vector representations on WSD datasets

terms. For example, the target word cold has the
abbreviation Chronic Obstructive Lung Disease
as a possible sense, as well as the term Cold
Temperature. The total number of instances is
37,888.

5 Experimental Framework

We used the following packages to obtain our vec-
tor representations:

[1] Explicit Representation: We used the
Text::NSP packaged developed by (Pedersen
et al., 2011). We used a windows size of 8,
a frequency cutoff of 5, and removed stop-
words.

[2] Singular Value Decomposition: We ran the
MATLAB R2016b implementation of sparse
matrix SVD (svds) on the explicit representa-
tion matrix, and used each row of the result-
ing U matrix as a reduced vector.

[3] Principal Component Analysis: We centered
the explicit representation matrix, and used
the MATLAB R2016b implementation of
sparse matrix SVD (svds) on the centered
matrix to obtain the U and X matrices. The
reduced vectors are obtained from the prod-
uct of U and X.

[4] Word Embeddings: We used the word2vec
package developed by (Mikolov et al., 2013)

for the continuous-bag-of-words (CBOW)
and skip-gram word embedding models with
a window size of 8, a frequency cutoff of 5,
and default settings for all other parameters.

We use the Word2vec::Interface package © ver-
sion 0.03 to obtain the disambiguation accuracy
for each of the WSD datasets. The differences be-
tween the means of disambiguation accuracy were
tested for statistical significance using pair-wise
Students t-test.

6 Results and Analysis

6.1 Results

Figure 1 compares the performance of each vec-
tor representation technique, and shows the best
results (best among all dimensionalities tested) of
each of the vector representations on the WSD
datasets. Explicit refers to the co-occurrence vec-
tor without dimensionality reduction, PCA refers
to the principal component analysis representa-
tion, SVD refers to singular value decomposition
representation, CBOW refers to the word embed-
dings continuous bag of words representation and
SG refers to the word embeddings skip gram rep-
resentation. The colored bars show results for in-
dividual datasets, and the total length shows the
sum of accuracies for all datasets.

®http://search.cpan.org/dist/Word2vec-Interface/
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Abbrev.100

PCA SVD CBOW SG
explicit | 0.65 0.0008 0.0015 0.0006
PCA 0.0007 0.0013  0.0005
SVD 0.94 0.97
CBOW 0.93
Abbrev.200
PCA SVD CBOW SG
explicit | 0.29  0.006  0.0047 0.0045
PCA 0.005 0.0042 0.0037
SVD 0.56 0.93
CBOW 0.60
Abbrev.300
PCA SVD CBOW SG
explicit | 1.0 1.0 0.41 0.63
PCA 1.0 0.41 0.63
SVD 0.29 0.21
CBOW 0.08
NLM-WSD
PCA SVD CBOW  SG)
explicit | 0.35  0.10  0.0062 0.0127
PCA 0.087 0.0042  0.009
SVD 0.2489  0.2993
CBOW 0.66
MSH-WSD
PCA SVD CBOW SG
explicit | 0.37 0.0001 0.0001 0.0001
PCA 0.0356  0.0005 0.0001
SVD 0.0005 0.0346
CBOW 0.056

Table 1: The p-values using Student’s pairwise ¢-
test. Each table corresponds to a different dataset,
each row and column a different dimensionality
reduction technique.

The Abbrev.100, Abbrev.200, and Abbrev.300
results show that SVD (0.87/0.84/0.62), CBOW
(0.87/0.86/0.62), and SG (0.87/0.84/0.59) ob-
tained a statistically higher overall disambiguation
accuracy (p < 0.05) than explicit (0.69/0.70/0.59)
and PCA (0.59/0.70/0.59), while the difference
between their respective results was not statis-
tically significant. The NLM-WSD results also
show that SVD (0.61), CBOW (0.65), and SG
(0.65) obtained a statistically higher disambigua-
tion accuracy than explicit (0.54) and PCA (0.54),
while the difference between their respective re-
sults was not statistically significant. The MSH-
WSD results show a statistically significant dif-
ference (p < 0.05) between explicit (0.64), PCA
(0.64), SVD (0.77), CBOW (0.81), and SG (0.79)
except for Explicit and PCA. Table 1 shows the
p-values between the vector representations for
each of the datasets.

Figure 2 shows the effects of dimensionality on
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disambiguation accuracy of PCA, SVD, CBOW 7
and SG for each of the datasets for dimensionality
reduction of d = 100, 200, 500, 1000 and 1500.
The PCA, CBOW, and SG all show little change
in accuracy as the dimensions vary. This indicates
lower dimensional vector representations are suffi-
cient for these techniques. SVD on the other hand
shows for all of the datasets except NLM-WSD, an
increase in accuracy as dimensionality increases.
To discover an upper bound on dimensionality and
performance, we continued to increase the dimen-
sions of SVD up to 3000. Results are shown in
Figure 3, and indicate that after d = 1500 there are
not significant gains in accuracy, indicating that a
dimensionality of 1500 is sufficient for SVD.

6.2 Analysis

This study indicates that SVD performs on par
with word embeddings for most datasets. This is
exciting because the co-occurrence matrix that is
the input for SVD can be easily modified to hope-
fully increase performance. The word embeddings
algorithms use a neural network approach which
can approximate any function, but does not pro-
vide any insights about the features being approx-
imated; instead accuracy gains are often achieved
by increasing the amount of training data.

One disadvantage of SVD is that it, unlike word
embeddings, may not be scalable to massive cor-

"CBOW crashed due to memory constraints for d = 1500

pora. Since we are using the majority of MED-
LINE, we feel that SVD is sufficient, and previous
studies (Pakhomov et al., 2016; Pedersen et al.,
2007) have shown that beyond 100 million tokens
little performance gains can be achieved.

Surprisingly the results showed that PCA did
not obtain a higher accuracy than the explicit co-
occurrence vector. We believe this is a result
of centering the matrix, and believe that in lan-
guage absolute counts are important. When the
matrix is centered, only relative counts are con-
sidered. This could create a situation where infre-
quently used words have distributions similar to
commonly used words, adversely effecting results.

With respect to dimensionality, we found that
low vector dimensionality (d = 100) is sufficient
for CBOW and SG, but that a higher dimensional-
ity (d = 1500) obtained better results with SVD.
In addition, we found that although PCA is com-
monly used for dimensionality reduction in many
fields, it does not improve results for WSD.

We found that CBOW and SG achieve approx-
imately the same accuracy which is important
because SG takes much longer to compute (our
rough estimates indicate that SG takes between 5
and 9 times as long to train).

6.3 Comparison with previous work

Recently, word embeddings have been used for
word sense disambiguation in the biomedical do-



Table 2: Comparison with Previous Work on MSH-WSD

Method Medline MIMIC-III BioASQ Fairview PMC
(Pakhomov et al., 2016) (CBOW) 0.72 0.78
(Tulkens et al., 2016) (SG) 0.80 0.69 0.84

SG 0.81

CBOW 0.79

SVD 0.77

PCA 0.64

Explicit 0.64

main. (Tulkens et al., 2016) evaluated the skip
gram model on the MSH-WSD dataset with three
different sets of training data: a subset of Medline
abstracts, the MIMIC-III corpus of clinical notes,
and BioASQ Medline abstracts. (Pakhomov et al.,
2016) evaluated CBOW on the MSH-WSD dataset
using two different types of training data: clinical
(clinical notes from the Fairview Health System)
and biomedical (PMC corpus).

Table 2 shows the comparison between the pre-
vious works’ reported results and our current re-
sults. The table shows that our skip gram and
CBOW results are similar to those reported by
both (Tulkens et al., 2016) (0.80 versus 0.81) and
(Pakhomov et al., 2016) (0.78 versus 0.79) respec-
tively. We believe that the small variations in accu-
racy are due to the difference in training data. The
table also shows that SVD performs on par with
previous word embeddings results.

6.4 Limitations

This study focused on comparing vector represen-
tations and the effects of dimensionality for WSD.
We did not experiment with other parameters, such
as window size, cut-off level, and sampling pa-
rameters. We also limited our technique to the 2-
MRD WSD algorithm. This is a well known algo-
rithm that has been shown to perform well in the
past, and allows comparison between similar pa-
pers. These vector representations can be used for
other WSD algorithms as well, including super-
vised or “distantly supervised” approaches (Sab-
bir et al., 2016) which may achieve higher accura-
cies, but are limited to pre-labeled or preprocessed
datasets.

7 Conclusions and Future Work

In this study we analyzed the performance of vec-
tor representations using the dimensionality re-
duction techniques of word embeddings (continu-
ous bag of words and skip-gram), singular value

decomposition (SVD), and principal component
analysis (PCA) on five evaluation standards (Ab-
brev.100, Abbrev.200, Abbrev.300, NLM-WSD,
MSH-WSD). We used explicit co-occurrence vec-
tors as the baseline. The results show that word
embeddings and SVD outperform PCA and ex-
plicit representations for all datasets. PCA does
not increase performance over explicit, and word
embeddings are significantly different from SVD
on just a single dataset (MSH-WSD). The method
(CBOW versus SG) in which word embeddings
are generated makes no statistically significant dif-
ference in WSD results. We also varied the dimen-
sionality of the vectors to 100, 300, 500, 1000, and
1500. We found that the smallest dimensionality
of 100 is sufficient for all vector representations
except SVD. For SVD we found that increasing
dimensionality does increase performance, and
continued to increase the dimensionality to 2000,
2500, and 3000. Accuracy stopped increasing at
1500, indicating that a dimensionality of 1500 is
sufficient for SVD.

An interesting result of this research is that
SVD performs essentially on par with word em-
beddings. In the future we hope to increase the
accuracy of SVD by modifying the co-occurrence
matrix that is input into SVD to include incorpo-
rating knowledge sources (such as the UMLS) for
term expansion by capturing co-occurrences with
synonymous terms, and creating a UMLS con-
cept (CUI) co-occurrence matrix. Additionally,
this concept co-occurrence matrix can then be aug-
mented to exploit the hierarchical structure of the
UMLS. Using a matrix of similarities or associ-
ation scores may also be interesting. Independent
from how vectors are generated, we could use sim-
ilarity metrics other than cosine, similar to those
from (Sabbir et al., 2016) that incorporate both
magnitude and orientation.
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