Neural Question Answering at BioASQ 5B

Georg Wiese!?, Dirk Weissenborn? and Mariana Neves!
! Hasso Plattner Institute, August Bebel Strasse 88, Potsdam 14482 Germany
2 Language Technology Lab, DFKI, Alt-Moabit 91c, Berlin, Germany
georg.wiese@student.hpi.de,

dewe(01l@dfki.de,

Abstract

This paper describes our submission to the
2017 BioASQ challenge. We participated
in Task B, Phase B which is concerned
with biomedical question answering (QA).
We focus on factoid and list question, us-
ing an extractive QA model, that is, we
restrict our system to output substrings of
the provided text snippets. At the core
of our system, we use FastQA, a state-of-
the-art neural QA system. We extended
it with biomedical word embeddings and
changed its answer layer to be able to
answer list questions in addition to fac-
toid questions. We pre-trained the model
on a large-scale open-domain QA dataset,
SQuAD, and then fine-tuned the parame-
ters on the BioASQ training set. With our
approach, we achieve state-of-the-art re-
sults on factoid questions and competitive
results on list questions.

1 Introduction

BioASQ is a semantic indexing, question answer-
ing (QA) and information extraction challenge
(Tsatsaronis et al., 2015). We participated in
Task B of the challenge which is concerned with
biomedical QA. More specifically, our system par-
ticipated in Task B, Phase B: Given a question
and gold-standard snippets (i.e., pieces of text that
contain the answer(s) to the question), the system
is asked to return a list of answer candidates.

The fifth BioASQ challenge is taking place at
the time of writing. Five batches of 100 questions
each were released every two weeks. Participating
systems have 24 hours to submit their results. At
the time of writing, all batches had been released.

The questions are categorized into different
question types: factoid, list, summary and yes/no.

76

mariana.neves@hpi.de

Our work concentrates on answering factoid and
list questions. For factoid questions, the system’s
responses are interpreted as a ranked list of an-
swer candidates. They are evaluated using mean-
reciprocal rank (MRR). For list questions, the sys-
tem’s responses are interpreted as a set of answers
to the list question. Precision and recall are com-
puted by comparing the given answers to the gold-
standard answers. F1 score, i.e., the harmonic
mean of precision and recall, is used as the offi-
cial evaluation measure '.

Most existing biomedical QA systems employ
a traditional QA pipeline, similar in structure to
the baseline system by Weissenborn et al. (2013).
They consist of several discrete steps, e.g., named-
entity recognition, question classification, and
candidate answer scoring. These systems require a
large amount of resources and feature engineering
that is specific to the biomedical domain. For ex-
ample, OAQA (Zi et al., 2016), which has been
very successful in last year’s challenge, uses a
biomedical parser, entity tagger and a thesaurus to
retrieve synonyms.

Our system, on the other hand, is based on a
neural network QA architecture that is trained end-
to-end on the target task. We build upon FastQA
(Weissenborn et al., 2017), an extractive factoid
QA system which achieves state-of-the-art results
on QA benchmarks that provide large amounts of
training data. For example, SQuAD (Rajpurkar
et al.,, 2016) provides a dataset of ~ 100,000
questions on Wikipedia articles. Our approach
is to train FastQA (with some extensions) on the
SQuAD dataset and then fine-tune the model pa-
rameters on the BioASQ training set.

Note that by using an extractive QA network as
our central component, we restrict our system’s

'The details of the evaluation can be found at
http://participants-area.bioasqg.org/
Tasks/b/eval_meas/

Proceedings of the BioNLP 2017 workshop, pages 7679,
Vancouver, Canada, August 4, 2017. (©2017 Association for Computational Linguistics

start ‘ ‘

‘ Start Probabilities p.

sigmoid softmax

End Probabilities p,,, Lu

‘ End Scores y

start ‘ end

‘ Start Scores y,

\/

Extractive QA System }

L

Biomedical Embeddings
GloVe Embeddings
Character Embeddings

% Question Type Features

Context Embeddings

Y)

Question Embeddings

Figure 1: Neural architecture of our system. Ques-
tion and context (i.e., the snippets) are mapped di-
rectly to start and end probabilities for each con-
text token. We use FastQA (Weissenborn et al.,
2017) with modified input vectors and an output
layer that supports list answers in addition to fac-
toid answers.

responses to substrings in the provided snippets.
This also implies that the network will not be able
to answer yes/no questions. We do, however, gen-
eralize the FastQA output layer in order to be able
to answer list questions in addition to factoid ques-
tions.

2 Model

Our system is a neural network which takes as in-
put a question and a context (i.e., the snippets) and
outputs start and end pointers to tokens in the con-
text. At its core, we use FastQA (Weissenborn
et al., 2017), a state-of-the-art neural QA system.
In the following, we describe our changes to the
architecture and how the network is trained.

2.1 Network architecture

In the input layer, the context and question to-
kens are mapped to high-dimensional word vec-
tors. Our word vectors consists of three compo-
nents, which are concatenated to form a single
vector:

e GloVe embedding: We use 300-dimensional
GloVe embeddings 2> (Pennington et al.,

>We use the 840B embeddings available here: https:
//nlp.stanford.edu/projects/glove/

77

2014) which have been trained on a large col-
lection of web documents.

Character embedding: This embedding is
computed by a 1-dimensional convolutional
neural network from the characters of the
words, as introduced by Seo et al. (2016).

Biomedical Word2Vec embeddings: We
use the biomedical word embeddings pro-
vided by Pavlopoulos et al. (2014). These
are 200-dimensional Word2Vec embeddings
(Mikolov et al., 2013) which were trained on
~ 10 million PubMed abstracts.

To the embedding vectors, we concatenate a
one-hot encoding of the question type (list or fac-
toid). Note that these features are identical for all
tokens.

Following our embedding layer, we invoke
FastQA in order to compute start and end scores
for all context tokens. Because end scores are con-
ditioned on the chosen start, there are O(n?) end
scores where n is the number of context tokens.
We denote the start index by ¢ € [1,n], the end
index by j € [i,n], the start scores by v%,,,;» and
end scores by y;fl d

In our output layer, the start, end, and span prob-
abilities are computed as:

pétart = U(y;tart) (])
Pena = s0ftmaz(y;,q) (2)
plsgan = pétart : pzeﬁld (3)

where o denotes the sigmoid function. By com-
puting the start probability via the sigmoid rather
than softmax function (as used in FastQA), we en-
able the model to output multiple spans as likely
answer spans. This generalizes the factoid QA net-
work to list questions.

2.2 Training & decoding

Loss We define our loss as the cross-entropy of
the correct start and end indices. In the case of
multiple occurrences of the same answer, we only
minimize the span of the lowest loss.

Factoid MRR List F1

Batch Single Ensemble Single Ensemble

1 52.0% (2/10) 57.1% (1/10) 33.6% (1/11) 33.5%(2/11)
2 38.3% (3/15) 42.6% (2/15) 29.0% (8/15) 26.2%(9/15)
3 43.1% (1/16) 42.1% (2/16) 41.5% (2/17) 49.5%(1/17)
4 30.0% (3/20) 36.1% (1/20) 24.2% (5/20) 29.3%(4/20)
5 39.2% (3/17) 35.1% (4/17) 36.1% (4/20) 39.1%(2/20)
Average 40.5% 42.6% 32.9% 35.1%

Table 1:

Preliminary results for factoid and list questions for all five batches and for our single and

ensemble systems. We report MRR and F1 scores for factoid and list questions, respectively. In paren-
theses, we report the rank of the respective systems relative to all other systems in the challenge. The
last row averages the performance numbers of the respective system and question type across the five

batches.

Optimization We train the network in two steps:
First, the network is trained on SQuAD, following
the procedure by Weissenborn et al. (2017) (pre-
training phase). Second, we fine-tune the network
parameters on BioASQ (fine-tuning phase). For
both phases, we use the Adam optimizer (Kingma
and Ba, 2014) with an exponentially decaying
learning rate. We start with learning rates of
1073 and 10~ for the pre-training and fine-tuning
phases, respectively.

BioASQ dataset preparation During fine-
tuning, we extract answer spans from the BioASQ
training data by looking for occurrences of the
gold standard answer in the provided snippets.
Note that this approach is not perfect as it can pro-
duce false positives (e.g., the answer is mentioned
in a sentence which does not answer the question)
and false negatives (e.g., a sentence answers the
question, but the exact string used is not in the syn-
onym list).

Because BioASQ usually contains multiple

snippets for a given question, we process all snip-
pets independently and then aggregate the answer
spans, sorting globally according to their probabil-
ity pian-
Decoding During the inference phase, we re-
trieve the top 20 answers span via beam search
with beam size 20. From this sorted list of an-
swer strings, we remove all duplicate strings. For
factoid questions, we output the top five answer
strings as our ranked list of answer candidates. For
list questions, we use a probability cutoff threshold
t, such that { (i,) |p4J,, > t} is the set of answers.
We set t to be the threshold for which the list F1
score on the development set is optimized.

78

Ensemble In order to further tweak the perfor-
mance of our systems, we built a model ensemble.
For this, we trained five single models using 5-fold
cross-validation on the entire training set. These
models are combined by averaging their start and
end scores before computing the span probabili-
ties (Equations 1-3). As a result, we submit two
systems to the challenge: The best single model
(according to its development set) and the model
ensemble.

Implementation We implemented our system
using TensorFlow (Abadi et al., 2016). It was
trained on an NVidia GForce Titan X GPU.

3 Results & discussion

We report the results for all five test batches of
BioASQ 5 (Task 5b, Phase B) in Table 1. Note
that the performance numbers are not final, as the
provided synonyms in the gold-standard answers
will be updated as a manual step, in order to reflect
valid responses by the participating systems. This
has not been done by the time of writing®. Note
also that — in contrast to previous BioASQ chal-
lenges — systems are no longer allowed to provide
an own list of synonyms in this year’s challenge.

In general, the single and ensemble system are
performing very similar relative to the rest of field:
Their ranks are almost always right next to each
other. Between the two, the ensemble model per-
formed slightly better on average.

On factoid questions, our system has been very

successful, winning three out of five batches. On

*The final results will be published at http:
//participants—-area.biocasqg.org/results/
5b/phaseB/

list questions, however, the relative performance
varies significantly. We expect our system to per-
form better on factoid questions than list ques-
tions, because our pre-training dataset (SQuAD)
does not contain any list questions.

Starting with batch 3, we also submitted re-
sponses to yes/no questions by always answering
yves. Because of a very skewed class distribution
in the BioASQ dataset, this is a strong baseline.
Because this is done merely to have baseline per-
formance for this question type and because of the
naivety of the method, we do not list or discuss the
results here.

4 Conclusion

In this paper, we summarized the system design
of our BioASQ 5B submission for factoid and list
questions. We use a neural architecture which is
trained end-to-end on the QA task. This approach
has not been applied to BioASQ questions in pre-
vious challenges. Our results show that our ap-
proach achieves state-of-the art results on factoid
questions and competitive results on list questions.

References

Martin Abadi, Ashish Agarwal, Paul Barham, Eugene
Brevdo, Zhifeng Chen, Craig Citro, Greg S Corrado,
Andy Davis, Jeffrey Dean, Matthieu Devin, et al.
2016. Tensorflow: Large-scale machine learning on

heterogeneous distributed systems. arXiv preprint
arXiv:1603.04467 .

Diederik Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980 .

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor-
rado, and Jeff Dean. 2013. Distributed representa-
tions of words and phrases and their compositional-
ity. In Advances in neural information processing
systems. pages 3111-3119.

Ioannis Pavlopoulos,

Ion Androutsopoulos.

Aris Kosmopoulos, and
2014. Continuous
space word vectors obtained by applying
word2vec to abstracts of biomedical articles
http://bioasq.lip6.fr/info/BioASQword2vec/.

Jeffrey Pennington, Richard Socher, and Christo-
pher D. Manning. 2014. Glove: Global vectors for
word representation. In Empirical Methods in Nat-
ural Language Processing (EMNLP). pages 1532—
1543. http://www.aclweb.org/anthology/D14-1162.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and
Percy Liang. 2016. Squad: 100,000+ questions
for machine comprehension of text. arXiv preprint
arXiv:1606.05250 .

79

Minjoon Seo, Aniruddha Kembhavi, Ali Farhadi, and
Hannaneh Hajishirzi. 2016. Bidirectional attention

flow for machine comprehension. arXiv preprint
arXiv:1611.01603 .

George Tsatsaronis, Georgios Balikas, Prodromos
Malakasiotis, Ioannis Partalas, Matthias Zschunke,
Michael R Alvers, Dirk Weissenborn, Anastasia
Krithara, Sergios Petridis, Dimitris Polychronopou-
los, et al. 2015. An overview of the bioasq large-
scale biomedical semantic indexing and question an-
swering competition. BMC bioinformatics 16(1):1.

Dirk Weissenborn, George Tsatsaronis, and Michael
Schroeder. 2013. Answering factoid questions in the
biomedical domain. BioASQ@ CLEF 1094.

Dirk Weissenborn, Georg Wiese, and Laura Seiffe.
2017. Making neural ga as simple as possible but
not simpler. arXiv preprint arXiv:1703.04816 .

Yang Zi, Zhou Yue, and Eric Nyberg. 2016. Learning
to answer biomedical questions: Oaqa at bioasq 4b.
ACL 2016 page 23.

