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Abstract

In this paper, we introduce a method of
identifying the components (i.e. dimen-
sions) of word embeddings that strongly
signifies properties of a word. By eluci-
dating such properties hidden in word em-
beddings, we could make word embed-
dings more interpretable, and also could
perform property-based meaning compar-
ison. With the capability, we can answer
questions like “To what degree a given
word has the property cuteness?”’ or “In
what perspective two words are similar?”.
We verify our method by examining how
the strength of property-signifying compo-
nents correlates with the degree of proto-
typicality of a target word.

1 Introduction

Modeling the meaning of words has long been
studied and served as a basis for almost every kind
of NLP tasks. Most recent word modeling tech-
niques are based on neural networks, and the word
representations produced by such techniques are
called word embeddings, which are usually low-
dimensional, dense vectors of continuous-valued
components. Although word embeddings have
been proved for their usefulness in many tasks, the
question of what are represented in them is under-
studied.

Recent studies report empirical evidence that in-
dicates word embeddings may reflect some prop-
erty information of a target word (Erk, 2016; Levy
et al., 2015). Learning the properties of a word
would be helpful because many NLP tasks can be
related to “finding words that possess similar prop-
erties”, which include finding synonyms, named
entity recognition (NER). Without a method for
explicating what properties are contained in em-
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beddings, however, researchers have mostly fo-
cused on improving the performance in well-
known semantic benchmark tasks (e.g. SimLex-
999) as a way to find better embeddings.

Performing well in such benchmark tasks is
valuable but provides little help in understanding
the inside of the black box. For instance, it is not
possible to answer to questions like “To what de-
gree a given word has the property cuteness?”.

One way to solve this problem is to elucidate
properties that are encoded in word embeddings
and associate them with task performances. With
the capability, we can not only enhance our un-
derstanding of word embeddings but also make it
easier to make comparisons among heterogeneous
word embedding models in more coherent ways.
Our immediate goal in this paper is to show the
feasibility of explicating properties contained in
word embeddings.

Our research can be seen as an attempt to in-
crease the interpretability of word embeddings. It
is in line with an attempt to provide a human-
understandable explanation for complex machine
learning models, with which we can gain enough
confidence to use them in decision-making pro-
cesses.

There has been a line of work devoted to identi-
fying components that are important for perform-
ing various NLP tasks such as sentiment analysis
or NER (Faruqui et al., 2015; Fyshe et al., 2015;
Herbelot and Vecchi, 2015; Karpathy et al., 2016;
Li et al., 2016a; Li et al., 2016b; Rothe et al.,
2016). Those works are analogous to ours in that
they try to inspect the role of the components in
word embedding. However, they just attempt to
identify key features for specific tasks rather than
elucidating properties. In contrast, our question is
“what comprises word embeddings?”’ not “what
components are important for performing well in
a specific task?”
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2 Feasibility Study
2.1 Background

Word embeddings can be seen as representing
concepts of a word. As such, we attempt to design
an property-related experiment around manipula-
tion of concepts. In particular, we bring in the cat-
egory theory (Murphy, 2004) where the notion of
category is defined to be “grouping concepts that
share similar properties”. In other words, prop-
erties have a direct bearing on concepts and their
categories, according to the theory.

On the other hand, researchers have argued that
some concepts are more typical (or central) than
others in a category (Rosch, 1973; Rosch, 1975).
For instance, apple is more typical than olive in
the fruit category. The typicality is a graded phe-
nomenon, and may rise due to the strength of ‘es-
sential’ properties that make a concept a specific
category.

The key ideas from the above are 1) concepts
of the same category share similar properties and
2) some concepts that have strong essential prop-
erties are considered more typical in specific cate-
gory, and they guided our experiment design.

2.2 Design

The goal of this study is to show the feasibil-
ity of sifting property information from word em-
beddings. We assume that a concept’s property
information is captured and distributed over one
or more components (dimensions) of embeddings
during the learning process. Since the concepts
that belong to the same category are likely to share
similar properties, there should be some salient
components that are shared among them. We call
such components as SIG-PROPS (for significant
properties) of a specific category.

In this feasibility study, we hypothesize that the
strength of SIG-PROPS is strongly correlated with
the degree of concept’s typicality. This is based
on the theory introduced in Section 2.1, that the
typicality phenomenon rises due to the strength
of essential properties a target concept possesses.
So the concept that has (higher/lower) SIG-PROPS
values than others should be (more typical/less
typical) than other concepts.

2.3 Datasets

For our experiment dealing with typicality of con-
cepts, we needed both (pre-trained) word embed-
dings and a dataset that encodes typicality scores
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of concepts to a set of categories. Below we de-
scribe two datasets we used in our experiment:
HyperLex and Non-Negative Sparse Embedding
(NNSE).

2.3.1 Dataset: Non-Negative Sparse
Embedding (NNSE)

One desirable quality we wanted from the word
embeddings to be used in our experiment is that
there should be clear contrast between informa-
tive and non-informative components. In ordinary
dense word embeddings, usually every component
is filled with a non-zero value.

The Non-Negative Sparse Embedding (NNSE)
(Murphy et al., 2012) fulfills the condition in
the sense that insignificant components are set to
zero. The NNSE component values falling be-
tween 0 and 1 (non-negative) are generated by ap-
plying the non-negative sparse coding algorithm
(Hoyer, 2002) to ordinary word embeddings (e.g.
word2vec).

2.3.2 Dataset: HyperLex

HyperLex is a dataset and evaluation resource
that quantifies the extent of the semantic category
membership (Vuli€ et al., 2016). A total of 2,616
concept pairs are included in the dataset, and the
strength of category membership is given by na-
tive English speakers and recorded in graded man-
ner. This graded category membership can be in-
terpreted as a ‘typicality score’ (1-10). Some sam-
ples are shown in Table 1.

Concept | Category | Score
basketball activity 10
spy agent 8
handbag bowl 0

Table 1: A HyperLex sample. The score is the
answer to the question “To what degree is concept
a type of category?”

3 Experiment

3.1 Preparation

We first prepared pre-trained NNSE embeddings.
The authors released pre-trained model on their
website!. We used the model trained with depen-
dency context (‘Dependency model’ on the web-
site), because as reported in (Levy and Goldberg,
2014), models trained on dependency context tend

"http://www.cs.cmu.edu/ bmurphy/NNSE/



to prefer functional similarity (hogwarts — sun-
nydale) rather than topical similarity (hogwarts —
dumbledore)?. The embeddings are more sparse
than ordinary embeddings and have 300 compo-
nents.

Next we fetched HyperLex dataset at the au-
thor’s website?. To make the settings suitable to
our experiment goal, we selected categories with
the following criteria:

1. The categories and instances must be con-
crete nouns (e.g. food). This is because
people are more coherent in producing the
properties of concrete nouns (Murphy, 2004).
So the embeddings of concrete nouns should
contain more clear property information than
other types of words.

. The categories must contain enough number
of instances (not 1 or 2). This is to gain reli-
able result.

. Some categories are sub-category of another
selected category while others are not related.
This is to see the discriminative and overlap-
ping effect of identified SIG-PROPS between
categories. Related categories should share a
set of strong SIG-PROPS, while unrelated cat-
egories shouldn’t.

As a result, we selected five categories: food,
fruit (sub-category of food), animal, bird (sub-
category of animal), and instrument. We fetched
the concepts that belong to the categories and then
filtered out those that aren’t contained in the pre-
trained NNSE embeddings. The final size of each
category is shown in Table 2.

Category | # of Concepts
food 54
fruit 9
animal 46
bird 16
instrument 14

Table 2: The size of selected categories

In the next section, we explain how we identi-
fied SIG-PROPS of each category.

2We thought “sharing similar function” is more compati-
ble with the notion of sharing similar properties. The topical
similarity is less indicative of having properties in common.

3http://people.ds.cam.ac.uk/iv250/hyperlex.html
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3.2 Identification of SIG-PROPS

The goal of this step is to find SIG-PROPS that
might represent each category. Simply put, SIG-
PROPS are the components that have on average
high value compared to other components of the
concepts in the same category. We identified SIG-
PROPS by 1) calculating an average value of each
component across the concepts with the same cat-
egory, then 2) choosing those components whose
average value is above h. We empirically set A to
0.2.

Category SIG-PROPS
Comp. ID | Avg.
instrument c88 0.806
c258 0.769
animal cl54 0.587
c265 0.221
. cl54 0.550
bird 265 | 0213
food c207 0.298
c233 0.269
c229 0.492
c27 0.369
fruit cl56 0.349
c44 0.264
c233 0.206

Table 3: SIG-PROPS of each category. The strings
in “Comp. ID” column are the component IDs
(c1-c300). “Avg.” column indicates the average
value of the component across all the concepts un-
der that category.

Table 3 shows the identified SIG-PROPS. The
number of SIG-PROPS is different across cate-
gories. Interestingly, there is component overlap
between taxonomically similar categories (‘c154°
and ‘c265’ between animal-bird, ‘c233’ between
food—fruit), while there is none between unrelated
categories (instrument—animal—food).

This initial observation is encouraging for our
feasibility study in that indeed SIG-PROPS can
play a role of distinguishing or associating cate-
gories. We argue that the identified SIG-PROPS
strongly characterize each category, showing that
we can associate vector components with proper-
ties.

3.3 Correlation between SIG-PROPS and
concepts typicality scores

In this section, we check how the strength of SIG-
PROPS correlates with the typicality scores. Note
that the range of SIG-PROPS values differ from cat-
egory to category — those for instrument are es-
pecially high, which might indicate they are highly



representative.

Our assumption is that if the identified SIG-
PROPS truly represent the essential quality of a cat-
egory, the strength of SIG-PROPS should be pro-
portional to concepts’ typicality scores (equation

1).

Strength(SIG-PROPS) W
x Typicality(Concept)

We observe this phenomenon by calculating
Pearson correlation between the strength of SIG-
PROPS and typicality scores. For instance, suppose
we calculate the correlation between ‘c88’ (88th
component) of instrument concepts and their typ-
icality score. We inspect the instrument concepts
one by one, collect their ‘c88’ values (x) and typ-
icality scores (y), and then measure the tendency
of changes in the two variables.

The result is shown in Table 4-8 where the col-
umn ‘Rank’ shows the rank of the component’s
correlation score (compared to other components).
For instance, in Table 4 ‘c88’ has the highest cor-
relation with the concept’s typicality score.

SIG-PROPS | Correlation | Corr. rank
c88 0.926 Ist
c258 0.918 2nd

Table 4: Corr(SIG-PROPS, typicality): instrument

SIG-PROPS Correlation | Corr. rank
cl54 0.549 Ist
c265 0.265 2nd

Table 5: Corr(SIG-PROPS, typicality): animal

SIG-PROPS Correlation | Corr. rank
cl54 0.783 Ist
c265 0.563 2nd

Table 6: Corr(SIG-PROPS, typicality): bird

SIG-PROPS | Correlation | Corr. rank
c233 0.255 Ist
cl120 0.224 2nd
c207 0.216 4th
cl192 0.030 104th

Table 7: Corr(SIG-PROPS, typicality): food
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SIG-PROPS | Correlation | Corr. rank
c229 0.743 Ist
c233 0.540 4th

c27 0.516 5th
c44 0.474 7th
cl56 -0.663 85th

Table 8: Corr(SIG-PROPS, typicality): fruit

As the results show, there is clear tendency SI1G-
PROPS having high correlation with the typicality
scores. Most of the SIG-PROPS showed meaning-
ful correlation (> 0.5) with the typicality score or
placed at the top in the component—typicality cor-
relation ranking. The result strongly indicates that
even when we apply the simple method of iden-
tifying SIG-PROPS and regarding them as proper-
ties, they serve as strong indicators for the con-
cept’s typicality.

4 Conclusion and Future Work

Although limited in scale, our work showed the
feasibility of discovering properties from word
embeddings. Not only SIG-PROPS can be used to
increase the interpretability of word embeddings,
but also enable us more elaborate, property-based
meaning comparison.

Our next step would be checking the applica-
bility to general NLP tasks (e.g. NER, synonym
identification). Also, applying our method to word
embeddings that have more granular components
(e.g. 2,500) might be helpful for identifying SIG-
PROPS in more granular level.
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