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Abstract

In clinical dictation, speakers try to be as
concise as possible to save time, often re-
sulting in utterances without explicit punc-
tuation commands. Since the end product
of a dictated report, e.g. an out-patient let-
ter, does require correct orthography, in-
cluding exact punctuation, the latter need
to be restored, preferably by automated
means. This paper describes a method for
punctuation restoration based on a state-
of-the-art stack of NLP and machine learn-
ing techniques including B-RNNs with an
attention mechanism and late fusion, as
well as a feature extraction technique tai-
lored to the processing of medical termi-
nology using a novel vocabulary reduction
model. To the best of our knowledge, the
resulting performance is superior to that
reported in prior art on similar tasks.

1 Introduction

Medical dictation has been a major instrument
in clinical settings to minimize the administrative
burden on physicians (Johnson et al., 2014; Ham-
mana et al., 2015; Hodgson and Coiera, 2016).
Rather than having to fill forms in electronic med-
ical record systems (EMRs) or typing out-patient
letters, such labor is often outsourced to medical
transcription providers, many of which make use
of automated speech recognition (ASR), coupled
with a manual correction step, to increase effec-
tiveness and speed of transcription (Salloum et al.,
2017). Despite the fact that medical dictation re-
duces time physicians spend on clinical documen-
tation substantially, an average dictation still takes
about three minutes (Edwards et al., 2017). In an
attempt to dictate as efficiently as possible, often
physicians (a) speak extremely fast, (b) use pre-

dictated paragraphs (so-called physician normals),
(c) make massive use of abbreviations, and (d) in-
clude very limited (if any) instructions regarding
formatting and punctuation.

While the ASR system is in charge of turning
spoken words into their textual representation, a
sophisticated NLP unit, the post-processor, takes
care of formatting and structuring the output to
produce a draft resembling the out-patient letter
as well as possible. Among other responsibilities
(such as formatting numerical expressions, dates,
section headers, etc.), the post-processor is also
charged with restoring punctuation in the letter’s
narrative. This paper focuses on the automated
punctuation restoration in clinical reports, draw-
ing on the latest advances in the NLP sector.

To achieve best possible results in this study, we
paid particular attention to the specific challenges
faced in medical texts. Foremost among these is a
large domain-specific vocabulary, which makes it
difficult if not impossible to apply tools developed
for general-domain text. When building a system
from scratch, however, several factors conspire to
make it hard to obtain enough training data: the
large medical vocabulary increases problems re-
lated to data sparsity and the handling of out-of-
vocabulary (OOV) terms; the data often contain
sensitive information and have restricted access or
availability; and modern methods, such as neu-
ral networks as used here, typically require large
amounts of data.

We overcame these issues by developing a text
pre-processing strategy to reduce vocabulary size,
collapsing particular roots and exploiting the fact
that many medical terms are built from relatively
few morphemes. Our method, which we call the
vocabulary reduction model, effectively allows the
punctuation restoration neural network to focus
on morphosyntactic features of words rather than
their full semantic representation, as usually cap-
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Normalized Text Reduced Text
Set types OOVs tokens types tokens PERIOD COLON COMMA

Training 57,046 n/a 15,886,158 11,766 15,933,901 1,803,626 631,452 760,444
Dev 28,509 1,561 2,243,187 10,321 2,248,305 268,374 89,647 111,571
Blind Test 31,806 3,108 2,944,787 10,767 2,952,873 325,549 103,693 127,895

Table 1: Corpus statistics after normalization and vocabulary reduction. No OOVs are reported on the
reduced text since the vocabulary reduction algorithm will map OOVs to classes. The last three columns
show the counts of each punctuation tag per set.

tured by word embeddings, being less important
to the placement of punctuation.

After reviewing the prior art in the field of punc-
tuation restoration in Section 2, we describe the
corpus used in this study in Section 3. The sys-
tem’s general architecture based on bidirectional
recurrent neural networks with attention mecha-
nism and late fusion is discussed in Section 4, fol-
lowed by Section 5 providing details on the vo-
cabulary reduction model. Evaluation results are
covered in Section 6, and conclusion and future
outlook in Section 7.

2 Related Work

Early efforts in this field used hidden-event n-
gram language modeling to predict where punc-
tuation should be inserted (Stolcke et al., 1998;
Beeferman et al., 1998). Numerous other strate-
gies have also been devised: combining n-grams
with constituency parse information (Shieber and
Tao, 2003); maximum entropy using n-gram and
part-of-speech features (Huang and Zweig, 2002);
conditional random fields (CRFs) (Ueffing et al.,
2013); feed-forward neural networks and CRFs
on n-gram and lexical features (Cho et al., 2015);
even reframing the problem as monolingual ma-
chine translation (Peitz et al., 2011).

Most recently, it has been demonstrated that re-
current neural networks can restore punctuation
very effectively (Tilk and Alumäe, 2015, 2016).
Such methods are promising because they should
be able to handle long-distance dependencies that
are missed by other methods.

There has been little work on punctuation
restoration in the medical domain specifically.
While using pauses showed to help in punctua-
tion restoration for rehearsed speech such as TED
Talks (Tilk and Alumäe, 2016), Deoras and Fritsch
(2008) note that medical dictations pose a particu-
lar challenge because the speech is often delivered
rapidly and without typical prosodic cues, such as

pauses where one would write commas or other
punctuation. Thus, although acoustic information
has been successfully incorporated for other do-
mains (Huang and Zweig, 2002; Christensen et al.,
2001), the same may not be feasible for medical
text, so it is especially desirable to have a reliable
text-only method.

3 Corpus

The corpus we are using in this study is composed
of 32,275 medical reports (i.e., out-patient letters),
which we converted into a sequence of tokens with
punctuation as tags (since they are the most rel-
evant to medical dictations, we focused on three
punctuation marks: colon, comma, and period,
represented in the tag set {COLON, COMMA, PE-
RIOD}). We randomly split our corpus into train-
ing set, development set, and blind test set. De-
tailed corpus statistics are given in Table 1.

To reduce the size of the vocabulary, we per-
formed two layers of text preprocessing. First,
we performed several text normalization steps
such as converting all digits to “D”, normalizing
numbers, dates, and times into familiar formats
(e.g., “D.D”, “DD/DDDD”, “DD/DD”, “DD/D-
D/DDDD”, “DD:DD”), as well as other tokens of
the medical domain into normalized formats (e.g.,
“DDD/DD” for blood pressure, “lD-lD” for lum-
bar spinal discs, and “q.D+h” meaning “every D+
hours”). Normalization also included lowercasing,
unifying abbreviations (e.g., “p.r.n” and “p.r.n.”),
and performing simple segmentation (e.g., split-
ting “’s” from a word). Second, we ran a vo-
cabulary reduction algorithm, as detailed in Sec-
tion 5, that maps infrequent and OOV words to
word classes. The combination of these two lay-
ers dramatically reduced the vocabulary size, as
shown in Table 1.
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Figure 1: Neural network design for punctuation
restoration. The diagram shows an input context
for the word xt and the stack of layers that result
in the tag yt representing the punctuation decision
for xt.

4 The Neural Network Model

We define punctuation restoration as a tagging
problem. We try to tag every word in the input
sequence with one of four tags: {NONE, COLON,
COMMA, PERIOD}. Tagging a word by a punctua-
tion means that the punctuation should be inserted
after this word, while tagging with NONE means
that the word does not have a punctuation after it.
Our neural network approach is based on the work
of Tilk and Alumäe (2016). Inspired by Bahdanau
et al. (2016), our deep neural network model uses
a bidirectional recurrent neural network (B-RNN)
(Schuster and Paliwal, 1997) with gated recurrent
units (Cho et al., 2014). B-RNNs help in learn-
ing long range dependencies on the left and right
of the current input word. The B-RNN is com-
posed of a forward RNN and a backward RNN that
are preceded by the same word embedding layer.
A sliding window of 256 words are passed to the
shared embedding layer as one-hot vectors.

On top of the B-RNN, we stack a unidirec-

tional RNN with an attention mechanism (Bah-
danau et al., 2016) to assist in capturing relevant
contexts that support punctuation restoration de-
cisions. Finally, we use late fusion (Wang and
Cho, 2015) to combine the output of the atten-
tion mechanism with the current position in the
B-RNN without interfering with its memory.

5 The Vocabulary Reduction Model

To improve the modeling of rare words and to deal
with OOV words in the test and development sets,
we implemented a step that maps rare words to
common word classes, reducing the overall size
of the vocabulary. This vocabulary reduction al-
lows us to reduce the number of model parame-
ters, which is crucial for fast decoding in a live
recognizer.

Table 2 shows examples of prefixes and suffixes
that capture the semantic and morpho-syntactic in-
formation of infrequent words in our training data
such as medical terminology and proper names.
For every input word consisting of alphabetical
characters only, our vocabulary reduction algo-
rithm goes through the prefix and suffix lists start-
ing from the longer affixes to the shorter ones and
tries to match them to the beginning or end of
the word, while ensuring that the stem is at least
four letters long. If the word starts with a prefix
p+ of the prefix list we replace it with “pAAAA”
(where “AAAA” represents an alphabetical stem).
If it starts with a suffix +q, we replace it with
“AAAAq”. Finally, if the word matches a pre-
fix p+ and a suffix +q, we split it into two to-
kens “pAA+” and “+AAq”, respectively, to ensure
that the information in them gets modeled sepa-
rately. Every rare word consisting of alphabeti-
cal characters only that does not match any suffix
or prefix is replaced with a token that represents
its length range. The length range is computed
with a step of five characters resulting in tokens
like AAAA 5 for words shorter than five charac-
ters, AAAA 10 for words shorter than ten char-
acters, etc. For example, “angiotensinconvertin-
genzyme” is replaced with AAAA 30. All other
rare words (e.g., “t1cn0m0”) are replaced with the
token “RARE”. These handcrafted rare classes al-
low us to increase the threshold for considering a
word rare. This technique not only significantly
reduces the size of the vocabulary, but also allows
us to better model rare classes with a higher num-
ber of tokens.
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Size Prefix Suffix
4 inte+, anti+, post+, tran+, over+, intr+, peri+,

hype+, para+, neur+, hypo+, micr+, rein+,
mult+, card+, comp+, retr+, reco+, self+,
gran+, extr+, medi+, hemi+, well+, semi+,
endo+, radi+, hemo+, fibr+, oste+, elec+

+tion, +ions, +type, +ness, +ized, +date,
+able, +gery, +tive, +sult, +tomy, +ated,
+tory, +sion, +ates, +ular, +ical, +osis,
+ment, +nary, +rate, +ings, +arge, +onal,
+itis, +ents, +like, +lity, +ance, +berg

3 non+, pre+, per+, pro+, mar+, sub+, sch+,
str+, tri+, ben+

+ing, +ion, +ted, +ate, +lly, +ive, +tic, +ers,
+ble, +ies, +ity, +cal, +man, +sis, +son, +ial,
+ous, +ell, +ary, +lar, +tes, +ton, +dez

2 re+, de+, mc+, un+, le+, la+, vi+ +ed, +er, +es, +al, +ry, +te, +ic, +ly, +le

Table 2: Examples of affixes of medical terminology and proper names that capture the semantic and/or
morpho-syntactic information of infrequent words in our training data.

Punctuation Precision Recall F-Score
COLON 98.6% 98.6% 98.6%
COMMA 84.0% 82.2% 83.1%
PERIOD 96.1% 96.4% 96.3%
Overall 94.2% 94.0% 94.1%

Table 3: Evaluation of punctuation restoration per-
formance on the blind test set.

We replace a word with its rare class whenever
we find it 20 or fewer times in the training data,
and we perform the affix-based replacement de-
scribed above whenever the word occurred less
than 100 times. These thresholds were tuned on a
held-out development set. Running this algorithm
on top of the normalized text results in lowering
the vocabulary size in our training data to 11,766
types, meaning that four out of five types are re-
placed with a class.

6 Evaluation

For the present study, we used Keras with Tensor-
Flow backend (Chollet, 2015; Abadi et al., 2016;
Chollet, 2017). We evaluated on the blind test set
by passing the whole set to our system as a se-
quence of about three million tokens without any
indication of beginning or end of sentence, para-
graph, or report. All words were lowercased, as
described earlier, to avoid giving out any hint of
sentence or section header start or end. We report
the results in Table 3.

We achieve 96.3% F-Score on periods, which
we consider the most important as they define sen-
tence boundaries. The latter are crucial for vir-
tually any subsequent NLP process, such as au-
tomatic coding of medical reports (Suendermann-
Oeft et al., 2016).

The second most important punctuation type in
medical reports is colons, as they define section
headers and, thus, help format the report structure.
We achieve 98.6% F-Score on colons.

Finally, we get 83.1% F-Score on commas, the
hardest tag to predict due to human inconsistency
in using them. This inconsistency affects the ac-
curacy of the training data as well as the fairness
in the evaluation against the test set. The overall
performance of the system on all tags is 94.1% in
terms of F-Score. Refer to Table 4 for examples of
our system’s output.

7 Conclusion and Future Work

Although prior work on punctuation restoration
has used different corpora from the work pre-
sented in this paper, our result (F-Score 94.1%)
compares very favorably with previous publica-
tions. For example, Cho et al. (2015) achieve an
F-Score of 61.8% on a meeting and lecture corpus,
Tilk and Alumäe (2016) produce 64.4% on TED
talk transcripts, and Ueffing et al. (2013) report
an F-Score of 66.8% on one of Nuance’s in-house
dictation corpora.

While we have tested the performance of the
presented punctuation restoration algorithm on
naturalistic medical dictations, we have not yet
measured the impact the speech recognizer’s word
error rate has on the F-Score, a task we plan to
address in the near future. We are also inter-
ested to learn whether analyzing the speech wave-
form and characteristic pauses and prosodic pat-
terns in medical dictations can be exploited in a
hybrid speech/text punctuation restoration system
to enhance accuracy even further. We also plan
to replace the vocabulary reduction model by fus-
ing a morphology-aware neural network such as a
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Input ... review of systems general positive for fatigue excessive perspiration feeling sick ...
Gold ... review of systems: general: positive for fatigue, excessive perspiration, feeling sick. ...
Punctuated ... review of systems COLON general COLON positive for fatigue COMMA excessive perAA+ +AAtion COMMA

feeling sick PERIOD ...
Input ... chronic pruritus dermatology felt that this was neurodermatosis and neurotic excoriations ...
Gold ... chronic pruritus. dermatology felt that this was neurodermatosis and neurotic excoriations. ...
Punctuated ... chronic pruritus PERIOD deAAAA felt that this was neurAA+ +AAosis and neurAA+ +AAtic AAAAions

PERIOD ...
Input ... it is available review of systems positive for still some ongoing lower extremity weakness tremulousness and

unsteadiness otherwise review of ...
Gold ... it is available. review of systems: positive for still some ongoing lower extremity weakness, tremulousness

and unsteadiness. otherwise, review of ...
Punctuated ... it is available PERIOD review of systems COLON positive for still some ongoing lower extremity weakness

COMMA AAAAness and unAA+ +AAness PERIOD otherwise COMMA review of ...
Input ... severe clinical depression including hopelessness helplessness worthlessness difficulty focusing concentra-

tion and a lot of thoughts of death and dying ...
Gold ... severe clinical depression including hopelessness, helplessness, worthlessness, difficulty focusing, concen-

tration, and a lot of thoughts of death and dying. ...
Punctuated ... severe clinical depression including AAAAness COMMA AAAAness COMMA AAAAness COMMA diffi-

culty AAAAing COMMA concentration COMMA and a lot of thoughts of death and dying PERIOD ...
Input ... is reasonable we will optimize his medications by adding low dose angiotensinconvertingenzyme inhibitors

which he currently is not on if the ...
Gold ... is reasonable. we will optimize his medications by adding low dose angiotensinconvertingenzyme inhibitors,

which he currently is not on. if the ...
Punctuated ... is reasonable PERIOD we will optimize his medications by adding low dose AAAA 30 inhibitors COMMA

which he currently is not on PERIOD if the ...

Table 4: Examples of the output of our system on word sequences of the input. The first example
shows the correct handling of consecutive colons indicating a section header and a subsection header.
The second example shows the preprocessing of infrequent medical terminology like “neurodermato-
sis”, “neurotic”, and “excoriations” by capturing their semantic and part-of-speech information. The
third and fourth examples emphasize the case of parallelism captured by mapping “tremulousness and
unsteadiness” to “AAAAness and unAA+ +AAness” and “hopelessness helplessness worthlessness” to
“AAAAness AAAAness AAAAness”, thus predicting commas when needed since the meaning is ir-
relevant to the punctuation task. The fourth example also shows the correct prediction of coordinated
lists, separating them with commas. The final example presents the mapping of a very long word, “an-
giotensinconvertingenzyme”, into “AAAA 30”, which reduces the confusion of the network and results
in the correct prediction.

character-based convolutional network.
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