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Abstract

Abstract words refer to things that can not
be seen, heard, felt, smelled, or tasted
as opposed to concrete words. Among
other applications, the degree of abstract-
ness has been shown to be a useful infor-
mation for metaphor detection. Our con-
tribution to this topic are as follows: i) we
compare supervised techniques to learn
and extend abstractness ratings for huge
vocabularies ii) we learn and investigate
norms for multi-word units by propagat-
ing abstractness to verb-noun pairs which
lead to better metaphor detection, iii) we
overcome the limitation of learning a sin-
gle rating per word and show that multi-
sense abstractness ratings are potentially
useful for metaphor detection. Finally,
with this paper we publish automatically
created abstractness norms for 3 million
English words and multi-words as well
as automatically created sense-specific ab-
stractness ratings.

1 Introduction

The standard approach to studying abstractness is
to place words on a scale ranging between ab-
stractness and concreteness. Alternately, abstract-
ness can also be given a taxonomic definition in
which the abstractness of a word is determined by
the number of subordinate words (Kammann and
Streeter, 1971; Dunn, 2015).

In psycholinguistics abstractness is commonly
used for concept classification (Barsalou and
Wiemer-Hastings, 2005; Hill et al., 2014;
Vigliocco et al., 2014). In computational work, ab-
stractness has become an established information
for the task of automatic detection of metaphorical
language. So far metaphor detection has been car-

ried out using a variety of features including se-
lectional preferences (Martin, 1996; Shutova and
Teufel, 2010; Shutova et al., 2010; Haagsma and
Bjerva, 2016), word-level semantic similarity (Li
and Sporleder, 2009; Li and Sporleder, 2010),
topic models (Heintz et al., 2013), word embed-
dings (Dinh and Gurevych, 2016) and visual in-
formation (Shutova et al., 2016).

The underlying motivation of using abstract-
ness in metaphor detection goes back to Lakoff
and Johnson (1980), who argue that metaphor is
a method for transferring knowledge from a con-
crete domain to an abstract domain. Abstractness
was already applied successfully for the detection
of metaphors across a variety of languages (Tur-
ney et al., 2011; Dunn, 2013; Tsvetkov et al.,
2014; Beigman Klebanov et al., 2015; Köper and
Schulte im Walde, 2016b).

The abstractness information itself is typically
taken from a dictionary, created either by man-
ual annotation or by extending manually col-
lected ratings with the help of supervised learn-
ing techniques that rely on word representations.
While potentially less reliable, automatically cre-
ated norm-based abstractness ratings can easily
cover huge dictionaries. Although some meth-
ods have been used to learn abstractness, literature
lacks a comparison of these learning techniques.

We compare and evaluate different learning
techniques. In addition we show and investigate
the usefulness of extending abstractness ratings to
phrases as well as individual word senses. We ex-
trinsically evaluate these techniques on two verb
metaphor detection tasks: (i) a type-based setting
that makes use of phrase ratings, (ii) a token-based
classification for multi-sense abstractness norms.
Both settings benefit from our approach.
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2 Experiments

2.1 Propagating Abstractness: A
Comparison of Approaches & Ressources

2.1.1 Comparison of Approaches
Turney et al. (2011) first aproached to automati-
cally create abstractness norms for 114 501 words,
relying on manual ratings based on the MRC Psy-
cholinguistic Database (Coltheart, 1981). The un-
derlying algorithm (Turney and Littman, 2003) re-
quires vector representation and annotated training
samples of words. The algorithm itself performs a
greedy forward search over the vocabulary to learn
so-called paradigm words. Once paradigm words
for both classes (abstract & concrete) are learned,
a rating can be assigned to every word by com-
paring its vector representation against the vector
representations of the paradigm words.

Köper and Schulte im Walde (2016a) used the
same algorithm for a large collection of German
lemmas, and in the same way additional cre-
ated ratings for multiple norms including valency,
arousal and imageability.

A different method that has been used to ex-
tend abstractness norms based on low-dimensional
word embeddings and a Linear Regression classi-
fier (Tsvetkov et al., 2013; Tsvetkov et al., 2014).

We compare approaches across different pub-
licly available vector representations1, to study po-
tential differences across vector dimensionality we
compare vectors between 50 and 300 dimensions.
The Glove vectors (Pennington et al., 2014) have
been trained on 6billion tokens of Wikipedia plus
Gigaword (V=400K), while the word2vec cbow
model (Mikolov et al., 2013) was trained on a
Google internal news corpus with 100billion to-
kens (V=3million). For training and testing we
relied on the ratings from Brysbaert et al. (2014),
Dividing the ratings into 20% test (7 990) and 80%
training (31 964) for tuning hyper parameters we
took 1 000 ratings from the training data. We
kept the ratio between word classes. Evaluation is
done by comparing the new created ratings against
the test (gold) ratings using Spearman’s rank-order
correlation. We first reimplemented the algorithm
from Turney and Littman (2003) (T&L 03). In-
spired by recent findings of Gupta et al. (2015) we
apply the hypothesis that distributional vectors im-

1http://nlp.stanford.edu/projects/
glove/
https://code.google.com/archive/p/
word2vec/

plicitly encode attributes such as abstractness and
directly feed the vector representation of a word
into a classifier, either by using linear regression
(L-Reg), a regression forest (Reg-F) or a fully
connected feed forward neural network with up to
two hidden layers (NN).2

T&L 03 L-Reg. Reg-F. NN

Glove50 .76 .76 .78 .79
Glove100 .80 .79 .79 .85
Glove200 .78 .78 .76 .84
Glove300 .76 .78 .74 .85
W2V300 .83 .84 .79 .90

Table 1: Spearman’s ρ for the test ratings. Com-
paring representations and regression methods.

Table 1 shows clearly that we can learn ab-
stractness ratings with a very high correlation on
the test data using the word representations from
Google (W2V300) together with a neural net-
work for regression (ρ=.90). The NN method sig-
nificantly outperforms all other methods, using
Steiger (1980)’s test (p < 0.001).

2.1.2 Comparison of Ressources
Based on the comparison of methods in the pre-
vious section we propagated abstractness ratings
to the entire vocabulary of the W2V300 dataset
(3million words) and compare the correlation with
other existing norms of abstractness. For this com-
parison we use the common subset of two manu-
ally and one automatically created resource: MRC
Psycholinguistic Database, ratings from Brysbaert
et al. (2014) and the automatically created ratings
from Turney et al. (2011). We map all existing
ratings, as well as our newly created ratings, to
the same interval using the method from Köper
and Schulte im Walde (2016a). The mapping is
performed using a continuous function, that maps
the ratings to an interval ranging from very ab-
stract (0) to very concrete (10). The common sub-
set contains 3 665 ratings. Figure 1 shows the re-
sulting pairwise correlation between all four re-
sources. Despite being created automatically, we
see that the newly created ratings provide a high
correlation with both manually created collections
(ρ for MRS=.91, Brysbaert=.93). In addition, the
vocabulary of our ratings is much larger than any
existing database. Thus this new collection might

2NN Implementation based on https://github.
com/amten/NeuralNetwork
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Figure 1: Pairwise Spearman’s ρ on commonly
covered subset. Red = high correlation.

be useful, especially for further research which re-
quires large vocabulary coverage.3

2.2 Abstractness for Phrases
A potential advantage of our method is that ab-
stractness can be learned for multi-word units as
long as the representation of these units live in the
same distributional vector space as the words re-
quired for the supervised training.

In this section we explore if ratings propa-
gated to verb-noun phrases provide useful infor-
mation for metaphor detection. As dataset we re-
lied on the collection from Saif M. Mohammad
and Turney (2016), who annotated different senses
of WordNet verbs for metaphoricity (Fellbaum,
1998).

We used the same subset of verb–direct object
and verb–subject relations as used in Shutova et
al. (2016). As preprocessing step we concatenated
verb-noun phrases by relying on dependency in-
formation based on a web corpus, the ENCOW14
corpus (Schäfer and Bildhauer, 2012; Schäfer,
2015). We removed words and phrases that ap-
peared less than 50 times in our corpus, thus our
selection covers 535 pairs, 238 of which were
metaphorical and 297 literal.

Given a verb-noun phrase, such as
stamp person, we obtained vector representations
using word2vec and the same hyper-parameters
that were used for the W2V300 embeddings
(Section 2.1.1) together with the best learning

3Ratings available at http://www.ims.
uni-stuttgart.de/data/en_abst_norms.html

method (NN). The technique allows us to propa-
gate abstractness to every vector, thus we learn
abstractness ratings for all three constituents:
verb, noun and the entire phrase.

For the metaphor classification experiment we
use the rating score and apply the Area Under
Curve (AUC) metric. AUC is a metric for bi-
nary classification. We assume that literal in-
stances gain higher scores (= more concrete) than
metaphorical word pairs. AUC considers all pos-
sible thresholds to divide the data into literal and
metaphorical. In addition to the rating score we
also show results based on cosine similarity and
feature combinations (Table 2).

Feat. Name Type AUC

- Random baseline .50
1 V-NN cosine .75
2 V-Phrase cosine .70
3 NN-Phrase cosine .68
4 V rating .53
5 NN rating .78
6 Phrase rating .71

Comb 1+2+3 cosine .75
Comb 4+5+6 rating .74
Comb all(1-6) mixed .80
Comb 1+5+6 best .84

Table 2: AUC Score single features and com-
binations. Classifying literal and metaphorical
phrases based on the Saif M. Mohammad and Tur-
ney (2016) dataset.

As shown in Table 2, the rating of the verb alone
(AUC=.53) provides almost no useful information.
The best performance based on a single feature is
the abstractness value of the noun (.78) followed
by the cosine between verb and noun vector repre-
sentation (.75). The phrase rating alone performs
moderate (.71). However when combining fea-
tures we found that the best combinations are ob-
tained by integrating the phrase rating. In more de-
tail, combining noun and phrase rating (5+6) ob-
tains a AUC of (.80). When adding the cosine (1)
we obtain the best score of (.84). For comparison,
the verb plus noun ratings (4+5) obtains a lower
score (.72), this shows that the phrase rating pro-
vides complementary and useful information.
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2.3 Sense-specific Abstractness Ratings

In this section we investigate if automatically
learned multi-sense abstractness ratings, that is
having different ratings per word sense, are poten-
tially useful for the task of metaphor detection.

Recent advances in word representation learn-
ing led to the development of algorithms for non-
parametric and unsupervised multi-sense repre-
sentation learning (Neelakantan et al., 2014; Liu
et al., 2015; Li and Jurafsky, 2015; Bartunov et
al., 2016). Using these techniques one can learn
a different vector representation per word sense.
Such representations can be combined with our
abstractness learning method from section 2.1.1.

While in theory any multi-sense learning tech-
nique can be applied, we decided for the one
introduced by Pelevina et al. (2016), as it per-
forms sense learning after single senses have been
learned. Starting from the public W2V300 repre-
sentations we apply the multi-sense learning tech-
nique using the default settings and learn sense-
specific word representations. Finally we prop-
agate abstractness to every newly created sense
representation by using the exact same model and
training data as in Section 1. For a given word in a
sentence we can now disambiguate the word sense
by comparing its sense-specific vector representa-
tion to all context words. The context words are
represented using the (single sense) global repre-
sentation. We always pick the sense representation
that obtains the largest similarity, measured by co-
sine. The potential advantage of this method is
that in a metaphor detection system we are now
able to look up word-sense-specific abstractness
ratings instead of globally obtained ratings.

For this experiment we use the VU Amster-
dam Metaphor Corpus (Steen, 2010) (VUA), fo-
cusing on verb metaphors. The collection contains
23 113 verb tokens in running text, annotated as
being used literally or metaphorically. In addition
we present results for the TroFi metaphor dataset
(Birke and Sarkar, 2006) containing 50 verbs and
3 737 labeled sentences. We pre-processed both
recourses using Stanford CoreNLP (Manning et
al., 2014) for lemmatization, part-of-speech tag-
ging and dependency parsing.

We present results by applying ten-fold cross-
validation over the entire data. For the VUA we
additionally present results for the test data us-
ing the same training/test split as in Beigman Kle-
banov et al. (2016).

Abstractness norms are implemented using the
same five feature dimensions as used by Turney
et al. (2011) plus dimensions respectively for sub-
ject and object, thus we rely on the seven feature,
namely:

1. Rating of the verbs subject

2. Rating of the verbs object

3. Average rating of all nouns (excluding proper
names)

4. Average rating of all proper names

5. Average rating of all verbs, excluding the tar-
get verb

6. Average rating of all adjectives

7. Average rating of all adverbs

For classification we used a balanced Logistic
Regression classifier following the findings from
Beigman Klebanov et al. (2015). While this de-
fault setup tries to generalize over unseen verbs by
only looking at a verb’s context we further present
results for a second setup that uses a 6th feature:
namely the lemma of the target verb itself (+L).
The purpose of the second system is to describe
performance with respect to the state of the art
(Beigman Klebanov et al., 2016), which among
other features also uses the verb lemma.

Feat. TroFi(10F) VUA(10F) VUA(Test)

1S .72 .42 .44
MS .74 .44* .46

1S(+L) .74 .61 .62
MS(+L) .75 .61 .62

Table 3: F-score (Metaphor). Classifying literal
and metaphorical verbs based on the VUA and
TroFi dataset. MS = multi-sense, 1S= single sense.

As shown in Table 3, the mutli-sense ratings
constantly outperform the single-sense ratings in
a direct comparison on all three sets. The dif-
ference in performance of single and multi-sense
ratings is statistically significant on the full VUA
dataset, using the χ2 test and ∗ for p < 0.05.
However we also notice that the effect vanishes
as soon as we combine the ratings with the lemma
of the verb, which is especially the case for the
VUA dataset where the lemma increases the per-
formance by a large margin. In contrast to related
work, the system with the verb unigram (+UL)
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can be considered state-of-the-art. When apply-
ing the same evaluation as Beigman Klebanov et
al. (2016), namely a macro-average over the four
genres of VUA, we obtain an average f-score of
.60 by using only eight feature dimensions and ab-
stractness ratings as external resource.4

3 Conclusion

In this paper we compared supervised methods
to propagate abstractness norms to words. We
showed that a neural-network outperforms other
methods. In addition we showed that norms for
multi-words phrases can be beneficial for type
based metaphor detection. Finally we showed how
norms can be learned for sense representations and
that sense specific norms show a clear tendency to
improve token-based verb metaphor detection.
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