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Abstract

Literature in Molecular Biology is abun-
dant with linguistic metaphors. There have
been works in the past that attempt to
draw parallels between linguistics and bi-
ology, driven by the fundamental premise
that proteins have a language of their own.
Since word detection is crucial to the de-
cipherment of any unknown language, we
attempt to establish a problem mapping
from natural language text to protein se-
quences at the level of words. Towards this
end, we explore the use of an unsupervised
text segmentation algorithm to the task of
extracting “biological words” from pro-
tein sequences. In particular, we demon-
strate the effectiveness of using domain
knowledge to complement data driven ap-
proaches in the text segmentation task, as
well as in its biological counterpart. We
also propose a novel extrinsic evaluation
measure for protein words through protein
family classification.

1 Introduction

Research works in the field of Protein Linguistics
(Searls, 2002) are largely based on the underlying
hypothesis that proteins have a language of their
own. However, modeling of protein molecules us-
ing linguistic approaches is yet to be explored in
depth. This might be due to the structural com-
plexities inherent to protein molecules. Instead of
resorting to purely wet lab experiments, we pro-
pose to make use of the abundant data available
in the form of protein sequences together with
knowledge from domain experts to model the pro-
tein language. From a linguistic point of view,
the first step in deciphering an unknown language
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will be to identify the independent lexical units or
words of the language. This motivates our current
attempt to establish a problem mapping from nat-
ural language text to protein sequences at the level
of words. Towards this end, we explore the use
of an unsupervised word segmentation algorithm
to the task of extracting “’biological words” from
protein sequences.

Many unsupervised word segmentation algo-
rithms use compression based techniques ((Chen,
2013), (Hewlett and Cohen, 2011), (Zhikov et al.,
2010), (Argamon et al., 2004), (Kityz and Wilksz,
1999)) and are largely centred around the princi-
ple of Minimum Description Length (MDL). We
use the MDL based segmentation algorithm de-
scribed in (Kityz and Wilksz, 1999) which makes
use of the repeating subsequences present within
text corpus to compress it. It is found that the seg-
ments generated by this algorithm exhibit close re-
semblances to words of English language. There
are also other non-compression based unsuper-
vised word segmentation and morphology induc-
tion algorithms in literature ((Mochihashi et al.,
2009), (Hammarstrom and Borin, 2011), (Sori-
cut and Och, 2015)). However, in this context of
protein sequence analysis, we have chosen to use
MDL based unsupervised segmentation because it
resembles closely the first natural attempt of a lin-
guist in identifying words of an unknown language
i.e. looking for repeating subsequences as candi-
dates for words.

As we do not have access to ground-truth
knowledge about protein words, we propose to
use a novel extrinsic evaluation measure based on
protein family classification. SCOPe is an ex-
tended database of SCOP hierarchy (Murzin et al.,
1995) which classifies protein domains based on
the structural and sequence similarities. We have
proposed a MDL based classifier for the task of
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automatic SCOPe prediction. The performance of
this classifier is used as an extrinsic measure of the
quality of protein segments.

Finally, the MDL based word segmentation
used in (Kityz and Wilksz, 1999) is purely data
driven and does not have access to any domain-
specific knowledge source. We propose that con-
straints based on domain knowledge can be prof-
itably used to improve the performance of segmen-
tation algorithms. In English, we use constraints
based on pronounceability rules to improve word
segmentation. In protein segmentation, we use
knowledge of SCOPe Class labels (Fox et al.,
2014) to impose constraints. In both cases, con-
straints based on domain knowledge are seen to
improve the segmentation quality.

To summarize, the main contributions of our
work are the following :

1. We attempt to establish a mapping from pro-
tein sequences to language at the level of
words which is a vital step in the linguistic
approach to protein language decoding. To-
wards this end, we explore the use of an un-
supervised text segmentation algorithm to the
task of extracting “biological words” from
protein sequences.

2. We propose a novel extrinsic evaluation mea-
sure for protein words via protein family clas-
sification.

3. We demonstrate the effectiveness of us-
ing domain knowledge to complement data
driven approaches in the text segmentation
task, as well as in its biological counterpart.

2 Related Work

Protein Linguistics (Searls, 2002) is the study of
applying linguistic approaches to understand the
structure and function of protein molecules. Re-
search in the field of Protein Linguistics is largely
based on the underlying assumption that proteins
have a language of their own. David Searls draws
many analogies between Linguistics and Molecu-
lar Biology to show how a linguistic metaphor can
be seen interwoven into many problems of Molec-
ular Biology. The fundamental analogy is that the
20 amino acids of proteins and 4 nucleotides of
genes are analogous to the 26 letters in English al-
phabet.

Literature is abundant with parallels between
language and biology (Bralley, 1996; Searls,

239

2002; Atkinson and Gray, 2005; Gimona, 2006;
Tendulkar and Chakraborti, 2013). There are strik-
ing similarities between the structure of a protein
molecule and a sentence in a Natural Language
text some of which have been highlighted in Fig-
ure 1.

Gimona (2006) presents an excellent discus-
sion on linguistics-based protein annotation and
raises the interesting question of whether compo-
sitional semantics could improve our understand-
ing of protein organization and functional plastic-
ity. Tendulkar and Chakraborti (2013) also have
drawn many parallels between biology and lin-
guistics.

The wide gap between available primary se-
quences and their three dimensional structures
leads to the thought that the current protein struc-
ture prediction methods might struggle due to lack
of understanding of the folding code from protein
sequence. If biological sequences are analogous
to strings generated from a specific but unknown
language, then it will be useful to find the rules of
the unknown language. And, word identification
is fundamental to the task of learning rules of an
unknown language.

Motomura et. al ((2012),(2013)) use a fre-
quency based linguistic approach to protein de-
coding and design. They call the short consequent
sequences (SCS) present in protein sequences as
words and use availability scores to assess the bi-
ological usage bias of SCS. Our approach of using
MDL for segmentation is interesting in that it does
not require prior fixing of word length as in (Mo-
tomura et al., 2012), (Motomura et al., 2013).

3 Word Segmentation

Word is defined as a single distinct conceptual
unit of language, comprising inflected and vari-
ant forms'. In English, though space acts as a
good approximation for word delimiter, proper
nouns like New York or phrases like once in a blue
moon make sense only when taken as a single unit.
Therefore, space is not a good choice for delimit-
ing atomic units of meaning.

Imagine a corpus of English text with spaces
and other delimiters removed. Now, word seg-
mentation is the problem of dividing a continu-
ous piece of text into meaningful units. For exam-
ple, imagine a piece of text in English with delim-
iters removed such as ‘BroonTHETREE'. The contin-

'https://en.oxforddictionaries.com/definition/word
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uous text can be segmented into four meaningful
units as ‘BIRD’,ON’, THE';TREE’. Analogously, we de-
fine protein segmentation as the problem of divid-
ing the amino acid sequence of a protein molecule
into biologically meaningful segments. For exam-
ple, the toy protein sequence *MATGQKLMRAIRVFEFGG-
PEVLKLQSDVVVPVPQSHQ' can consist of three segments
"MATGQKLMRAIR’, *VFEFGGPEV’, 'LKLQSDVVVPVPQSHQ'. For
our work, we assume that the word segmentation
algorithm does not have knowledge about English
lexicon. The significance of this assumption can
be understood in the context of protein segmenta-
tion. Since the ground truth about words in protein
language is not known, we consider the problem of
protein segmentation to be analogous to unsuper-
vised word segmentation in English.

We begin this section by explaining why MDL
can be a good model selection principle for learn-
ing words followed by description of the algorithm
used and results obtained on Brown corpus.

3.1 MDL for Segmentation

According to the principle of Minimum Descrip-
tion Length (MDL),

Data compression — Learning

Any regularity present in data can be used to
compress the data which can also be seen as learn-
ing of a model underlying the data (Griinwald,
2005). In an unsegmented text corpus, the rep-
etition of words creates statistical regularities.
Therefore, the key idea behind using MDL for
word segmentation is that we can learn word-like
segments by compressing the text corpus.

Description Length (DL) of a corpus X is de-
fined as the number of bits needed to encode it us-
ing Shannon Fano coding [ (Shannon, 2001),(Ki-
tyz and Wilksz, 1999)] and is expressed as given
below.

DL(X)=-) c() logc‘g?’) (1)
xeV

where, V' is the language vocabulary, c(z) is the
frequency of word z in the given corpus and | X|
is total number of words in X.

As an unsupervised learning algorithm does not
have access to language lexicon, the initial DL
of the corpus is calculated by using the language
alphabet as its vocabulary. When the algorithm
learns word-like segments, we can expect the DL
of corpus to get reduced. According to MDL, the
segmentation model that best minimizes the com-
bined description length of data + model (i.e. cor-
pus+ vocabulary) is the best approximation of the
underlying word segmentation.

An exponential number of candidate segmenta-
tions is possible for a piece of unsegmented text.
For example, some candidate segmentations for
the text 'BIRDONTHETREE’ are given below.

’B’IRDONTHETREE’
’BI’’RD’;ONTHET’R’JE’E’
'B’)T’R’,D’ONTHET’REE’
'BIR’;D’,ONT’,’HE’, TREE’
"BIRDON’, THE’, TREE’
"BIRD’,;ON’, THETREE’

240



(Kityz and Wilksz, 1999) define a goodness
measure called Description Length Gain (DLG)
to quantify the compression effect produced by a
candidate segmentation. DLG of a candidate seg-
mentation is equal to the sum of DLGs of indi-
vidual segments within it. DLG of a segment s
is defined as the reduction in description length
achieved by retaining this segment as a single lex-
ical unit while aDLG stands for the average de-
scription length gain as given below.

DLG(s) = DL(X)— DL(X[r — s] @ s)

_ DLG(s)

o ls)

where, X [r — s] represents the new corpus ob-
tained by replacing all occurrences of the segment
s by a single token 7, ¢(s) is the frequency of the
segment s in corpus and @ represents the con-
catenation of two strings with a delimiter in be-
tween. This is necessary because MDL minimizes
the combined DL of corpus and vocabulary. (Ki-
tyz and Wilksz, 1999) uses Viterbi algorithm to
find the optimal segmentation of a corpus. Time
complexity of the algorithm is O(mn) where n
is the length of the corpus and m is the maximal
word length.

aDLG(s)

3.2 Imposing Language Constraints

MDL based algorithm as described in (Kityz
and Wilksz, 1999) performs uninformed search
through the space of word segmentations. We
propose to improve the performance of unsuper-
vised algorithm by introducing constraints based
on domain knowledge. These constraints help to
improve the word-like quality of the MDL seg-
ments. For example, in English domain, we have
used the following language constraints, mainly
inspired by the fact that legal English words are
pronounceable.

1. Every legal English word has at least one
vowel in it

2. There cannot be three consecutive conso-
nants in the word beginning except when the
first consonant is ’s’

. Some word beginnings are impossible. For
example, 'db’, ’km’, ’lp’, 'mp’, 'ns’, 'ms’,
td’, ’kd’, "md’, ’ld’, °bd’, ’cd’, ’fd’, gd’,
’hd’, ’jd’, ’nd’, ’pd’, ’qd’, ’rd’, ’sd’, ’vd’,
'wd’, 'xd’, Cyd’, Czd’
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4. Bigrams having high probability of occur-
rence at word boundaries are obtained apriori
from a knowledge base to facilitate splitting
of long segments

3.3 MDL Segmentation of Brown Corpus

The goal of our experiments is twofold. First, we
apply an MDL based algorithm to identify word
boundaries. Second, we use constraints based on
domain knowledge to further constrain the search
space and thereby improving the quality of seg-
ments.

The following is a sample input text from
Brown corpus (Francis and Kucera, 1979) used in
our experiment.

implementationofgeorgiasautomobiletitlelaw
wasalsorecommendedbytheoutgoingjury
iturgedthatthenextlegislatureprovideenab
lingfundsandresettheeffectivedatesothata
norderlyimplementationofthelawmaybeeffect

The output segmentation obtained after apply-
ing MDL algorithm is given below. It can be seen
that the segments identified by the MDL algorithm
are close to the actual words of English language.

implementationof  georgias —automo-
bile title | a w wasalso recom-
mend edbythe outgoing jury i tur
g edthat thenext legislature pro-
vide enabling funds andre s et
theeffective d ate sothat anorderly
implementationof thelaw maybe ef-
fect ed

The segments generated by MDL are improved
by applying the language constraints listed in pre-
vious section. Sample output is shown below.
We can observe the effect of constraints on seg-
ments, for example, [1][a][w] is merged into [law]
; [d][ate] is merged into [date].

implementationof  georgias —automo-
bile title law wasalso recommend
edbythe outgoing jury i tur ged

that thenext legislature provide en-
abling funds andre set theeffective
date sothat anorderly implementa-
tionof thelaw maybe effect ed

Segmentation results are evaluated by averaging
the precision and recall over multiple random sam-
ples of Brown Corpus. A segment is declared as



Algorithm ‘ Precision ‘ Recall ‘

MDL (Kityz and 79.24 34.36
Wilksz, 1999)
MDL + Constraints 82.57 41.06

Table 1: Boundary Detection by MDL Segmenta-
tion

‘ Algorithm ‘ Precision ‘ Recall ‘
MDL(Kityz and | 39.81 17.26
Wilksz, 1999)

MDL + Constraints 52.94 26.36

Table 2: Word Detection by MDL Segmentation

a correct word only if both the starting and ending
boundaries are identified correctly by the segmen-
tation algorithm. Word precision and word recall
are defined as follows.

.. No. of correct segments
Word Precision = g

Total no. of segments
No. of correct segments

Word Recall =
ord eca Total no. of words in corpus

Boundary precision and boundary recall are de-
fined as follows.

# correct segment boundaries

Boundary Precision = -
t # segment boundaries

# correct segment boundaries

Boundary Recall =
oundary Reca # word boundaries

The performance of our learning algorithm av-
eraged over 10 samples of size 10,000 characters
(from random indices in Brown corpus) is shown
in Tables 1 and 2. The reported results are in line
with our proposed hypothesis that domain con-
straints help in improving the performance of un-
supervised MDL segmentation.

4 Protein Segmentation

In this section, we discuss our experiments in pro-
tein domain. Choice of protein corpus is very
critical to the success of MDL based segmenta-
tion. If we look at the problem of corpus selection
from a language perspective, we know that simi-
lar documents will share more words in common
than dissimilar documents. Hence, we have cho-
sen our corpus from databases of protein families
like SCOPe and PROSITE. We believe that protein
sequences performing similar functions will have
similar words.
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4.1 Qualitative Analysis

The objective of our experiments on PROSITE
database (Sigrist et al., 2012) is to qualitatively
analyse the protein segments. It can be observed
that within a protein family, some regions of the
protein sequences have been better conserved than
others during evolution. These conserved regions
are found to be important for realizing the protein
function and/or for the maintenance of its three di-
mensional structure. As part of our study, we ex-
amined if the MDL segments are able to capture
the conserved residues represented by PROSITE
patterns.

MDL segmentation algorithm was applied to 15
randomly chosen PROSITE families containing
varying number of protein sequences. > Within a
PROSITE family, some sequences get compressed
more than others. An interesting observation is
that the less compressed sequences are those that
have evolved over time and hence have low se-
quence similarity with other members of the pro-
tein family. But, they have the conserved residues
intact and MDL segmentation algorithm is able to
capture those conserved residues.

For example, consider the PROSITE pattern 3
for Amidase enzyme (PS00571) G-[GAV]-S-[GSI(2)-G-
Xx-[GSAEI{GSAVYCT]-x-[LIVMT]- [GSA]-x(6)-[GSAT]-x- [GA]-x-[DE]-x-
[GAJ-x-S- [LIVM]-Rx-P-[GSACTL] . The symbol ’X’ in a
PROSITE pattern is used for a position where any
amino acid is accepted. 'x(6)’ stands for a chain
of five amino acids of any type. For patterns with
long chains of x, MDL algorithm captures the con-
served regions as a series of adjacent segments.
For example, in the protein sequence with UniPro-
tKB id 000519, the conserved residues and MDL
segments are shown in Figure 2.

As another example, consider the family
PS00319 with pattern G-[vT-[Ex}-[Fy]-v-c-c-P . This
PROSITE pattern is short and does not contain any
’x’. In such cases, the conserved residues can get
captured accurately by MDL segments. The pro-
tein sequence with UniProtKB id P14599 has less
sequence similarity but its conserved residues Gve-
rvcep are captured exactly in a single MDL seg-
ment. We also studied the distribution of segment
lengths among the PROSITE families. A single
corpus was created combining the sequences from

>The output segments are available at
https://1drv.ms/f/s! AnQHeUjduCq0ae9rWhuoybZoA-U
3A PROSITE pattern like [AC]-x-V-x(4)-AV is to be

translated as: [Ala or Cys]-any-Val-any-any-any-any-Ala-Val



MVQYELWAALPGASGVALACCFVAAAVALRWSGRRTARGAVVRARQRQRAGLENMD
RAAQRFRLQNPDLDSEALLALPLPQLVQKLHSRELAPEAVLFTYVGKAWEVNKGTNCV
TSYLADCETQLSQAPRQGLLYGVPVSLKECFTYKGQDSTLGLSLNEGVPAECDSVVV
HVLKLQGAVPFVHTNVPQSMFSYDCSNPLFGQTVNPWKSSKSPGGSSGGEGALIGS
GGSPLGLGTDIGGSIRFPSSFCGICGLKPTGNRLSKSGLKGCVYGQEAYRLSVGPM...

Conserved residues hit by PROSITE pattern

M,V,Q,Y,E, L, W,A ALPGASG, V,A,L,A,C,C, F, V,AAAVA, L, R, W,S,G,R, R, T,
AR,G AV, VR AR,QR,QRAG,L E NMD,R,A, A QRFRLQNPDLDSE, A,
LLALPLPQLVQK, L, H, SREL, A, P,E,A, V, L, F, TYV, GKAWEVNKGTNCVTSYL, A,
DCETQLSQAPRQGLLYGVPVSLKECF, T, Y, K, G, Q, D, STLGLSLNEG, V, PAEC, D,
S, V, V, V, H, VLKLQGAVPFVHTNVPQSM, F, SYDCSNPLFGQT, V, NPW, K, S, S, K,
S, PGGSSGG, EGALIGSGGSPLGLGTDIGGSIRFPS, S,
FCGICGLKPTGNRLSKSGLK, G, C, V,Y, G, Q, E, A, V,R, L, SVGPM...

Two consecutive MDL Segments capturing the conserved
residues

Figure 2: Conserved residues and MDL segments
of a protein sequence (UniProtKB id O00519) in
PROSITE family PS00571

| | | | | | | | | |
08 Common across PROSITE families
02 Unique to PROSITE families
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Figure 3: Distribution of MDL segment lengths
among PROSITE families PS00319, PS00460,
PS00488, PS00806 and PS00818

5 randomly chosen PROSITE families and the dis-
tribution of segment lengths is shown in Figure 3.
Protein segments that were common among the
families were typically four or five amino acids
in length. However, within each individual family
there were longer segments unique to that family.
Very long segments (length >15) are formed when
the corpus contains many sequences with high se-
quence similarities.

4.2 Quantitative Analysis

Unlike in English language, we do not have access
to ground truth about words in proteins. Hence, we
propose to use a novel extrinsic evaluation mea-
sure based on protein family classification. We
describe a compression based classifier that uses
the MDL segments (envisaged as words in pro-
teins) for SCOPe predictions.The performance of
the MDL based classifier on SCOPe predictions is
used as an extrinsic evaluation measure of protein
segments.

4.2.1 MDL based Classifier

Suppose we want to classify a protein sequence
p into one of k protein families, the MDL based
classifier is given by,

family (p) = argmax DLG(p, family, ;) (2)
family

where DLG(p,family,) is the measure of the com-
pression effect produced by protein sequence p in
the protein corpus of family,. We hypothesize that
a protein sequence will be compressed more by
the protein family it belongs to, because of the
presence of similar words among the same family
members.

Experimental Setup The dataset used for pro-
tein classification is ASTRAL Compendium
(Chandonia et al., 2004). It contains protein
domain sequences for domains classified by the
SCOPe hierarchy. ASTRAL 95 subset based on
SCOPe v2.05 is used as training corpus and the
test set is created by accumulating the protein do-
main sequences that were newly added in SCOPe
v2.06. Performance of the MDL classifier is dis-
cussed in four SCOPe levels - Class, Fold, Su-
perfamily and Family. At all levels, we consider
only the protein domains belonging to four SCOPe
classes A,B,C and D representing All Alpha, All
Beta, Alpha+Beta, Alpha/Beta respectively. The
blind test set contains a total of 4821 protein do-
main sequences.

SCOPe classification poses the problem of class
imbalance due to the non-uniform distribution of
domains among different classes at all SCOPe lev-
els. Due to this problem, we use macro precision
and macro recall (Yang, 1999) as performance
measures and are given by the below equations.

1< TP,
Precision = - _— 3)
macro q ; T_PZ + F_P,L
1< TP
Recall = - g R S— 4)
macro q — TP,L + FNZ

4.2.2 Performance of MDL Classifier

Class Prediction Out of 4821 domain se-
quences in the test data, the MDL classifier ab-
stains from prediction for 71 sequences due to
multiple classes giving the same measure of com-
pression. The MDL Classifier achieves a macro
precision of 75.64% and macro recall of 69.63%
in Class prediction.
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SCOPe level | Macro Macro
Average | Average
Precision | Recall
Class 75.64 69.63
Fold 60.59 45.08
Super family || 56.65 43.73
Family 43.25 37.7
Table 3: Performance of MDL Classifier in
SCOPe Prediction
SCOPe level | Weighted | Weighted
Average | Average
Precision | Recall
Class 76.38 69.77
Fold 81.49 49.25
Super family || 72.80 48.23
Family 45.02 35.85
Table 4: Performance of MDL Classifier in

SCOPe Prediction - Weighted Measures

Fold Prediction SCOPe v2.05 contains a total
of 1208 folds out of which 991 folds belong to
classes A,B,C and D. The distribution of protein
sequences among the folds is non-uniform ranging
from 1 to 2254 sequences with 250 folds contain-
ing only one sequence. MDL Classifier achieves
a macro precision of 60.59% and macro recall of
45.08% in fold classification.

Impact of Corpus Size The number of pro-
tein domains per class decreases greatly down the
SCOPe hierarchy. The folds (or families, super-
families) that have very few sequences should have
less contribution in the overall prediction accu-
racy. We weighted the macro measures based
on the number of instances which resulted in the
weighted averages reported in Table 4. The MDL
classifier achieves a weighted macro precision of
81.49% in SCOPe fold prediction which is higher
than the precision at any other level. This obser-
vation highlights the quality of protein segments
generated by MDL algorithm. It is also important
to note that fold prediction is an important sub task
of protein structure prediction just as how word
detection is crucial to understanding the meaning
of a sentence.

4.3 MDL Classifier as a Filter

The folds which are closer to each other in the
SCOPe hierarchy tend to compress protein se-
quences almost equally. Instead of returning a
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k

single fold giving maximum compression, if the
MDL classifier returns the top-k candidates, then
we can reduce the search space for manual or high
cost inspections. We define utility of the MDL
classifier when used as a filter as given below.

:1:4.. _ No. of predictions where correct fold is in top-k list
Utlhty - Total no. of predictions

Figure 4 shows the k versus utility on test data. It
can be seen from the graph that at k=400 (which is
approximately 33% of the total number of folds),
top-k predictions are able to give 93% utility. In
other words, in 93% of the test sequences, MDL
filter can be used to achieve nearly 67% reduction
in the search space of 1208 folds.

4.4 TImpact of Constraints based on Domain
Knowledge

Similar to experiments in English domain, the
MDL algorithm on protein dataset can also be
enhanced by including constraints from protein
domain knowledge. For example, in a protein
molecule, hydrophobic amino acids are likely
to be found in the interior, whereas hydrophilic
amino acids are more likely to be in contact with
the aqueous environment. This information can be
used to introduce checks on allowable amino acids
at the beginning and end of protein segments.
Unlike in English, identifying constraints based
on protein domain knowledge is difficult because
there are no lexicon or protein language rules read-
ily available. Domain expertise is needed for get-
ting explicit constraints.

As proof of concept, we use the SCOPe class
labels of protein sequences as domain knowledge
and study its impact on the utility of the MDL fil-
ter. After introducing class knowledge, MDL filter
achieves an utility of 93% at k=100, i.e., in 93%
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Figure 5: Variation of Filter Utility with Filter Size
k after adding constraints based on SCOPe Class
labels

of the test sequences, MDL filter can be used to
achieve nearly 90% reduction in the search space
of 1208 folds. In the absence of class knowledge,
the same filter utility was obtained at k=400 which
is only 67% reduction of search space (Figure 5).
Through this experiment, we emphasize that ap-
propriate domain knowledge can help in improv-
ing the quality of word segmentation in protein se-
quences. Such domain knowledge could be im-
posed in the form of constraints during unsuper-
vised learning of protein words. We would like to
emphasize the fact that introducing domain knowl-
edge in the form of class labels as in supervised or
semi-supervised learning frameworks may not be
appropriate in protein sequences due to our current
ignorance of the true protein words.

5 Discussion

In the words of Jones and Pevzner (Jones and
Pevzner, 2004), "It stands to reason that if a
word occurs considerably more frequently than
expected, then it is more likely to be some sort of
’signal’ and it is crucially important to figure out
the biological meaning of the signal”. In this pa-
per, we have proposed protein segments obtained
from MDL segmentation as the signals to be de-
coded.

As part of our future work, we would like to
study the performance of SCS words (Motomura
et al., 2012), (Motomura et al., 2013) in protein
family classification and compare it against MDL
words; We would also like to measure the avail-
ability scores of MDL segments. It may also be in-
sightful to study the co-occurrence matrix of MDL
segments.

6 Conclusion

Given the abundance of unlabelled data, data
driven approaches have witnessed significant suc-
cess over the last decade in several tasks in vi-
sion, language and speech. Inspired by the corre-
spondence between biological and linguistic tasks
at various levels of abstraction as revealed by the
study of Protein Linguistics, it is only natural that
there would be a propensity to extend such ap-
proaches to several tasks in Computational Biol-
ogy. A linguist already knows a lot about language
however, and a biologist knows lot about biology;
so, it does make sense to incorporate what they al-
ready know to constrain the hypothesis space of a
machine learner, rather than make the learner re-
discover what the experts already know. The latter
option is not only demanding in terms of data and
computational resources, it may need us to solve
riddles we just do not have answers to. Classifying
a piece of text as humorous or otherwise is hard at
the state of the art; there are far too many inter-
actions between variables than we can model, not
only do the words interact between them, they also
interact with the mental model of the person read-
ing the joke. It stretches our wildest imaginations
to think of a purely bottom up Deep Learner that
is deprived of common-sense and world knowl-
edge to learn such end-to-end mappings reliably
by looking at data alone. The same is true in
biological domains where non-linear interactions
between a large number of functional units make
macro-properties “emerge” out of interactions be-
tween individual functional units. We feel that a
realistic route is one where top down (knowledge
driven) approaches complement bottom up (data
driven) approaches effectively. This paper would
have served a modest goal if it has aligned itself to-
wards demonstrating such a possibility within the
scope of discovering biological words, which is
just one small step in the fascinating quest towards
deciphering the language in which biological se-
quences express themselves.
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