
Proceedings of the BioNLP 2017 workshop, pages 176–183,
Vancouver, Canada, August 4, 2017. c©2017 Association for Computational Linguistics

Painless Relation Extraction with Kindred

Jake Lever and Steven JM Jones
Canada’s Michael Smith Genome Sciences Centre

570 W 7th Ave, Vancouver
BC, V5Z 4S6, Canada

{jlever,sjones}@bcgsc.ca

Abstract

Relation extraction methods are essential
for creating robust text mining tools to
help researchers find useful knowledge in
the vast published literature. Easy-to-
use and generalizable methods are needed
to encourage an ecosystem in which re-
searchers can easily use shared resources
and build upon each others’ methods. We
present the Kindred Python package1 for
relation extraction. It builds upon meth-
ods from the most successful tools in the
recent BioNLP Shared Task to predict
high-quality predictions with low com-
putational cost. It also integrates with
PubAnnotation, PubTator, and BioNLP
Shared Task data in order to allow easy de-
velopment and application of relation ex-
traction models.

1 Introduction

Modern biomedical research is beginning to rely
on text mining tools to help search and curate
the ever-growing published literature and to inter-
pret large numbers of electronic health records.
Many text mining tools employ information ex-
traction (IE) methods to translate knowledge dis-
cussed in free text into a form that can be eas-
ily searched, analyzed and used to build valuable
biomedical databases. Examples of applications
of IE methods include building protein-protein in-
teraction networks (Donaldson et al., 2003) and
automatically retrieving information about pro-
teins (Rebholz-Schuhmann et al., 2007).

Information extraction relies on several key
technologies including relation extraction. Rela-
tion extraction focuses on understanding the rela-
tion between two of more biomedical terms in a

1http://www.github.com/jakelever/kindred

stretch of text. This may be understanding how
one protein interacts with another protein, whether
a drug treats or causes a particular symptom and
many other uses. Most methods assume that en-
tities (e.g. gene and drug names) in the sen-
tence have already been identified, either through
a named entity recognition tools (e.g. BANNER
(Leaman et al., 2008)) or basic dictionary match-
ing against a word list. The method must then
use linguistic cues within the sentence to predict
whether or not a relation exists between each pair
or group of entities and exactly which type of re-
lation it is.

The BioNLP Shared Task has catalyzed re-
search in relation extraction tools by providing an
environment for friendly competition between dif-
ferent relation extraction approaches. The orga-
nizers of the relation extraction subtasks provide
text from published literature with entities and re-
lations annotated. The participating researchers
build relation extraction models and predicted re-
lations on a test set. The participants’ predictions
are then analyzed by the organizers and the re-
sults presented to all. The BioNLP Shared Task
has been held in 2009, 2011, 2013 and recently
in 2016. The recent 2016 relation extraction prob-
lems focused on two areas: bacteria biotopes (BB3
subtask) and seed development (SeeDev subtask).
The BB3 subtask required participants to predict
relations between bacteria and their habitats. The
SeeDev subtask involved prediction of over twenty
different relation types related to seed develop-
ment.

Two main approaches to relation extraction
have been taken, a rule-based method and a vector-
based method. A rule-based approach identifies
common patterns that capture a relation. For in-
stance, two gene names with the word ”regulates”
between them generally implies a regulation rela-
tion between the two entities. The BioSem method

176



(Bui et al., 2013) identifies common patterns of
words and parts-of-speech between biomedical
terms and performed well in the BioNLP Shared
Task in 2013.

The vector-based approach transforms a span of
text and candidate relation into a numerical vector
that can be used in a traditional machine learning
classification approach. Support vector machines
(SVM) have commonly been used. The TEES
(Björne and Salakoski, 2013) and VERSE (Lever
and Jones, 2016) methods, which were success-
ful in many of the shared tasks, use this approach
with different approaches for creating the vectors
and selecting the parameters for classification.

Deep learning, already very popular in natural
language processing (LeCun et al., 2015), has be-
gun to be used in the biomedical text mining field
with one entry in the BioNLP Shared Task using
a recurrent neural network approach (Mehryary
et al., 2016). The paper examined the use of long
short-term memory (LSTM) networks for rela-
tion extraction, especially in situations with small
training dataset sizes. Given such a complicated
model, the problem of overfitting becomes very
large. They proposed approaches to reduce over-
fitting and the entry performed very well, coming
second in the competition.

The VERSE method came first in the BB3 event
subtask and third in the SeeDev binary subtask
in the BioNLP Shared Task 2016. An analysis
of the two systems that outperformed VERSE in
the SeeDev subtask points to interesting direc-
tions for further development. The SeeDev sub-
task differs greatly from the BB3 subtask as there
are 24 relation types compared to only 1 in BB3
and the training set size for each relation is drasti-
cally smaller. The LitWay approach, which came
first, uses a hybrid approach of rule-based and
vector-based (Li et al., 2016). For ”simpler” rela-
tions, defined using a custom list, a rule-based ap-
proach is used using a predefined set of patterns.
The UniMelb approach created individual classi-
fiers for each relation type and was able to predict
multiple relations for a candidate relation (Panyam
et al., 2016). This approach of treating relation
types differently suggests that there may be large
differences in how a relation should be treated in
terms of the linguistic cues used to identify it and
the best algorithm approach to identify it.

There are several shortcomings in the ap-
proaches to the BioNLP Shared Tasks, the great-

est of all is the poor number of participants that
provide code. It is also clear that the advantages
of some of the most successful tools are tailored
specifically to these datasets and may not be able
to generalize easily to other relation extraction
tasks. Some tools that do share code such as TEES
and VERSE have a large number of dependen-
cies, though TEES ameliorates this problem with
an excellent installing tool that manages depen-
dencies. These tools can also be computationally
costly, with both TEES and VERSE taking a pa-
rameter optimization strategy that requires a clus-
ter for reasonable performance.

The biomedical text mining community is en-
deavoring to improve consistency and ease-of-use
for text mining tools. In 2012, the Biocreative
BioC Interoperability Initiative (Comeau et al.,
2014) encouraged researchers to develop biomed-
ical text mining tools around the BioC file for-
mat (Comeau et al., 2013). More recently, one
of the Biocreative BeCalm tasks focuses on ”tech-
nical interoperability and performance of annota-
tion servers” for a named entity recognition sys-
tems. This initiative encourages an ecosystem of
tools and datasets that will make text mining a
more common tool in biology research. PubAn-
notation (Kim and Wang, 2012), which is part
of this approach, is a public resource for shar-
ing annotated biomedical texts. The hope of this
resource is to provide data to improve biomed-
ical text mining tools and as a launching point
for future shared tasks. The PubTator tool (Wei
et al., 2013b) provides PubMed abstracts with var-
ious biomedical entities annotated using several
named entity recognition tools including tmVar
(Wei et al., 2013a) and DNorm (Leaman et al.,
2013).

In order to overcome some of the challenges
in the relation extraction community in terms
of ease-of-use and integration, we present Kin-
dred. Kindred is an easy-to-install Python pack-
age for relation extraction using a vector-based ap-
proach. It abstracts away much of the underly-
ing algorithms in order to allow a user to easily
start extracting biomedical knowledge from sen-
tences. However, the user can easily use individual
components of Kindred in conjunction with other
parsers or machine learning algorithms. It inte-
grates seamlessly with PubAnnotation and PubTa-
tor to allow easy access to training data and text to
be applied to. Furthermore, we show that it per-

177



Figure 1: An example of a relation between two entities in the same sentence and the representations of
the relation in four input/output formats that Kindred supports.

forms very well on the BioNLP Shared Task 2016
relation subtasks.

2 Methods

Kindred is a Python package that builds upon the
Stanford CoreNLP framework (Manning et al.,
2014) and the scikit-learn machine learning library
(Pedregosa et al., 2011). The decision to build a
package was based on the understanding that each
text mining problem is different. It seemed more
valuable to make the individual features of the re-
lation extraction system available to the commu-
nity than a bespoke tool that was designed to solve
a fixed type of biomedical text mining problem.
Python was selected due to the excellent support
for machine learning and the easy distribution of
Python packages.

The ethos of the design is based on the scikit-
learn API that allows complex operations to oc-
cur in very few lines of code, but also gives de-
tailed control of the individual components. In-
dividual computational units are encapsulated in
separate classes to improve modularity and allow
easier testing. Nevertheless, the main goal was

to allow the user to download annotated data and
build a relation extraction classifier in as few lines
of code as possible.

2.1 Package development

The package has been developed for ease-of-use
and reliability. The code for the package is hosted
on Github. It was also developed using the contin-
uous integration system Travis CI in order to im-
prove the robustness of the tool. This allows reg-
ular tests to be run whenever code is committed
to the repository. This will enable further devel-
opment of Kindred and ensure that it continues to
work with both Python 2 and Python 3. Coveralls
and the Python coverage tool are used to evaluate
code coverage and assist in test evaluation.

These approaches were in line with the recent
recommendations on improving research software
(Taschuk and Wilson, 2017). We hope these tech-
niques will allow for and encourage others to make
use of and contribute to the Kindred package.

178



2.2 Data Formats

As illustrated in Figure 1, Kindred accepts data in
four different formats: the standoff format used by
BioNLP Shared Tasks, the JSON format used by
PubAnnotation, the BioC format (Comeau et al.,
2013) and a simple tag format. The standoff for-
mat uses three files, a TXT file that contains the
raw text, an A1 file that contains information on
the tagged entities and an A2 file that contains
information on the relations between the entities.
The JSON, BioC and simple tag formats integrate
this information into single files. The input text
in each of these formats must have already been
annotated for entities.

The simple tag format was implemented primar-
ily for simple illustrations of Kindred and for eas-
ier testing purposes. It is parsed using an XML
parser to identify all tags. A relation tag should
contain a ”type” attribute that denotes the relation
type (e.g. causes). All other attributes are assumed
to be arguments for the relation and their values
should be IDs for entities in the same text. A non-
relation tag is assumed to be describing an entity
and should have an ID attribute that is used for as-
sociating relations.

2.3 Parsing and Candidate Building

The text data is loaded, and where possible, the
annotations are checked for validity. In order to
prepare the data for classification, the first step is
sentence splitting and tokenization. We use the
Stanford CoreNLP toolkit for this which is also
used for dependency parsing for each sentence.

Once parsing has completed, the associated en-
tity information must then be matched with the
corresponding sentences. An entity can contain
non-contiguous tokens as was the case for the BB3
event dataset in the BioNLP 2016 Shared Task.
Therefore each token that overlaps with an anno-
tation for an entity is linked to that entity.

Any relations that occur entirely within a sen-
tence are associated with that sentence. The de-
cision to focus on relations contained within sen-
tence boundaries is based on the poor perfor-
mance of relation extraction systems in the past.
The VERSE tool explored predicting relations
that spanned sentence boundaries in the BioNLP
Shared Task and found that the false positive rate
was too high. The sentence is also parsed to
generate a dependency graph which is stored as
a set of triples (tokeni, tokenj , dependencyij)

where dependencyij is the type of edge in the
dependency graph between tokens i and j. The
edge types use the Universal Dependencies format
(Nivre et al., 2016).

Relation candidates are then created by find-
ing every possible pair of entities within each sen-
tence. The candidates that are annotated relations
are stored with a class number for use in the mul-
ticlass classifier. The class zero denotes no rela-
tion. All other classes denote relations of specific
types. The types of relations and therefore how
many classes are required for the multiclass clas-
sifier are based on the training data provided to
Kindred.

2.4 Vectorization
Each candidate is then vectorized in order to trans-
form the tokenized sentence and set of entity in-
formation into a numerical vector that can be pro-
cessed using the scikit-learn classifiers. In order to
keep Kindred simple and improve performance, it
only generates a small set of features as outlined
below.

• Entity types in the candidate relation

• Unigrams between entities

• Bigrams for the full sentence

• Edges in dependency path

• Edges in dependency path that are next to
each entity.

For the entity type and edge relations, they are
stored in a one-hot format. For the entity specific
relations, features are created for each entity. For
instance, if there are three relation types for rela-
tions between two arguments, then six binary fea-
tures would be required to capture the entity types.

The unigrams and bigrams use a bag-of-words
approach. Term-frequency inverse-document fre-
quency (TF-IDF) is used for all bag-of-words
based features. The dependency path, using the
same method as VERSE, is calculated as the min-
imum spanning tree between the nodes in the de-
pendency graph that are associated with the enti-
ties in the candidate relation.

2.5 Classification
Kindred has in-built support for the support vec-
tor machine (SVM) and logistic regression classi-
fiers implemented in scikit-learn. By default, the

179



SVM classifier is used with the vectorized can-
didate relations. The linear kernel has shown to
give good performance and is substantially faster
to train than alternative SVM kernels such as ra-
dial basis function or exponential.

The success of the LitWay and UniMelb entries
to the SeeDev shared task suggested that individ-
ual classifiers for unique relation types may give
improved performance. This may be due to the
significant differences in complexity between dif-
ferent relation types. For instance, one relation
type may require information from across the sen-
tence for good classification, whereas another rela-
tion type may require only the neighboring word.

Using one classifier per relation type, instead
of a single multiclass classifier, means that a re-
lation candidate may be predicted to be multiple
relation types. Depending on the dataset, this may
be the appropriate decision as relations may over-
lap. Kindred offers this functionality of one clas-
sifier per relation type. However, for the SeeDev
dataset, we found that the best performance was
actually through a single multiclass classifier.

2.6 Filtering
The predicted set of relations is then filtered us-
ing the associated relation type and types of the
entities in the relation. Kindred uses the set of
relations in the training data to infer the possible
argument types for each relation.

2.7 Precision-recall tradeoff
The importance of precision and recall depends on
the specific text mining problem. The BioNLP
Shared Task has favored the F1-score, giving an
equal weighting to precision and recall. Other text
mining projects may prefer higher precision in or-
der to avoid biocurators having to manually filter
out spurious results. Alternatively, projects may
require higher recall in order to not miss any pos-
sibly important results. Kindred gives the user the
control of a threshold for making predictions. In
this case, the logistic regression classifier is used
as it allows for easier thresholding. This is be-
cause the underlying predicted values can be in-
terpreted as probabilities. We found that logistic
regression achieved performance very close to the
SVM classifier. By selecting a higher threshold,
the classifier will become more conservative, de-
crease the number of false positives and therefore
improve precision at the cost of recall. By us-
ing cross-validation, the user can get an idea of

Figure 2: The precision-recall tradeoff when
trained on the training set for the BB3 and SeeDev
results and evaluating on the development set us-
ing different thresholds. The numbers shown on
the plot are the thresholds.

the precision-recall tradeoff. The tradeoffs for the
BB3 and SeeDev tasks are shown in 2. This allows
the user to select the appropriate threshold for their
task.

2.8 Parameter optimization

TEES took a grid-search approach to parameter
optimization and focused on the parameters of the
SVM classifier. VERSE had a significantly larger
selection of parameters and grid search was not
computationally feasible so a stochastic approach
was used. Both approaches are computationally
expensive and generally need a computer cluster.

Kindred takes a much simpler approach to pa-
rameter optimization and can work out of the box
with default values. To improve performance, the
user can choose to do minor parameter optimiza-
tion. The only parameter optimized by Kindred
is the exact set of features used for classifica-
tion. This decision was made with the hypothesis
that some relations potentially require words from
across the sentence and other need only the infor-
mation from the dependency parse.

The feature choice optimization uses a greedy
algorithm. It calculates the F1-score using cross
validation for each feature type. It then selects
the best one and tries adding the remaining fea-
ture types to it. It continues growing the feature

180



Figure 3: An illustration of the greedy approach to
selecting feature types for the BB3 dataset.

set until the cross-validated F1 score does not im-
prove.

Figure 3 illustrates the process for the BB3 sub-
task using the training set and evaluating on the de-
velopment set. At the first stage, the entity types
feature is selected. This is understandable as the
types of entity are highly predictive of whether
a candidate relation is reasonable for a particular
candidate type, e.g. two gene entities are unlikely
to be associated in a ’IS TREATMENT FOR’ re-
lation. At the next stage, the unigrams between
entities feature is selected. And on the third stage,
no improvement is made. Hence for this dataset,
two features are selected. We use this approach for
the BB3 dataset but found that the default feature
set performed best for the SeeDev dataset.

2.9 Dependencies
The main dependencies of Kindred are the scikit-
learn machine learning library and the Stanford
CoreNLP toolkit. Kindred will check for a locally
running CoreNLP server and connect if possible.
If none is found, then the CoreNLP archive file
will be downloaded. After checking the SHA256
checksum to confirm the file integrity, it is ex-

tracted. It will then launch CoreNLP as a back-
ground process and wait until the toolkit is ready
before proceeding to send parse requests to it. It
also makes sure to kill the CoreNLP process when
the Kindred package exits. Kindred also depends
on the wget package for easy downloading of files,
the IntervalTree python package for identifying
entity spans in text and NetworkX for generating
the dependency path (Schult and Swart, 2008).

2.10 PubAnnotation integration
In order to make use of existing resources in the
biomedical text mining community, Kindred in-
tegrates with PubAnnotation. This allows anno-
tated text to be downloaded from PubAnnotation
and used to train classifiers.

The PubAnnotation platform provides a REST-
ful API that allows easy download of annotations
from a given project. Kindred will initially down-
load the listing of all available text sources with
annotation for a given project. The listing is pro-
vided as a JSON data file. It will then download
the complete set of texts with annotations.

2.11 PubTator integration
Kindred can also download a set of annotated
PubMed abstracts that have already been anno-
tated with named entities through the PubTator
framework using the RESTful API. This requires
the user to provide a set of PubMed IDs which are
then requested from the PubTator server using the
JSON data format. The same loader used for Pub-
Annotation data is then used for the PubTator data.

2.12 BioNLP Shared Task integration
Kindred gives easy access to the data from the
most recent BioNLP Shared Task. By providing
the name of the test and specific data set (e.g.
training, development or testing), Kindred man-
ages the download of the appropriate archive, un-
zipping and loading of the data. As with the
CoreNLP dependency, the SHA256 checksum of
the downloaded archive is checked before unzip-
ping occurs.

2.13 API
One of the main goals of Kindred is to open up the
internal functionality of a relation extraction sys-
tem to other developers. The authors are keenly
aware that their specific interest in relation extrac-
tion, in order to build knowledge bases related to
cancer, differs from other researchers. With this

181



Precision Recall F1 Score
Fold 1 0.319 0.715 0.441
Fold 2 0.460 0.684 0.550

Test Set 0.579 0.443 0.502
VERSE 0.510 0.615 0.558

Table 1: Cross-validated results (Fold1/Fold2) and
final test set results for Kindred predictions in Bac-
teria Biotope (BB3) event subtask with test set re-
sults for the top performing tool VERSE.

in mind, the API is designed to give easy access
to the different modules of Kindred that may be
used independently. For instance, the candidate
builder or vectorizer could easily be integrated
with functionality from other Python packages,
which would allow for other machine learning al-
gorithms or deep learning techniques to be tested.
Other parsers could easily be integrated and tested
with the other parts of the Kindred in order to un-
derstand how the parser performance affects the
overall performance of the system. We hope that
this ease-of-use will encourage others to use Kin-
dred as a baseline method for comparison in future
research.

3 Results and Discussion

In order to show the efficacy of Kindred, we eval-
uate the performance on the BioNLP 2016 Shared
Task data for the BB3 event extraction subtask and
the SeeDev binary relation subtask. Parameter op-
timization was used for BB3 subtask but not for
the SeeDev subtask which used the default set of
feature types. Both tasks used a single multiclass
classifier. Tables 1 and 2 shows both the cross-
validated results using the provided training/devel-
opment split as well as the final results for the test
set.

The results are in line with the best perform-
ing tools in the shared task. It is to be expected
that it does not achieve the best score in either
task. VERSE, which achieved the best score in the
BB3 subtask, utilized a computational cluster to
test out different parameter settings for vectoriza-
tion as well as classification. LitWay, the winner
of the SeeDev subtask, used hand-crafted rules for
a number of the relation types. Given the computa-
tional speed and simplicity of the system, Kindred
is a valuable contribution to the community.

These results suggest several possible exten-
sions of Kindred. Firstly, a hybrid system that

Precision Recall F1 Score
Fold 1 0.333 0.411 0.368
Fold 2 0.255 0.393 0.309

Test Set 0.344 0.479 0.400
LitWay 0.417 0.448 0.432

Table 2: Cross-validated results (Fold1/Fold2) and
final test set results for Kindred predictions in
Seed Development (SeeDev) binary subtask with
test set results for the top performing tool LitWay.

mixes a vector-based classifier with some hand-
crafted rules may improve system performance.
This would need to be implemented to allow cus-
tomization in order to support different biomedi-
cal tasks. Kindred is also geared towards PubMed
abstract text, especially given the integration with
PubTator. Using PubTator’s API to annotate other
text would allow Kindred to easily integrate other
text sources, including full-text articles where pos-
sible. Given the open nature of the API, we hope
that these improvements, if desired by the commu-
nity, could be easily developed and tested.

Kindred has several weaknesses that we hope to
improve. It does not properly handle entities that
lie within tokens. For example, a token ”HER2+”,
with ”HER” annotated as a gene name, denotes a
breast cancer subtype that is positive for the HER2
receptor. Kindred will currently associate the full
token as a gene entity and will not properly deal
the ”+”. This is not a concern for the BioNLP
Shared Task problem but may become important
in other text mining tasks.

4 Conclusion

We have presented the Kindred relation extraction
package. It is designed for ease-of-use to encour-
age more researchers to test out relation extrac-
tion in their research. By integrating a selection
of file formats and connecting to a set of exist-
ing resources including PubAnnotation and Pub-
Tator, Kindred will make the first steps for a re-
searcher must less cumbersome. We also hope that
the codebase will allow researchers to build upon
the methods to make further improvements in re-
lation extraction research.

182



Acknowledgments

This research was supported by a Vanier Canada
Graduate Scholarship. The authors would like
to thank Compute Canada for computational re-
sources used in this project.

References
Jari Björne and Tapio Salakoski. 2013. TEES 2.1: Au-

tomated annotation scheme learning in the BioNLP
2013 Shared Task. In Proceedings of the BioNLP
Shared Task 2013 Workshop. pages 16–25.

Quoc-Chinh Bui, David Campos, Erik van Mulligen,
and Jan Kors. 2013. A fast rule-based approach for
biomedical event extraction. In Proceedings of the
BioNLP Shared Task 2013 Workshop. Association
for Computational Linguistics, pages 104–108.

Donald C Comeau, Riza Theresa Batista-Navarro,
Hong-Jie Dai, Rezarta Islamaj Doğan, Antonio Ji-
meno Yepes, Ritu Khare, Zhiyong Lu, Hernani
Marques, Carolyn J Mattingly, Mariana Neves,
et al. 2014. Bioc interoperability track overview.
Database 2014.

Donald C Comeau, Rezarta Islamaj Doğan, Paolo Ci-
ccarese, Kevin Bretonnel Cohen, Martin Krallinger,
Florian Leitner, Zhiyong Lu, Yifan Peng, Fabio Ri-
naldi, Manabu Torii, et al. 2013. Bioc: a minimalist
approach to interoperability for biomedical text pro-
cessing. Database 2013.

Ian Donaldson, Joel Martin, Berry De Bruijn, Cheryl
Wolting, Vicki Lay, Brigitte Tuekam, Shudong
Zhang, Berivan Baskin, Gary D Bader, Katerina
Michalickova, et al. 2003. PreBIND and Textomy–
mining the biomedical literature for protein-protein
interactions using a support vector machine. BMC
Bioinformatics 4(1):11.

Jin-Dong Kim and Yue Wang. 2012. PubAnnotation: a
persistent and sharable corpus and annotation repos-
itory. In Proceedings of the 2012 Workshop on
Biomedical Natural Language Processing. Associa-
tion for Computational Linguistics, pages 202–205.

Robert Leaman, Rezarta Islamaj Doğan, and Zhiyong
Lu. 2013. DNorm: disease name normalization with
pairwise learning to rank. Bioinformatics .

Robert Leaman, Graciela Gonzalez, et al. 2008. BAN-
NER: an executable survey of advances in biomedi-
cal named entity recognition. In Pacific Symposium
on Biocomputing. volume 13, pages 652–663.

Yann LeCun, Yoshua Bengio, and Geoffrey Hinton.
2015. Deep learning. Nature 521(7553):436–444.

Jake Lever and Steven JM Jones. 2016. VERSE: Event
and Relation Extraction in the BioNLP 2016 Shared
Task. Proceedings of the 4th BioNLP Shared Task
Workshop page 42.

Chen Li, Zhiqiang Rao, and Xiangrong Zhang. 2016.
LitWay, Discriminative Extraction for Different Bio-
Events. Proceedings of the 4th BioNLP Shared Task
Workshop page 32.

Christopher D Manning, Mihai Surdeanu, John Bauer,
Jenny Rose Finkel, Steven Bethard, and David Mc-
Closky. 2014. The Stanford CoreNLP Natural Lan-
guage Processing Toolkit. In ACL (System Demon-
strations). pages 55–60.

Farrokh Mehryary, Jari Björne, Sampo Pyysalo, Tapio
Salakoski, and Filip Ginter. 2016. Deep Learning
with Minimal Training Data: TurkuNLP Entry in the
BioNLP Shared Task 2016. Proceedings of the 4th
BioNLP Shared Task Workshop page 73.

Joakim Nivre, Marie-Catherine de Marneffe, Filip Gin-
ter, Yoav Goldberg, Jan Hajic, Christopher D Man-
ning, Ryan McDonald, Slav Petrov, Sampo Pyysalo,
Natalia Silveira, et al. 2016. Universal Dependen-
cies v1: A multilingual treebank collection. In Pro-
ceedings of the 10th International Conference on
Language Resources and Evaluation (LREC 2016).
pages 1659–1666.

Nagesh C Panyam, Gitansh Khirbat, Karin Verspoor,
Trevor Cohn, and Kotagiri Ramamohanarao. 2016.
SeeDev Binary Event Extraction using SVMs and a
Rich Feature Set. Proceedings of the 4th BioNLP
Shared Task Workshop page 82.

Fabian Pedregosa, Gaël Varoquaux, Alexandre Gram-
fort, Vincent Michel, Bertrand Thirion, Olivier
Grisel, Mathieu Blondel, Peter Prettenhofer, Ron
Weiss, Vincent Dubourg, et al. 2011. Scikit-learn:
Machine learning in Python. Journal of Machine
Learning Research 12(Oct):2825–2830.

Dietrich Rebholz-Schuhmann, Harald Kirsch, Miguel
Arregui, Sylvain Gaudan, Mark Riethoven, and Pe-
ter Stoehr. 2007. EBIMedtext crunching to gather
facts for proteins from Medline. Bioinformatics
23(2):e237–e244.

Daniel A Schult and P Swart. 2008. Exploring network
structure, dynamics, and function using NetworkX.
In Proceedings of the 7th Python in Science Confer-
ences (SciPy 2008). volume 2008, pages 11–16.

Morgan Taschuk and Greg Wilson. 2017. Ten Simple
Rules for Making Research Software More Robust.
PLOS Computational Biology 13(4).

Chih-Hsuan Wei, Bethany R Harris, Hung-Yu Kao, and
Zhiyong Lu. 2013a. tmVar: a text mining approach
for extracting sequence variants in biomedical liter-
ature. Bioinformatics .

Chih-Hsuan Wei, Hung-Yu Kao, and Zhiyong Lu.
2013b. PubTator: a web-based text mining tool for
assisting biocuration. Nucleic acids research .

183


