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Abstract

We propose a novel, Abstract Meaning
Representation (AMR) based approach to
identifying molecular events/interactions
in biomedical text. Our key contributions
are: (1) an empirical validation of our hy-
pothesis that an event is a subgraph of the
AMR graph, (2) a neural network-based
model that identifies such an event sub-
graph given an AMR, and (3) a distant su-
pervision based approach to gather addi-
tional training data. We evaluate our ap-
proach on the 2013 Genia Event Extrac-
tion dataset1 (Kim et al., 2013) and show
promising results.

1 Introduction

For several years now, the biomedical community
has been working towards the goal of creating a
curated knowledge base of biomolecule entity in-
teractions. The scientific literature in the biomed-
ical domain runs to millions of articles and is an
excellent source of such information. However,
automatically extracting information from text is
a challenge because natural language allows us
to express the same information in several differ-
ent ways. The series of Genia Event Extraction
shared tasks (Kim et al., 2009, 2011, 2013, 2016)
has resulted in various significant approaches to
biomolecule event extraction spanning methods
that use learnt patterns from annotated text (Bui
et al., 2013) to machine learning methods (Björne
and Salakoski, 2013) that use syntactic parses as
features. In this work, we find that a semantic
analysis of text that relies on Abstract Meaning
Representations (Banarescu et al., 2013) is highly
useful because it normalizes many lexical and syn-
tactic variations in text.

1This dataset is different from BioNLP 2016 GE dataset

Figure 1: AMR with sample event annotations for
sentence “This LPA-induced rapid phosphoryla-
tion of radixin was significantly suppressed in the
presence of C3 toxin, a potent inhibitor of Rho”

AMR is a rooted, directed acyclic graph (DAG)
that captures the notion of who did what to whom
in text, in a way that sentences that have the same
basic meaning often have the same AMR. The
nodes in the graph (also called concepts) map to
words in the sentence and the edges map to re-
lations between the words. In the recent past,
there have been several efforts towards parsing
a sentence into its AMR (Flanigan et al., 2014;
Wang et al., 2015; Pust et al., 2015; May, 2016).
AMR naturally captures hierarchical relations be-
tween entities in text making it favorable for com-
plex event detection. For example, consider the
following sentence from the biomedical litera-
ture: “This LPA-induced rapid phosphorylation of
radixin was significantly suppressed in the pres-
ence of C3 toxin, a potent inhibitor of Rho”. Fig-
ure 1 shows its Abstract Meaning Representation
(AMR). The subgraph rooted at phosphorylate-01
identifies the event E1 and the subgraph rooted at
induce-01 identifies the event E2 where

E1 = phosphorylation of radixin;
E2 = LPA induces E1.

We hypothesize that an event structure is a sub-
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Type Primary Args.
Gene expression T(P)
Transcription T(P)
Localization T(P)
Protein catabolism T(P)
Binding T(P)+
Phosphorylation T(P/Ev), C(P/Ev)
Regulation T(P/Ev), C(P/Ev)
Positive regulation T(P/Ev), C(P/Ev)
Negative regulation T(P/Ev), C(P/Ev)

Table 1: Event types and their arguments in the
2013 Genia Event Extraction task

graph of a DAG structure like AMR and under this
assumption, we cast the event extraction task as
a graph identification problem. Our first con-
tribution is the testing of the above hypothesis
that an event structure is a subgraph of an AMR
graph. Given a sentence, we automatically obtain
its AMR using an AMR parser (Pust et al., 2015)
and explain how an event can be defined as a sub-
graph of the AMR graph. Under the assumption
that we can correctly identify such an event sub-
graph from an AMR graph when it exists, we eval-
uate how good is our definition (Section 2).

Our second contribution is a supervised neural
network-based model that is trained to identify an
event subgraph given an AMR (Section 3). Our
model is built on the intuition that the path be-
tween an interaction term and an entity term in an
AMR graph contains important signal for identify-
ing the relation between them. For e.g. in figure 1
the path {‘induce-01’, ‘arg0’, ‘LPA’} suggests that
LPA is the cause of induce. We encode this path
using word embeddings pre-trained on millions of
biomedical text and develop two pipelined neural
network models: (a) to identify the theme of an
interaction; and (b) to identify the cause of the in-
teraction, if there exists one.

Experimental results show that our model, al-
though achieves a reasonable precision, suffers
from low recall. Our third contribution is a dis-
tant supervision (Mintz et al., 2009) based ap-
proach to collect additional annotated training
data. Distant supervision works on the assump-
tion that given a known relation between two enti-
ties, a sentence containing the two entities is likely
to express this relation and hence can serve as
training data for that relation. Data gathered us-
ing such a method can be noisy (Takamatsu et al.,
2012). Roth et al. (2013) have discussed several
prior work that address this issue. In our work, we
introduce a method based on AMR path heuristic

This LPA-induced rapid phosphorylation of radixin was sig-
nificantly suppressed in the presence of C3 toxin, a potent
inhibitor of Rho

T1 (Protein, LPA)
T2 (Protein, radixin)
T2 (Protein, C3)
T4 (Protein, Rho)
T5 (Phosphorylation, phosphorylate)
T6 (Positive regulation, induce)
T7 (Negative regulation, suppress)
T8 (Negative regulation, inhibit)
E1 (Type: T5, Theme: T2)
E2 (Type: T6, Theme: E1, Cause: T1)
E3 (Type: T7, Theme: E1)
E4 (Type: T8, Theme: T4, Cause: T3)

Table 2: Example event annotation. The protein anno-
tations T1- T4 are given as starting points. The task is to
identify the events E1-E4 with their interaction type and ar-
guments.

to selectively sample the sentences we obtain us-
ing distant supervision (Section 3) and show its ef-
fectiveness over our vanilla neural network model.

We evaluate our event extraction model on the
2013 Genia Event Extraction dataset and show
that our model achieves promising results when
compared to the state-of-the-art system. Given
that AMR parsing is still a young field, our
model, which currently uses a parser of 67% ac-
curacy, would perform better with improved AMR
parsers.

2 AMR based event extraction model

2.1 Task description
The biomedical event extraction task in this work
is adopted from the Genia Event Extraction sub-
task of the well-known BioNLP shared task ((Kim
et al., 2009), (Kim et al., 2011), (Kim et al.,
2013)). Table 2 shows a sample event annotation
for the sentence in Figure 1. The protein anno-
tations T1- T4 are given as starting points. The
task is to identify the events E1-E4 with their inter-
action type and arguments. Table 1 describes the
various event types and the arguments they accept.
The first four event types require only unary theme
argument. The binding event can take a variable
number of theme arguments. The last four events
take a theme argument and, when expressed, also
a cause argument. Their theme or cause may in
turn be another event, creating a nested event (For
e.g. event E2 in Table 2).

2.2 Model description
We cast this event extraction problem as a sub-
graph identification problem. Given a sentence we
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first obtain its AMR graph automatically using an
AMR parser (Pust et al., 2015). Next, we identify
protein nodes and interaction nodes in the graph.
Protein Node Identification: In both the training
and the test set, protein terms are pre-annotated
(e.g. T1 to T4 in Table 2). We then use the AMR
graph alignment information to identify nodes in
the AMR graph aligned to these protein terms to
get our protein nodes P .
Interaction Node Identification: In the training
data, interaction terms are pre-annotated (e.g. T5
to T8 in Table 2). To identify the interaction
terms in the test set we use the following heuristic:
any term that was annotated as an interaction term
more than once in the training data is considered
as an interaction term in the test data as well. We
then use the AMR graph alignment information to
identify nodes in the AMR graph aligned to the in-
teraction terms to get our interaction nodes T .
Given P and T , we identify an event sub-graph
using the following two-step process:
a. Theme Identification: Every pair (pi, tj)
where pi ∈ P and tj ∈ T , is a candidate for an
event em defined as em: (Type: tj , Theme: pi)
where Type is one of the nine event types in Ta-
ble 1. If em can take other events as arguments
(last four event types in Table 1) and if the short-
est path between tj and pi includes an interaction
term tk, such that the pair (pi, tk) is an event en

in itself, then we define the event em instead as
em: (Type: tj , Theme: en). For e.g. in Figure 1,
the path between induce-01 and radixin includes
phosphorylate-01 which is an event in itself (E1).
Hence event E2 is defined with E1 as its theme (in
Table 2).
b. Cause Identification: For events em: (Type:
tj: Theme: pi) that can take a cause argument,
we identify possible candidates for their cause by
again looking for all pairs (pl, tj) where pl ∈ P
and l 6= i and add cause to the event em as em:
(Type: tj , Theme: pi, Cause: pl). Since these
events can even take other events as their cause
argument, we identify additional candidates for
their cause by looking for all pairs (en, tj) where
en ∈ E and n 6= m and add cause to the event em

as em: (Type: tj , Theme: pi, Cause: en).

2.3 Upper bound using “event is a subgraph
of AMR” hypothesis

Before we learn to identify event sub-graphs from
an AMR graph, we first calculate the upper bound

Event Type R P F1 F1 ()
Gene expression 87.82 100.00 93.51

Transcription 65.31 100.00 79.01
Localization 86.80 100.00 92.93

Protein catabolism 90.00 100.00 94.74
==[SVT-TOTAL]== 82.48 100.00 90.04 76.59

Binding 67.83 95.83 79.43 42.88
Phosphorylation 60.62 80.14 69.03 65.37

Regulation 42.61 61.73 50.42
Positive regulation 41.93 65.43 51.11
Negative regulation 50.94 65.85 57.45
==[REG-TOTAL]== 45.16 64.33 53.00 38.41
==[ALL-TOTAL]== 65.98 85.44 74.18 50.97

Table 3: Upper bound on the dev set using our
“event is a subgraph of AMR” hypothesis

that we are setting for our model because we are
using an AMR parser instead of obtaining gold
AMRs. For calculating this upper bound, we first
obtain the AMR graph of a sentence using the
AMR parser and then assume that if an event is
a sub-graph of this AMR graph then we can iden-
tify it correctly. Table 3 shows the upper bound
we get on the dev set of the 2013 Genia Event Ex-
traction dataset (described in Section 5.1). The
last column in the table is the state-of-the-art F1
score obtained by the system EVEX (Hakala et al.,
2013) on the test set of the dataset2.

In case of simple events i.e. events that take
only proteins as theme arguments, an event is al-
ways a subgraph of the AMR unless there is an
alignment error causing the protein node or the
interaction node to be missing. Hence the upper
bound on our precision is 100% whereas the up-
per bound on our recall is 82.48% for these simple
events. In case of the other event types where an
event can take other events as arguments, an event
is correctly identified only if the path between the
pair (pi, tj) in the AMR graph includes all its sub-
events. Therefore we lose more on the precision
and recall in these cases due to AMR parsing er-
rors bringing our overall upper bound on precision
down to 85.44% and our overall upper bound on
recall down to 65.98%. These results give us fol-
lowing two important insights:

1. By using this hypothesis we have set an upper
bound of 74.18% F1-score for our learning
model.

2. As the accuracy of automatic AMR parsers
improve, our model will perform better at the
event extraction task.

2We compare our numbers on the dev set to the EVEX
numbers on test set since gold annotations for the test set are
not available for download
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3 LSTM based learning model

In this section we will describe our model that
learns to identify an event sub-graph from an
AMR graph. The key idea is that the path between
the interaction node and the entity node (where the
term entity is used to denote both a protein and
a sub-event) contains information about how the
event is structured. We build on this idea to de-
velop a supervised model using Long Short Term
Memory (LSTM) (Hochreiter and Schmidhuber,
1997) architecture that can learn to identify events
using the nodes and the edges in the AMR path
between the interaction term and the entity term.

3.1 Motivation

The input to our problem is a sequence of words
(wi) interwound with edge labels (ej) of the form:
w1, e1, w2, e2, ..., en−1, wn that exists in the path
between an interaction node and an entity node
in an AMR graph. Due to large semantic varia-
tions that exist in naturally occurring texts, tradi-
tional feature based methods suffer from sparsity
issues while learning from such a sequence. Neu-
ral network based models provide a framework for
learning from non-sparse representations. Specifi-
cally, LSTM is known to handle sequences of vari-
able length and capture long range dependencies
well. Since the input sequence in our case falls
into this category, we build our model using the
LSTM framework.

3.2 Event identification

We model the event identification task as a two-
step process: Theme Identification and Cause
Identification. For simple events, this process in-
cludes only theme identification (since they don’t
have cause). We describe the two LSTM models
corresponding to the two steps as follows:

3.2.1 Theme Identification
Given a pair of interaction node (tj) and protein
node (pi), the task is to identify if there exists
an event with tj as the interaction and pi as the
theme; and if yes, what is the type of the event.
We cast this problem as a multi-class classification
task with label set as L : {NULL ∪ Event types}
where Event types correspond to the nine event
types described in Table 1 and NULL corresponds
to no event. We train an LSTM model for this
task with the input layer as the embeddings cor-
responding to the sequence of words interwound

Figure 2: Theme identification and Cause identi-
fication stages

with edge labels in the shortest path between pi

and tj in the AMR graph. We use a hidden layer
of size 100 and an output layer of the size of our
label set L. For e.g. in Figure 2, the sequence
{‘phosphorylate-01’, ‘arg1’, ‘radixin’} is the in-
put sequence and the event type Phosphorylation
is its label.

3.2.2 Cause Identification
The last four event types in Table 1 can take pro-
teins or other events as cause argument. We cast
this problem as a binary classification task where
for an event we ask the question if a protein/event
is its cause argument or not for every protein and
every other event in that sentence. Let em be the
event identified as em : (Type : tj , Theme : pi)
that can take a cause argument. Let C = P ∪ E
where P is the set of all other proteins in the AMR
graph (except pi) and E is the set of all identified
events (except em). For every ck ∈ C, we get
the shortest path between ck and tj and combine
it with the shortest path between pi and tj and use
the words and edges in this combined path as the
input layer of our second LSTM model. We use
a hidden layer of size 100 and an output layer of
size one corresponding to the binary prediction of
whether ck is the cause of the event em or not.

3.3 Initialization of Embeddings

When initializing our model, we have two choices:
we can initialize the embeddings in the input layer
randomly or we can initialize them with values
that reflect the meanings of the word types. It
has been seen that using pre-defined word embed-
dings improves the performance of RNN models
over random initializations (Collobert and Weston,
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2008; Socher et al., 2011). We initialize the vec-
tors corresponding to words in our input layer with
100-dimensional vectors generated by a word2vec
(Mikolov et al., 2013) model trained on over one
million words from the PubMed central article
repository. Words not included in the pre-trained
model and the edges are initialized randomly using
uniform sampling from [-0.25, +0.25] to match the
embedding standard deviation.

3.4 Event Construction

During test time, we first make predictions us-
ing our LSTM model for Theme identification.
For every pair (pi, tj) with a non-zero label l,
we construct events as follows: For label l cor-
responding to interaction types that take only pro-
teins as theme arguments, we construct event as
em : (Type : tj , Theme : pi). For label l corre-
sponding to interaction types that can take another
event as its theme, we look at the path between
tj and pi in the AMR. If this path includes a pair
(tk, pi) that has a non-zero label, then we construct
an event en : (Type : tj , Theme : ep) where ep is
the event constructed from the pair (tk, pi). Oth-
erwise, we construct the event as en : (Type :
tj , Theme : pi).

For each of the predicted event em : (Type :
tj : Theme : pi) that can take a cause argument,
we run the second LSTM model for its Cause iden-
tification. If there is a pair (pi, ck) which has a
positive label, then we assign ck as the cause of
the event em.

4 Distant Supervision

An empirical evaluation of our LSTM-based
learning model (Section 5.4) shows that it can suf-
fer from low recall. Obtaining additional human
annotated data for our complex event extraction
task can be very costly. This motivates us to de-
velop an approach that can gather more training
data with minimal supervision.

4.1 Motivation

Distant supervision as a learning paradigm was in-
troduced by Mintz et al. (2009) for relation extrac-
tion in general domain. They use Freebase to get
a set of relation instances and entity pairs partici-
pating in those relations, extract all sentences con-
taining those two entity pairs from Wikipedia text
and use these sentences as their training data. This
work and many others show that distant supervi-

Figure 3: Distant Supervision: Sentences extracted from
PubMed Central articles using BioPax database relations

sion technique yields significant improvements in
relation extraction. Neural network models like
LSTM need to be trained on substantial amounts
of training data for them to be able to general-
ize well. However due to lack of labeled data in
biomedical domain, most work in relation extrac-
tion in this domain has been restricted to purely
supervised techniques. In this work we cope with
this problem by gathering additional training data
using distant supervision from a knowledge base.

4.2 Methodology
Relation extraction using distant supervision re-
quires two things: 1) A knowledge base contain-
ing relations between proteins, and 2) A large cor-
pus of unannotated text that contain protein men-
tions. We use the BioPax (Biological Pathway
Exchange) database (Demir et al., 2010) as our
knowledge base of protein relations and we use the
PubMed central articles as our unannotated text
corpus. Given a database entry of the form (‘Pro-
tein1’, ‘Protein2’, ‘relation’), we extract all sen-
tences from the PubMed central articles in which
the two proteins co-occur. For example, Figure
3 shows some sample sentences extracted for the
database entry (’DAG’, ’PKC’, increases). The
first two sentences in the figure indeed express
the relation in the database but the third sentence
just mentions the two proteins in a comma sepa-
rated list. We observe that a lot of the extracted
sentences fall into the category of the third sen-
tence. Hence as a first step, we filter such instances
by tagging the sentence with their parts-of-speech
and removing those in which the two proteins are
separated only by nouns (or punctuations).

4.3 AMR Path Based Selection
The traditional distant supervision approach says
that all the sentences extracted using the method
above can be used as additional training data un-

130



Event Type Biopax relation
Gene expression adds modification

Transcription adds modification
Localization adds modification

Protein catabolism adds modification
Binding binds

Phosphorylation adds modification
Regulation increases, increases activity

Positive regulation increases, increases activity
Negative regulation -

Table 4: Mapping between event types and
Biopax model relations

der the assumption that all sentences in which the
proteins co-occur express the relation mentioned
in the database. However Takamatsu et al. (2012)
note that this approach can often lead to a lot of
false positives. Roth et al. (2013) have discussed
several prior work that try to reduce such noise in
the data. In our work, we develop a novel selec-
tion technique for reducing such noise using AMR
path heuristic. We make the observation that given
two protein nodes in an AMR, if there is a relation
r between the two then the shortest path between
the two protein nodes in the AMR contains the in-
teraction term expressing the relation r.

For e.g. Figure 4 shows the AMR for the sen-
tence “DAG is important for the activation of
PKC, which phosphorylates tyrosinase, and can
also be released...” that was extracted using the
database entry {‘DAG’, ‘PKC’, ‘increases’}. The
interaction term ‘activate’ suggesting the relation
‘increases’ exists in the shortest path between the
proteins DAG and PKC. Figure 5 shows AMR
for the sentence “The sun-network links TCF3
with ZYX and HOXA9 via NEDD9 and CREBBP,
respectively.” extracted for the pair (‘TCF3’,
‘HOXA9’, increases). There is no interaction term
suggesting the relation ‘increases’ in the shortest
path between the proteins TCF3 and HOXA9.

Table 4 shows the mapping we define between
the event types and the relations found in the en-
tries (‘Protein1’, ‘Protein2’, ‘relation’) that we
extracted from the Biopax model. In each sentence
extracted for the database entry (‘P1’, ‘P2’, ‘r’) ,
we check if the shortest path between the two pro-
tein nodes P1 and P2 in the AMR of the sentence
contains one of the interaction terms correspond-
ing to the event type mapped to the relation r. We
discard all those sentences that do not satisfy this
constraint.

Figure 4: Interaction term ‘activate’ corresponding to the
relation ’increases’ exists in the shortest path between DAG
and PKC

Figure 5: No interaction term corresponding to the rela-
tion ‘increases’ exists in the shortest path between TCF3 and
HOXA9

4.4 Using Data for LSTM Model

We use these selected sentences as additional
training data for our two LSTM models as follows:
a. Theme identification: Let S be the sentence
extracted for the database entry (‘DAG’, ‘PKC’,
‘increases’) and let ‘activates′ be the interaction
term that exists in the shortest path between the
protein nodes. Since the database entry refers to
‘DAG’ as the cause and ‘PKC’ as the theme, we
assume these roles for the two proteins in the ex-
tracted sentence S as well. Therefore, we can now
use the path between the interaction term ‘acti-
vates’ and the theme ‘PKC’ as an input sequence
for our model with the label corresponding to the
event type of the interaction term ’activates’.
b. Cause identification: In case of cause identifi-
cation instead of using the path between the inter-
action term and the theme entity, we use the short-
est path between the cause entity and the theme
entity via the interaction term and use this as an
input sequence to our model with a positive label.
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5 Experiments

5.1 Dataset and task setting
The event extraction task described in this work
corresponds to the Task 1 of the Genia Event
Extraction task described by the BioNLP Shared
Task series (2009, 2011 and 2013). We train
a model on a combination of abstract collection
(from 2009 edition) and full text collection (from
2011 and 2013). We test our model on the dev set
of the 2013 edition (since the gold annotation is
publicly available only for the dev set and not the
test set).

5.2 Data prepraration
The dataset made available for the Shared Task is
in the form of sentences and event annotations as
shown in Table 2. We convert these event annota-
tions into input sequences and labels for our multi-
class classification task (theme identification) and
for our binary classification task (cause identifica-
tion) as follows
a. Theme identification: Given a sentence, we
define the set T as the set of interaction terms cor-
responding to all its event annotations. We de-
fine the set P as the set of all its protein men-
tions. For every pair (tj , pi) where pi ∈ P and
tj ∈ T , we create a training data of the form
{w1, e1, w2, e2, ..., en−1, wn, label} where the in-
put sequence corresponds to the words interwound
with edge labels in shortest path between tj and pi;
and the label is the event type of the event em if
there exists an event em : (Type : tj , Theme :
pi), NULL otherwise. We create the test data sim-
ilarly; except we do not use event annotations for
creating the set T but instead identify terms in the
sentence that was annotated as an interaction term
in the training data more than once.
b. Cause identification: For every pair (tj , pk)
where tj is part of some event annotation em :
(Type : tj , Theme : pi) of event type that can
take cause argument and pk ∈ P , we create a train-
ing data of the form {w1, e1, w2, e2, ..., en−1, wn,
label} where the input sequence corresponds to
the shortest path between pk and pi via tj ; and
the label is 1 if pk is the cause of the event em,
0 otherwise.

5.3 LSTM model setup
We implement our LSTM model using the lasagne
library. For the first LSTM model, we use softmax
as our non-linear function and optimize the cat-

egorical cross entropy loss using adam (Kingma
and Ba, 2014). For the second LSTM model, we
use a sigmoid non-linear function and optimize the
binary loss using adam. We use a dropout of 0.5,
batch size of 100 and a learning rate of 0.001.

5.4 Results and Discussion

Table 5 shows the results of our LSTM and dis-
tant supervision based event extraction model. We
compare our results with the state-of-the-art event
extraction system EVEX (Hakala et al., 2013). We
report the Approximate Span/Approximate Re-
cursive metric in all our tables (described in the
Shared Task (Kim et al., 2013)). The columns
to the left (with column heading LSTM) show
the performance of our model trained only on
the official training data. The columns to the
right (with column heading LSTM+Distant Super-
vision) show the performance of our model trained
on official training data plus the additional training
data of 11792 sentences we gather using our dis-
tant supervision strategy.

The table highlights some of our results. Firstly,
we note that, in cases where we obtain a large
number of extra sentences using distant supervi-
sion (highlighted in the column “DS Sents”), we
see a considerable gain in the recall values be-
tween “LSTM” and “LSTM+Distant Supervision”
models. On the contrary, in cases where we ex-
tract only a small number, we see a small gain
(or sometimes even a decrease in performance).
This suggests we explore further ways of selecting
our extra sentences. Secondly, although the over-
all performance of our model using the automatic
AMR parser is lower than the current state-of-the-
art system, the gap of 5% in the F1 score can hope-
fully be reduced with the ongoing improvements
in AMR parsing.

6 Related work

The biomedical event extraction task described
in this work was first introduced in the BioNLP
Shared Task in 2009 (Kim et al., 2009). This
task helped shift the focus of relation extrac-
tion efforts from identifying simple binary inter-
actions to identifying complex nested events that
better represent the biological interactions stated
frequently in text. Existing approaches to this
task include SVM (Björne and Salakoski, 2013)
other ML based approaches (Riedel and McCal-
lum, 2011; Miwa et al., 2010, 2012). Methods like
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LSTM LSTM + Distant Supervision EVEX
Event Type Recall Precision F1 Recall Precision F1 DS Sents Recall Precision F1

Gene expression 66.33 66.55 66.44 76.98 61.48 68.36 868
Transcription 55.10 28.57 37.63 57.14 26.92 36.60 807
Localization 36.55 63.72 46.45 38.07 85.06 52.60 96

Protein catabolism 73.33 84.62 78.57 60.00 94.74 73.47 7
==[SVT-TOTAL]== 57.82 60.86 57.27 56.35 68.05 57.60 73.83 79.56 76.59

Binding 27.61 25.94 26.75 28.57 26.12 27.29 139 41.14 44.77 42.88
Phosphorylation 49.21 53.75 51.38 73.45 45.55 56.23 3183

Regulation 16.30 29.18 20.92 26.07 21.00 23.26 2131
Positive regulation 25.98 35.16 29.88 37.41 29.17 32.78 4561
Negative regulation 23.17 30.50 26.33 22.97 29.44 25.81 0
==[REG-TOTAL]== 21.81 31.61 25.71 28.81 26.53 27.28 32.41 47.16 38.41
==[ALL-TOTAL]== 44.42 51.01 46.37 46.73 46.60 46.66 11792 45.44 58.03 50.97

Table 5: Evaluation results (Recall/Precision/F1) on the 2013 Genia Event Extraction dev set. LSTM
and LSTM + Distant Supervision are our models. The last column corresponds to the results of EVEX
(Hakala et al., 2013) model on the 2013 test set. Certain notable numbers are emphasized and discussed
under results 5.4.

(Liu et al., 2013; MacKinlay et al., 2013) learn
subgraph patterns from the event annotations in
the training data and cast the event detection as
subgraph matching problem. Non-feature based
approaches like graph kernels compare syntactic
structures directly (Airola et al., 2008; Bunescu
et al., 2005). Rule based methods that either
use manually crafted rules or generate rules from
training data (Cohen et al., 2009; Kaljurand et al.,
2009; Kilicoglu and Bergler, 2011; Bui et al.,
2013) have obtained high precision on these tasks.

In our work, we take inspiration from the
Turk Event Extraction System (TEES) (Björne
and Salakoski, 2013) (the event extraction system
for EVEX) that has consistently been the top per-
former in these series of tasks. They represent
events using a graph format and break the event
extraction task into separate multi-class classifica-
tion tasks using SVM as their classifier. In our
work we take a step further by making use of a
deeper semantic representation as a starting point
and identifying subgraphs in the AMR graph.

AMR has been successfully used for deeper se-
mantic tasks like entity linking (Pan et al., 2015)
and abstractive summarization (Mihalcea et al.,
2015). Work by Garg et al. (2015) is the first one
to make use of AMR representation for extracting
interactions from biomedical text. They use graph
kernel methods to answer the binary question of
whether a given AMR subgraph expresses an in-
teraction or not. Our work departs from theirs in
that they concentrate only on binary interactions
whereas we use AMR to identify complex nested
events. Also, our approach additionally makes use
of distant supervision to cope with the problem of

limited annotated data.
Distant supervision techniques have been suc-

cessfully used before for relation extraction
(Mintz et al., 2009) in general domain. Recent
work by (Liu et al., 2014) uses minimal supervi-
sion strategy for extracting relations particularly in
biomedical texts. Our work departs from theirs in
that we introduce a novel AMR path based heuris-
tic to selectively sample the sentences obtained
from distant supervision.

7 Conclusion

In this work, we show the effectiveness of using
a deep semantic representation based on Abstract
Meaning Representations for extracting complex
nested events expressed in biomedical text. We
hypothesize that an event structure is an AMR
subgraph and empirically validate our hypothesis.
For learning to extract such event subgraphs from
AMR automatically, we develop two Recurrent
Neural Network based models: one for identifying
the theme, and the other for identifying the cause
of the event. To overcome the dearth of manually
annotated data in biomedical domain, which ex-
plains the low recall of event extraction systems,
we train our model on additional training data
gathered automatically using a selective distant su-
pervision strategy. Our experiments strongly sug-
gest that AMR parsing improvements, which are
expected given the youth of this scientific field of
inquiry, and the exploitation of larger, manually
curated Biopax-like models and collections of bio-
molecular texts will be easy to capitalize on cata-
lysts for driving future improvements in this task.
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