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Preface

Welcome to the 1st Workshop on Sense, Concept and Entity Representations and their Applications
(SENSE 2017). The aim of SENSE 2017 is to focus on addressing one of the most important limitations
of word-based techniques in that they conflate different meanings of a word into a single representation.
SENSE 2017 brings together researchers in lexical semantics, and NLP in general, to investigate and
propose sense-based techniques as well as to discuss effective ways of integrating sense, concept and
entity representations into downstream applications.

The workshop is targeted at covering the following topics:

• Utilizing sense/concept/entity representations in applications such as Machine Translation,
Information Extraction or Retrieval, Word Sense Disambiguation, Entity Linking, Text
Classification, Semantic Parsing, Knowledge Base Construction or Completion, etc.

• Exploration of the advantages/disadvantages of using sense representations over word
representations.

• Proposing new evaluation benchmarks or comparison studies for sense vector representations.

• Development of new sense representation techniques (unsupervised, knowledge-based or hybrid).

• Compositionality of senses: learning representations for phrases and sentences.

• Construction and use of sense representations for languages other than English as well as
multilingual representations.

We received 21 submissions, accepting 15 of them (acceptance rate: 71%).

We would like to thank the Program Committee members who reviewed the papers and helped to improve
the overall quality of the workshop. We also thank Aylien for their support in funding the best paper
award. Last, a word of thanks also goes to our invited speakers, Roberto Navigli (Sapienza University of
Rome) and Hinrich Schütze (University of Munich).

Jose Camacho-Collados and Mohammad Taher Pilehvar
Co-Organizers of SENSE 2017
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Abstract
This article describes a method to build
semantic representations of composite ex-
pressions in a compositional way by using
WordNet relations to represent the mean-
ing of words. The meaning of a target
word is modelled as a vector in which
its semantically related words are assigned
weights according to both the type of the
relationship and the distance to the tar-
get word. Word vectors are composi-
tionally combined by syntactic dependen-
cies. Each syntactic dependency triggers
two complementary compositional func-
tions: the named head function and depen-
dent function. The experiments show that
the proposed compositional method per-
forms as the state-of-the-art for subject-
verb expressions, and clearly outperforms
the best system for transitive subject-verb-
object constructions.

1 Introduction

The principle of compositionality (Partee, 1984)
states that the meaning of a complex expression
is a function of the meaning of its constituent
parts and of the mode of their combination. In
the recent years, different distributional semantic
models endowed with a compositional component
have been proposed. Most of them define words as
high-dimensional vectors where dimensions rep-
resent co-occurring context words. This distribu-
tional semantic representation makes it possible
to combine vectors using simple arithmetic opera-
tions such as addition and multiplication, or more
advanced compositional methods such as learning
functional words as tensors and composing con-
stituents through inner product operations.

Notwithstanding, these models are usually qual-
ified as black box systems because they are usually
not interpretable by humans. Currently, the field of
interpretable computational models is gaining rel-
evance1 and, therefore, the development of more
explainable and understandable models in compo-
sitional semantics is also an open challenge. in this
field. On the other hand, distributional semantic
models, given the size of the vectors, needs signif-
icant resources and they are dependent on particu-
lar corpus, which can generate some biases in their
application to different languages.

Thus, in this paper, we will pay attention to
compositional approaches which employ other
kind of word semantic models, such as those based
on the WordNet relationships; i.e., synsets, hyper-
nyms, hyponyms, etc. Only in (Faruqui and Dyer,
2015) we can find a proposal for word vector rep-
resentation using hand-crafted linguistic resources
(WordNet, FrameNet, etc.), although a composi-
tional frame is not explicitly adopted. Therefore,
to the best of our knowledge, this is the first work
using WordNet to build compositional semantic
interpretations. Thus, in this article, we propose
a method to compositionally build the semantic
representation of composite expressions using a
feature-based approach (Hadj Taieb et al., 2014):
constituent elements are induced by WordNet re-
lationships.

However, this proposal raises a serious prob-
lem: the semantic representation of two syntacti-
cally related words (e.g. the verb run and the noun
computer in “the computer runs”) encodes incom-
patible information and there is no direct way of
combining the features used to represent the mean-
ing of the two words. On the one hand, the verb

1http://www.darpa.mil/program/explainable-artificial-
intelligence
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run is related by synonymy, hypernym, hyponym
and entailment to other verbs and, on the other, the
noun computer is put in relation with other nouns
by synonymy, hypernym, hyponym, and so on.

In order to solve this drawback, on the basis
of previous work on dependency-based distribu-
tional compositionality (Thater et al., 2010; Erk
and Padó, 2008), we distinguish between direct
denotation and selectional preferences within a
dependency relation. More precisely, when two
words are syntactically related, for instance com-
puter and the verb run by the subject relation, we
build two contextualized senses: the contextual-
ized sense of computer given the requirements of
run and the contextualized sense of run given com-
puter.

The sense of computer is built by combining
the semantic features of the noun (its direct de-
notation) with the selectional preferences imposed
by the verb. The features of the noun are built
from the set of words linked to computer in Word-
Net, while the selectional preferences of run in
the subject position are obtained by combining the
features of all the nouns that can be the nominal
subject of the verb (i.e. the features of runners).
Then, the two sets of features are combined and
the resulting new set represents the specific sense
of the noun computer as nominal subject of run.
The sense of the verb given the noun is built in a
analogous way: the semantic features of the verb
are combined with the (inverse) selectional pref-
erences imposed by the noun, resulting in a new
compositional representation of the verb run when
it is combined with computer at the subject po-
sition. The two new compositional feature sets
represent the contextualized senses of the two re-
lated words. During the contextualization process,
ambiguous or polysemous words may be disam-
biguated in order to obtain the right representation.

For dealing with any sequence with N (lexi-
cal) words (e.g., “the coach runs the team”), the
semantic process can be applied in two different
ways: from left-to-right and from right-to-left. In
the first case, it is appliedN−1 times dependency-
by-dependency in order to obtain N contextual-
ized senses, one per lexical word. Thus, firstly,
the subject dependency builds two contextualized
senses: that of run given the noun coach and that
of the noun given the verb. Then, the direct object
dependency is applied on the already contextual-
ized sense of the verb in order to contextualize it

again given team at the direct object position. This
dependency also yields the contextualized sense of
the object given the verb and its nominal subject
(coach+run). At the end of the interpretation pro-
cess, we obtain three fully contextualized senses.
In the second case, from right-to-left, the semantic
process process is applied in a similar way, being
contextualized (and disambiguated) using the re-
strictions imposed by the verb and its nominal ob-
ject (run+team). As in the first case, three slightly
different word senses are also obtained.

Lastly, word sense disambiguation is out of the
aim of this paper. Here, we only use WordNet for
extracting semantic information from words, but
not to identify word senses.

The article is organized as follow: In the next
section (2), different approaches on ontological
feature-based representations and compositional
semantics are introduced and discussed. Then,
sections 3 and 4 respectively describe our feature-
based semantic representation and compositional
strategy. In Section 5, some experiments are per-
formed to evaluate the quality of the word models
and compositional word vectors. Finally, relevant
conclusions are reported in Section 6.

2 Related Work

Our approach relies on two tasks: to build feature-
based representations using WordNet relations,
and to build compositional vectors using the
WordNet representations. In this section, we will
examine work related to these two tasks.

2.1 Feature-Based Approaches

Tversky (1977), in order to define a similarity
measure, assumes that any object can be repre-
sented as a collection (set) of features or proper-
ties. Therefore, a similarity metric is a feature-
matching process between two objects. This con-
sists of a linear combination of the measures of
their common and distinctive features. It is worth
noting that this is a non-symmetric measure.

In the particular case of semantic similarity met-
rics, each word or concept is featured by means of
a set of words (Hadj Taieb et al., 2014). Framed
into an ontology such as WordNet, these sets
of words are obtained from taxonomic (hyper-
nym, hyponym, etc.) and non-taxonomic (synsets,
glosses, meronyms, etc.) properties (Meng et al.,
2013), although these last ones are classified as
secondary in many cases (Slimani, 2013). The
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main objective of this approach is to capture the
semantic knowledge induced by ontological rela-
tionships.

Our model is partly inspired by that defined
in (Rodrı́guez and Egenhofer, 2003). It proposes
that the set of properties that characterizes a word
may be stratified into three groups: i) synsets;
ii) features (e.g., meronyms, attributes, hyponym,
etc.), and, iii) neighbor concepts (those linked via
semantic pointers). Each one of these strata is
weighted according to its contribution to the rep-
resentation of the concept. The measure analyzes
the overlapping among the three strata between the
two terms under comparison.

2.2 Compositional Strategies

Several models for compositionality in vector
spaces have been proposed in recent years, and
most of them use bag-of-words as basic distribu-
tional representations of word contexts. The ba-
sic approach to composition, explored by Mitchell
and Lapata (2008; 2009; 2010), is to combine vec-
tors of two syntactically related words with arith-
metic operations: addition and component-wise
multiplication. The additive model produces a sort
of union of word contexts, whereas multiplication
has an intersective effect. According to Mitchell
and Lapata (2008), component-wise multiplica-
tion performs better than the additive model. How-
ever, in (Mitchell and Lapata, 2009; Mitchell and
Lapata, 2010), these authors explore weighted ad-
ditive models giving more weight to some con-
stituents in specific word combinations. For in-
stance, in a noun-subject-verb combination, the
verb is provided with higher weight because the
whole construction is closer to the verb than to
the noun. Other weighted additive models are de-
scribed in (Guevara, 2010) and (Zanzotto et al.,
2010). All these models have in common the fact
of defining composition operations for just word
pairs. Their main drawback is that they do not pro-
pose a more systematic model accounting for all
types of semantic composition. They do not focus
on the logical aspects of the functional approach
underlying compositionality.

Other distributional approaches develop sound
compositional models of meaning inspired by
Montagovian semantics, which induce the compo-
sitional meaning of the functional words from ex-
amples adopting regression techniques commonly
used in machine learning (Krishnamurthy and

Mitchell, 2013; Baroni and Zamparelli, 2010; Ba-
roni, 2013; Baroni et al., 2014). In our approach,
by contrast, compositional functions, which are
driven by dependencies and not by functional
words, are just basic arithmetic operations on vec-
tors as in (Mitchell and Lapata, 2008). Arithmetic
approaches are easy to implement and produce
high-quality compositional vectors, which makes
them a good choice for practical applications (Ba-
roni et al., 2014).

Other compositional approaches based on Cat-
egorial Grammar use tensor products for com-
position (Grefenstette et al., 2011; Coecke et
al., 2010). A neural network-based method
with tensor factorization for learning the embed-
dings of transitive clauses has been introduced
in (Hashimoto and Tsuruoka, 2015). Two prob-
lems arise with tensor products. First, they re-
sult in an information scalability problem, since
tensor representations grow exponentially as the
phrases grow longer (Turney, 2013). And sec-
ond, tensor products did not perform as well as
component-wise multiplication in Mitchell and
Lapata’s (2010) experiments.

There are also works focused on the notion
of sense contextualization, e.g., Dinu and Lapata
(2010) work on context-sensitive representations
for lexical substitution. Reddy et al. (2011) work
on dynamic prototypes for composing the seman-
tics of noun-noun compounds and evaluate their
approach on a compositionality-based similarity
task.

So far, all the cited works are based on bag-
of-words to represent vector contexts and, then,
word senses. However, there are a few works us-
ing vector spaces structured with syntactic infor-
mation. Thater et al. (2010) distinguish between
first-order and second-order vectors in order to al-
low two syntactically incompatible vectors to be
combined. This work is inspired by that described
in (Erk and Padó, 2008). Erk and Padó (2008) pro-
pose a method in which the combination of two
words, a and b, returns two vectors: a vector a’
representing the sense of a given the selectional
preferences imposed by b, and a vector b’ standing
for the sense of b given the (inverse) selectional
preferences imposed by a. A similar strategy is
reported in Gamallo (2017). Our approach is an at-
tempt to join the main ideas of these syntax-based
models (namely, second-order vectors, selectional
preferences and two returning words per combi-
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nation) in order to apply them to WordNet-based
word representations.

3 Semantic Features from WordNet

A word meaning is described as a feature-value
structure. The features are the words with which
the target word is related to in the ontology (e.g., in
WordNet, hypernym, hyponym, etc.) and the val-
ues correspond to weights computed taking into
account two parameters: the relation type and the
edge-counting distance between the target word
and each word feature (i.e. the number of rela-
tions required to achieve the feature from the tar-
get word) (Rada et al., 1989).

The algorithm to set the feature values is the fol-
lowing. Given a target word w1 and the feature set
F , where wi ∈ F if wi is a word semantically re-
lated to w1 in WordNet, the weight for the relation
between w1 and wi is computed by equation 1:

weight(w1, wi) =
R∑

j=1

1
length(w1, wi, rj)

(1)

where R is the number of different semantic re-
lations (e.g. synonymy/synset, hyperonymy, hy-
ponymy, etc) that WordNet defines for the part-
of-speech of the target word. For instance, nouns
have five different relations, verbs four and ad-
jectives just two. length(w1, wi, rj is the length
of the path from the target word w1 to its fea-
ture wi in relation rj . length(w1, wi, rj) = 1
when rj stands for the synonymy relationship,
i.e. when w1 and wi belong to the same synset;
length(w1, wi, rj) = 2 if wi is at the first level
within the hierarchy associated to relation rj .

For instance, the length value of a direct hyper-
nym is 2 because there is a distance of two arcs
with regard to the target word: the first arc goes
from the target word to a synset and the second one
is the hyperonymy relation between the direct hy-
pernym and the synset. The length value increases
in one unit as the hierarchy level goes up, so at
level 4, the length score is 5 and then the partial
weight is 1/5 = 0.2. For some non-taxonomic re-
lations, namely meronymy, holonymy and coordi-
nates, there is only one level in WordNet, but the
distance is 3 since the target word and the word
feature (part, whole or coordinate term) are sepa-
rated by a synset and a hypernym.

As a feature word wi may be related to the
target w1 via different semantic relations (with-

out distinguishing between different word senses),
the final weight is the addition of all partial
weights. For instance, take the noun car. It is
related to automobile through two different re-
lationships: they belong to the same synset and
the latter is a direct hypernym of the former, so
weight(car, automobile) = 1/1 + 1/2 = 1.5.

To compute compositional operations on words,
the feature-value structure associated to each word
is modeled as a vector, where features are dimen-
sions, words are objects, and weights the values
for each object/dimension position.

4 Compositional Semantics

4.1 Syntactic Dependencies As
Compositional Functions

Our approach is also inspired in (Erk and Padó,
2008). Here, semantic composition is modeled in
terms of function application driven by binary de-
pendencies. A dependency is associated in the se-
mantic space with two compositional functions on
word vectors: the head and the dependent func-
tions. To explain how they work, let us take the
direct object relation (dobj) between the verb run
and the noun team in the expression “run a team”.
The head function, dobj↑, combines the vector of
the head verb ~run with the selectional preferences
imposed by the noun, which is also a vector of
WordNet features, and noted ~team◦. This combi-
nation is performed by component-wise multipli-
cation and results in a new vector ~rundobj↑, which
represents the contextualized sense of run given
team in the dobj relation:

dobj↑( ~run, ~team◦) = ~run� ~team◦ = ~rundobj↑

To build the (inverse) selectional preferences im-
posed by the dependent word team as direct ob-
ject on the verb, we require a reference corpus to
extract all those verbs of which team is the di-
rect object. The selectional preferences of team
as direct object of a verb, and noted ~team◦, is a
new vector obtained by component-wise addition
of the vectors of all those verbs (e.g. create, sup-
port, help, etc) that are in dobj relation with the
noun team:

~team◦ =
∑

~v∈ T

~v

where T is the vector set of verbs having team as
direct object (except run). T is thus included in the

4



subspace of verb vectors. Component-wise addi-
tion has an union effect.

Similarly, the dependent function, dobj↓, com-
bines the noun vector ~team with the selectional
preferences imposed by the verb, noted ~run◦, by
component-wise multiplication. Such a combina-
tions builds the new vector of ~teamdobj↓, which
stands for the contextualized sense of team given
run in the dobj relation:

dobj↓( ~run◦, ~team) = ~team� ~run◦ = ~teamdobj↓

The selectional preferences imposed by the
head word run to its direct object are represented
by the vector ~run◦, which is obtained by adding
the vectors of all those nouns (e.g. company,
project, marathon, etc) which are in relation dobj
with the verb run:

~run◦ =
∑

~v∈ R

~v

where R is the vector set of nouns playing the di-
rect object role of run (except team). R is included
in the subspace of nominal vectors.

Each multiplicative operation results in a
compositional vector of a contextualized word.
Component-wise multiplication has an intersec-
tive effect. The vector standing for the selectional
preferences restricts the vector of the target word
by assigning weight 0 to those WordNet features
that are not shared by both vectors. The new com-
positional vector as well as the two constituents all
belong to the same vector subspace (the subspace
of nouns, verbs, or adjectives).

Notice that, in approaches to computational
semantics inspired by Combinatory Categorial
Grammar (Steedman, 1996) and Montagovian se-
mantics (Montague, 1970), the interpretation pro-
cess for composite expressions such as “run a
team” or “electric coach” relies on rigid function-
argument structures: relational expressions, like
verbs and adjectives, are used as predicates while
nouns and nominals are their arguments. In the
composition process, each word is supposed to
play a rigid and fixed role: the relational word
is semantically represented as a selective func-
tion imposing constraints on the denotations of
the words it combines with, while non-relational
words are in turn seen as arguments filling the con-
straints imposed by the function. For instance, run

and electric would denote functions while team
and coach would be their arguments.

By contrast, we deny the rigid “predicate-
argument” structure. In our compositional ap-
proach, dependencies are the active functions that
control and rule the selectional requirements im-
posed by the two related words. Thus, each con-
stituent word imposes its selectional preferences
on the other within a dependency-based construc-
tion. This is in accordance with non-standard lin-
guistic research which assumes that the words in-
volved in a composite expression impose seman-
tic restrictions on each other (Pustejovsky, 1995;
Gamallo et al., 2005; Gamallo, 2008).

4.2 Recursive Compositional Application
In our approach, the consecutive application of the
syntactic dependencies found in a sentence is ac-
tually the process of building the contextualized
sense of all the lexical words which constitute it.
Thus, the whole sentence is not assigned to an
unique meaning (which could be the contextual-
ized sense of the root word), but one sense per
lemma, being the sense of the root just one of
them.

This incremental process may have two di-
rections: from left-to-right and vice versa (i.e.,
from right-to-left). Figure 1 illustrates the
incremental process of building the sense of
words dependency-by-dependency from left-to-
right. Thus, given the composite expression “the
coach runs the team” and its dependency analysis
depicted in the first row of the figure, two com-
positional processes are driven by the two depen-
dencies involved in the analysis (nsubj and dobj).
Each dependency is decomposed into two func-
tions: head (nsubj↑ and dobj↑) and dependent
(nsubj↓ and dobj↓) functions.2 The first compo-
sitional process applies, on the one hand, the head
function nsubj↑ on the denotation of the head verb
( ~run) and on the selectional preferences required
by coach ( ~coach◦), in order to build a contex-
tualized sense of the verb: ~runnsubj↑ . On the
other hand, the dependent function nsubj↓ builds
the sense of coach as nominal subject of run:
~coachnsubj↓. Then, the contextualized head vec-

tor is involved in the compositional process driven
by dobj. At this level of semantic composition, the
selectional preferences imposed on the noun team

2We do not consider the meaning of determiners, auxiliary
verbs, or tense affixes. Quantificational issues associated to
them are also beyond the scope of this work.
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stand for the semantic features of all those nouns
which may be the direct object of coach+run. At
the end of the process, we have not obtained one
single sense for the whole expression, but one con-
textualized sense per lexical word: ~coachnsubj↓,
~runnsubj↑+dobj↑ and ~teamdobj↓.

In other case, from right-to-left, the verb run is
first restricted by team at the direct object position,
and then by its subject coach. In addition, this
noun is now restricted by the selectional prefer-
ences imposed by run and team, that is, it is com-
bined with the semantic features of all those nouns
that may be the nominal subject of run+team.

5 Experiments

We have performed several similarity-based ex-
periments using the semantic word model defined
in Section 3 and the compositional algorithm de-
scribed in 4.3 First, in Subsection 5.1, we evaluate
just word similarity without composition. Then,
in Subsection 5.2, we evaluate the simple compo-
sitional approach by making use of a dataset with
similar noun-verb pairs (NV constructions). Fi-
nally, the recursive application of compositional
functions is evaluated in Subsection 5.3, by mak-
ing use of a dataset with similar noun-verb-noun
pairs (NVN constructions).

In all experiments, we made use of datasets
suited for the task at hand, and compare our results
with those obtained by the best systems for the
corresponding dataset. Moreover, in order to build
the selectional preferences of the syntactically re-
lated words, we used the British National Corpus
(BNC). Syntactic analysis on BNC was performed
with the dependency parser DepPattern (Gamallo
and González, 2011; Gamallo, 2015), previously
PoS tagged with Tree-Tagger (Schmid, 1994).

5.1 Word Similarity

Recently, the use of word similarity methods has
been criticised as a reliable technique for evalu-
ating distributional semantic models (Batchkarov
et al., 2016), given the small size of the datasets
and the limitation of context information as well.
However, given this procedure still is widely ac-
cepted, we have performed two different kinds of
experiments: rating by similarity and synonym de-
tection with multiple-choice questions.

3Both the software and the semantic word model
are freely available at http://fegalaz.usc.es/
˜gamallo/resources/CompWordNet.tar.gz.

5.1.1 Rating by Similarity
In the first experiment, we use the WordSim353
dataset (Finkelstein et al., 2002), which was con-
structed by asking humans to rate the degree of se-
mantic similarity between two words on a numer-
ical scale. This is a small dataset with 353 word
pairs. The performance of a computational system
is measured in terms of correlation (Spearman) be-
tween the scores assigned by humans to the word
pairs and the similarity Dice coefficient assigned
by our system (WN) built with the WordNet-based
model space.

Table 1 compares the Spearman correlation ob-
tained by our model, WN, with that obtained by
the corpus-based system described in (Halawi et
al., 2012), which is the highest score reached so
far on that dataset. Even if our results were clearly
outperformed by that corpus-based method, WN
seems to behave well if compared with the state-
of-the-art knowledge-based (unsupervised) strat-
egy reported in (Agirre et al., 2009).

Systems ρ Method
WN 0.69 knowledge
(Hassan and Mihalcea, 2011) 0.62 knowledge
(Agirre et al., 2009) 0.66 knowledge
(Halawi et al., 2012) 0.81 corpus

Table 1: Spearman correlation between the Word-
Sim353 dataset and the rating obtained by our
knowledge-based system WN and the state-of-the-
art for both knowledge and corpus-based strate-
gies.

5.1.2 Synonym Detection with
Multiple-Choice Questions

In this evaluation task, a target word is presented
with four synonym candidates, one of them being
the correct synonym of the target. For instance,
for the target deserve, the system must choose be-
tween merit (the correct one), need, want, and
expect. Accuracy is the number of correct an-
swers divided by the total number of words in the

Systems Noun Adj Verb All
WN 0.85 0.85 0.75 0.80
(Freitag et al., 2005) 0.76 0.76 0.64 0.72
(Zhu, 2015) 0.71 0.71 0.63 0.69
(Kiela et al., 2015) - - - 0.88

Table 2: Accuracy of three systems on the WBST
test (synonym detection on nouns, adjectives, and
verbs)
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coach run team

nsubj dobj

~coachnsubj↓ ~runnsubj↑ ~team

nsubj↑( ~run, ~coach◦), nsubj↓( ~run◦, ~coach)

~coachnsubj↓ ~runnsubj↑+dobj↑ ~teamdobj↓

dobj↑( ~runnsubj↑, ~team◦), dobj↓( ~coach + run◦, ~team)

Figure 1: Syntactic analysis of the expression “the coach runs the team” and left-to-right construction
of the word senses.

dataset.
The dataset is an extended TOEFL test, called

the WordNet-based Synonymy Test (WBST) pro-
posed in (Freitag et al., 2005). WBST was pro-
duced by generating automatically a large set
of TOEFL-like questions from the synonyms in
WordNet. In total, this procedure yields 9,887
noun, 7,398 verb, and 5,824 adjective questions,
a total of 23,509 questions, which is a very large
dataset. Table 2 shows the results. In this case, the
accuracy obtained by WN for the three syntactic
categories is close to state-of-the-art corpus-based
method for this task (Kiela et al., 2015), which is a
neural network trained with a huge corpus contain-
ing 8 billion words from English Wikipedia and
newswire texts.

5.2 Noun-Verb Composition
The first experiment aimed at evaluating our com-
positional strategy uses the test dataset by Mitchell
and Lapata (2008), which comprises a total of
3,600 human similarity judgments. Each item
consists of an intransitive verb and a subject noun,
which are compared to another noun-verb pair
(NV) combining the same noun with a synonym
of the verb that is chosen to be either similar o
dissimilar to the verb in the context of the given
subject. For instance, “child stray” is related to
“child roam”, being roam a synonym of stray.
The dataset was constructed by extracting NV
composite expressions from the British National
Corpus (BNC) and verb synonyms from WordNet.
In order to evaluate the results of the tested sys-
tems, Spearman correlation is computed between
individual human similarity scores and the sys-
tems’ predictions.

In this experiment, we compute the similarity
between the contextualized heads of two NV com-
posites and between their contextualized depen-
dent expressions. For instance, we compute the
similarity between “eye flare” vs “eye flame” by
comparing first the verbs flare and flame when
combined with eye in the subject position (head
function), and by comparing how (dis)similar is
the noun eye when combined with both the verbs
flare and flame (dependent function). In addition,
as we are provided with two similarities (head and
dep) for each pair of compared expressions, it is
possible to compute a new similarity score by av-
eraging the results of head and dependent func-
tions (head+dep).

Table 3 shows the Spearman’s correlation val-
ues (ρ) obtained by the three versions of WN:
only head function (head), only dependent func-
tion (dep) and average of both (head+dep). The
latter score value is comparable to the state-of-the-
art system for this dataset, reported in (Erk and
Padó, 2008). It is also very similar to the most re-
cent results described in (Dinu et al., 2013), where
the authors made use of the compositional strategy
defined in (Baroni and Zamparelli, 2010).

Systems ρ
WN (head+dep) 0.29
WN (head) 0.26
WN (dep) 0.14
(Erk and Padó, 2008) 0.27
(Dinu et al., 2013) 0.26

Table 3: Spearman correlation for intransitive ex-
pressions using the benchmark by Mitchell and
Lapata (2008)
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5.3 Noun-Verb-Noun Composition

The last experiment consists in evaluating the
quality of compositional vectors built by means
of the consecutive application of head and de-
pendency functions associated with nominal sub-
ject and direct object. The experiment is per-
formed on the dataset developed in (Grefenstette
and Sadrzadeh, 2011a). The dataset was built us-
ing the same guidelines as Mitchell and Lapata
(2008), using transitive verbs paired with subjects
and direct objects: NVN composites.

Given our compositional strategy, we are able to
compositional build several vectors that somehow
represent the meaning of the whole NVN com-
posite expression. In order to known which is
the best compositional strategy and be exhaustive
and complete, we evaluate all of them; i.e., both
left-to-right and right-to-left strategies. Thus, take
again the expression “the coach runs the team”.
If we follow the left-to-right strategy (noted nv-n),
at the end of the compositional process, we obtain
two fully contextualized senses:

nv-n head The sense of the head run, as a result
of being contextualized first by the prefer-
ences imposed by the subject and then by the
preferences required by the direct object. We
note nv-n head) the final sense of the head in
a NVN composite expression following the
left-to-right strategy.

nv-n dep The sense of the object team, as a re-
sult of being contextualized by the prefer-
ences imposed by run previously combined
with the subject coach. We note nv-n dep the
final sense of the direct object in a NVN com-
posite expression following the left-to-right
strategy.

If we follow the right-to-left strategy (noted n-
vn), at the end of the compositional process, we
obtain two fully contextualized senses:

n-nv head The sense of the head run as a result of
being contextualized first by the preferences
imposed by the object and then by the sub-
ject.

n-nv dep The sense of the subject coach, as a
result of being contextualized by the prefer-
ences imposed by run previously combined
with the object team.

Systems ρ
WN (nv-n head+dep) 0.35
WN (nv-n head) 0.34
WN (nv-n dep) 0.13
WN (n-vn head+dep) 0.50
WN (n-vn head) 0.35
WN (n-vn dep) 0.44
WN (n-vn+nv-n) 0.47
(Grefenstette and Sadrzadeh, 2011b)* 0.28
(Van De Cruys et al., 2013)* 0.37
(Tsubaki et al., 2013)* 0.44
(Milajevs et al., 2014) 0.46
(Polajnar et al., 2015) 0.35
(Hashimoto et al., 2014) 0.48
(Hashimoto and Tsuruoka, 2015) 0.48
Human agreement 0.75

Table 4: Spearman correlation for transitive ex-
pressions using the benchmark by Grefenstette
and Sadrzadeh (2011)

Table 4 shows the Spearman’s correlation val-
ues (ρ) obtained by all the different versions built
from our model WN. The best score was achieved
by averaging the head and dependent similarity
values derived from the n-vn (right-to-left) strat-
egy. Let us note that, for NVN composite ex-
pressions, the left-to-right strategy seems to build
less reliable compositional vectors than the right-
to-left counterpart. Besides, the combination of
the two strategies (n-vn+nv-n) does not improve
the results of the best one (n-vn).4. The score val-
ues obtained by the different versions of the right-
to-left strategy outperform other systems for this
dataset (see results reported below in the table).
Our best strategy (ρ = 0.50) also outperforms the
neural network strategy described in (Hashimoto
and Tsuruoka, 2015), which achieved 0.48 with-
out considering extra linguistic information not in-
cluded in the dataset. The (ρ) scores for this task
are reported for averaged human ratings. This is
due to a disagreement in previous work regard-
ing which metric to use when reporting results.
We mark with asterisk those systems reporting (ρ)
scores based on non-averaged human ratings.

6 Conclusions

In this paper, we described a compositional model
based on WordNet features and dependency-based
functions on those features. It is a recursive pro-
posal since it can be repeated from left-to-right or
from right-to-left and the sense of each constituent
word is performed in a recursive way.

4n-vn+nv-n is computed by averaging the similarities of
both n-vn head+dep and nv-n head+dep
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Our compositional model tackles the problem
of information scalability. This problem states
that the size of semantic representations should not
grow exponentially, but proportionally; and, infor-
mation must not be loss using fixed size of compo-
sitional vectors. In our approach, however, even if
the size of the compositional vectors is fixed, there
is no information loss since each word of the com-
posite expression is associated to a compositional
vector representing its context-sensitive sense. In
addition, the compositional vectors do not grow
exponentially since their size is fixed by the vector
space: they are all first-order (or direct) vectors.
Finally, the number of vectors increases in propor-
tion to the number of constituent words found in
the composite expression. So, both points are suc-
cessfully solved.

In future work, we will try to design a compo-
sitional model based on word semantic represen-
tations combining WordNet-based features with
syntactic-based distributional contexts as well as
extend our model to full sentences instead of the
simple ones described in this paper.
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Abstract

We present a fully unsupervised method
for automated construction of WordNets
based upon recent advances in distribu-
tional representations of sentences and
word-senses combined with readily avail-
able machine translation tools. The ap-
proach requires very few linguistic re-
sources and is thus extensible to multiple
target languages. To evaluate our method
we construct two 600-word test sets for
word-to-synset matching in French and
Russian using native speakers and evalu-
ate the performance of our method along
with several other recent approaches. Our
method exceeds the best language-specific
and multi-lingual automated WordNets in
F-score for both languages. The databases
we construct for French and Russian, both
languages without large publicly available
manually constructed WordNets, will be
publicly released along with the test sets.

1 Introduction

A WordNet is a lexical database for languages
based upon a structure introduced by the Princeton
WordNet (PWN) for English in which sets of cog-
nitive synonyms, or synsets, are interconnected
with arcs standing for semantic and lexical rela-
tions between them (Fellbaum, 1972). WordNets
are widely used in computational linguistics, in-
formation retrieval, and machine translation. Con-
structing one by hand is time-consuming and dif-
ficult, motivating a search for automated or semi-
automated methods. We present an unsupervised
method based on word embeddings and word-
sense induction and build and evaluate WordNets
for French and Russian. Our approach needs only
a large unannotated corpus like Wikipedia in the

target language and machine translation (MT) be-
tween that language and English.

A standard minimal WordNet design is to have
synsets connected by hyponym-hypernym rela-
tions and linked back to PWN (Global WordNet
Association, 2017). This allows for applications
to cross-lingual tasks and rests on the assumption
that synsets and their relations are invariant across
languages (Sagot and Fišer, 2008). For example,
while all senses of English word tie may not line
up with all senses of French word cravate, the
sense “necktie” will exist in both languages and
be represented by the same synset.

Thus MT is often used for automated Word-
Nets to generate a set of candidate synsets for each
word w in the target language by getting a set of
English translations of w and using them to query
PWN (we will refer to this as MT+PWN). The
number of candidate synsets produced may not be
small, even as large as a hundred for some polyse-
mous verbs. Thus one needs a way to select from
the candidates of w those synsets that are its true
senses. The main contributions of this paper is a
new word embedding-based method for matching
words to synsets and the release of two large word-
synset matching test sets for French and Russian.1

Though there has been some work using word-
vectors for WordNets (see Section 2), the result-
ing databases have been small, containing less
than 1000 words. Using embeddings for this task
is challenging due to the need for good ways to
use PWN synset information and account for the
breakdown of cosine-similarity for polysemous
words. We approach the first issue by representing
synset information using recent work on sentence-
embeddings by Arora et al. (2017). To handle pol-
ysemy we devise a sense clustering scheme based
on Word Sense Induction (WSI) via linear alge-

1 https://github.com/mkhodak/pawn
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bra over word-vectors (Arora et al., 2016a). We
demonstrate how this sense purification procedure
effectively combines clustering with embeddings,
thus being applicable to many word-sense disam-
biguation (WSD) and induction-related tasks. Us-
ing both techniques yields a WordNet method that
outperforms other language-independent methods
as well as language-specific approaches such as
WOLF, the French WordNet used by the Natural
Language ToolKit (Sagot and Fišer, 2008; Bond
and Foster, 2013; Bird et al., 2009).

Our second contribution is the creation of two
new 600-word test sets in French and Russian that
are larger and more comprehensive than any cur-
rently available, containing 200 each of nouns,
verbs, and adjectives. They are constructed by pre-
senting native speakers with all candidate synsets
produced as above by MT+PWN and treating the
senses they pick out as “ground truth” for measur-
ing precision and recall. The motivation behind
separating by part-of-speech (POS) is that nouns
are often easier than adjectives and verbs, so re-
porting one number — as done by some past work
— allows high noun performance to mask low per-
formance on adjectives and verbs.

Using these test sets, we can begin addressing
the difficulties of evaluation for non-English auto-
mated WordNets due to the use of different and
unreported test data, incompatible metrics (e.g.
matching synsets to words vs. retrieving words for
synsets), and differing cross-lingual dictionaries.
In this paper we use the test sets to evaluate our
method and several other automated WordNets.

2 Related Work

There have been many language-specific ap-
proaches for building automated WordNets, no-
tably for Korean (Lee et al., 2000), French (Sagot
and Fišer, 2008; Pradet et al., 2013), and Persian
(Montazery and Faili, 2010). These approaches
also use MT+PWN to get candidate word-synset
pairs, but often use further resources — such as
bilingual corpora, expert knowledge, or WordNets
in related languages — to select correct senses.

The Korean construction depends on a classifier
trained on 3260 word-sense matchings that yields
93.6% precision and 77.1% recall, albeit only on
nouns. The Persian WordNet uses a scoring func-
tion based on related words between languages
(requiring expert knowledge and parallel corpora)
and achieves 82.6% precision, though without re-

porting recall and POS-separated statistics.
The most comparable results to ours are from

the Wordnet Libre du Français (WOLF) of Sagot
and Fišer (2008), which leverages multiple Euro-
pean WordNet projects. Our best method exceeds
this approach on our test set and benefits from hav-
ing far fewer resource requirements. The Wordnet
du Français (WoNeF) of Pradet et al. (2013) de-
pends on combining linguistic models by a voting
scheme. Their performance is found to be gener-
ally below WOLF’s, so we compare to the latter.

There has also been work on multi-language
WordNets, specifically the Extended Open Multi-
lingual Wordnet (OMW) (Bond and Foster, 2013),
which scraped Wiktionary, and the Universal Mul-
tilingual Wordnet (UWN) (de Melo and Weikum,
2009), which used multiple translations to rate
word-sense matches. In our evaluation both pro-
duce high-precision/low-coverage WordNets.

Finally, there have been recent vector ap-
proaches for an Arabic WordNet (Tarouti and
Kalita, 2016) and a Bengali WordNet (Nasirud-
din et al., 2014). The Arabic effort uses a cosine-
similarity threshold for correcting direct transla-
tion and reports a precision of 78.4% on synonym
matching, although its small size (943 synsets)
indicates a poor precision/recall trade-off. The
Bengali WordNet paper examines WSI on word
vectors, evaluating clustering methods on seven
words and achieving F1-scores of at best 52.1%. It
is likely that standard clustering techniques are in-
sufficient when one needs many thousands of clus-
ters, an issue we address via sparse coding.

Our use of distributional word embeddings to
construct WordNets is the latest in a long line of
their applications, e.g. approximating word simi-
larity and solving word-analogies (Mikolov et al.,
2013). The latter discovery was cited as the in-
spiration for the theoretical model in Arora et al.
(2016b), whose Squared-Norm (SN) vectors we
use; the computation is similar in form and per-
formance to GloVe (Pennington et al., 2014).

3 Methods for WordNet Construction

The basic WordNet method is as follows. Given a
target word w, we use a bilingual dictionary to get
its translations in English and let its set of candi-
date synsets be all PWN senses of the translations
(MT+PWN). We then assign a score to each synset
and accept as correct all synsets with score above
a threshold α If no synset is above the cutoff we
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Figure 1: The score-threshold procedure for French word w = dalle (flagstone, slab). Candidate synsets
generated by MT+PWN are given a score and matched to w if the score is above a threshold α.

accept only the highest-scoring synset. This score-
threshold method is illustrated in Figure 1.

Thus we need methods to assign high scores to
correct candidate synsets of w and low scores to
incorrect ones. We use unsupervised word vec-
tors in the target language computed from a large
text corpus (e.g. Wikipedia). Section 3.1 presents
a simple baseline that improves upon MT+PWN
via a cosine-similarity metric between w and each
synset’s lemmas. A more sophisticated synset rep-
resentation method using sentence-embeddings is
described in Section 3.2. Finally, in Section 3.3 we
discuss WSI-based procedures for improving the
score-threshold method for words with fine sense
distinctions or poorly-annotated synsets.

In this section we assume a vocabulary V of tar-
get language words with associated d-dimensional
unit word-vectors vw ∈ Rd for d � |V | (e.g.
d = 300 for vocabulary size 50000) trained on a
large text corpus. Each word w ∈ V also has a set
of candidate synsets found by MT+PWN. We call
synsets S, S′ in PWN related, denoted S ∼ S′, if
one is a hyponym, meronym, antonym, or attribute
of the other, if they share a verb group, or S = S′.

3.1 Baseline: Average Similarity Method

This method for scoring synsets can be seen as a
simple baseline. Given a candidate synset S, we
define TS ⊂ V as the set of translations of its
lemmas from English to the target language. The
score of S is then 1

|TS |
∑

w′∈TS
vw · vw′ , the av-

erage cosine similarity between w and the trans-
lated lemmas of S. Although straightforward, this
scoring method is quite noisy, as averaging word-
vectors dilutes similarity performance, and does
not use all synset information provided by PWN.

3.2 Method 1: Synset Representation
To improve upon this baseline we need a better
vector representation of S to score S via cosine
similarity with vw. Previous efforts in synset and
sense embeddings (Iacobacci et al., 2015; Rothe
and Schütze, 2015) often use extra resources such
as WordNet or BabelNet for the target language
(Navigli and Ponzetto, 2012). As such databases
are not always available, we propose a synset rep-
resentation uS that is unsupervised, needing no ex-
tra resources beyond MT and PWN, and leverages
recent work on sentence embeddings.

This new representation combines embeddings
of synset information given by PWN, e.g. synset
relations, definitions, and example sentences. To
create these embeddings we first consider the
question of how to represent a list of words L as a
vector in Rd. One way is to simply take the nor-
malized sum v̂

(SUM)
L of their word-vectors, where

v
(SUM)
L =

∑
w′∈L

vw′

Potentially more useful is to compute a vector
v̂

(SIF )
L via the sentence embedding formula of

Arora et al. (2017), based on smooth inverse fre-
quency (SIF) weighting, which (for a = 10−4 and
before normalization) is expressed as

v
(SIF )
L =

∑
w′∈L

a

a+ P{w′}vw′

SIF is similar in spirit to TF-IDF (Salton and
Buckley, 1988) and builds on work of Wieting et
al. (2016); it has been found to perform well on
other similarity tasks (Arora et al., 2017).

We find that SIF improves performance on sen-
tences but not on translated lemma lists (Figure 2),
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likely because sentences contain many distractor
words that SIF will weight lower while the pres-
ence of distractors among lemmas is independent
of word frequency. Thus to compute the synset
score uS · vw we make the vector representation
uS of S the element-wise average of:

• v̂
(SUM)
TS

TS is the set of translations of
lemmas of S (as in Section 3.1).

• v̂
(SUM)
RS

RS =

( ⋃
S′∼S

TS′

)
\TS is the

set of lemma translations of
synsets S′ related to S.

• v̂
(SIF )
DS

DS is the list of tokens in the
translated definition of S.

• 1
|Es|

∑
E∈ES

v̂
(SIF )
E

ES contains the lists of tokens
in the translated example sent-
ences of S (excluded if S has
no example sentences).

3.3 Method 2: Better Matching Using WSI

We found through examination that the score-
threshold method we have used so far performs
poorly in two main cases:

(a) the word w has no candidate synset with
score high-enough to clear the threshold.

(b) w has multiple closely related synsets that are
all correct matches but some of which have a
much lower score than others.

Here we address both issues by using sense infor-
mation found by applying a word-sense induction
method first introduced in Arora et al. (2016a).

We summarize their WSI-model – referred to
henceforth as Linear-WSI — in Section 3.3.1.
Then in Section 3.3.2 we devise a sense purifica-
tion procedure for constructing a word-cluster for
each induced sense of a word. Applying this pro-
cedure to construct word-cluster representations of
candidates synsets provides an additional metric
for the correctness of word-synset matches that
can be used to devise a w-specific threshold αw to
ameliorate problem (a). Meanwhile, using Linear-
WSI to associate similar candidate synsets of w to
each other provides a way to address problem (b).
We explain these methodologies in Section 3.3.3.

3.3.1 Summary of Linear-WSI Model
In Arora et al. (2016a) the authors posit that the
vector of a polysemous word can be linearly de-
composed into vectors associated to its senses.

Avg. Similarity
(Baseline)

Unweighted 
Summation

SIF-Weighted
Summation

Synset Rep.
(Method 1)

Synset Lemmas

Synset Lemmas +
Related Lemmas

Synset Definition

Synset Definition +
Example Sentences

All Synset Information

Average Lemma
Similarity

Synset Representation

0.55 0.60 0.65

Figure 2: F -score comparison between using un-
weighted summation and SIF-weighted summa-
tion for embedding PWN synset information.

Thus for w = tie — which can be an article of
clothing, a drawn match, and so on — we would
have vw ≈ avw(clothing) + bvw(match) + . . . for
a, b ∈ R. It is unclear how to find such sense-
vectors, but one expects different words to have
closely related sense-vectors, e.g. for w′ = bow
the vector vw′(clothing) would be close to the vec-
tor vw(clothing) of tie. Thus the Linear-WSI model
proposes using sparse coding, namely finding a set
of unit basis vectors a1, . . . , ak ∈ Rd s.t. ∀w ∈ V ,

vw =
k∑
i=1

Rwiai + ηw, (1)

for k > d, ηw a noise vector, and at most s coef-
ficients Rwi nonzero. The hope is that the sense-
vector vw(clothing) of tie is in the neighborhood of
a vector ai s.t. Rwi > 0. Indeed, for k = 2000 and
s = 5, Arora et al. (2016a) report that solving (1)
represents English word-senses as well as a com-
petent non-native speaker and significantly better
than older clustering methods for WSI.

3.3.2 Sense Purification

While (1) is a good WSI method, its use for build-
ing WordNets is hampered by its inability to pro-
duce more than a few thousand senses ai, as set-
ting a large k yields repetitive rather than different
senses. As this is far fewer than the number of
synsets in PWN, we use sense purification to ad-
dress this by extracting a cluster of words related
to ai as well as w to represent each sense. In ad-
dition to w and ai, the procedure takes as input a
search-space V ′ ⊂ V and set size n. Then we find
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(to shoot)
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(plant)

(coriander)

(cilantro)

(celery)
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Figure 3: Isometric mapping of sense-cluster vectors for w = brilliant, fox, and лук (bow, onion). w is
marked by a star and each sense ai of w, shown by a large marker, has an associated cluster of words
with the same marker shape. Contours are densities of vectors close to w and at least one sense ai.

C ⊂ V ′ of size n containing w that maximizes

f = min
x=ai or

x=vw′ :w′∈C
Median{x · vw′ : w′ ∈ C} (2)

A cluster C maximizing this must ensure that nei-
ther ai nor any word w′ ∈ C (including w′ = w)
has low average cosine similarity with cluster-
words, resulting in a dense cluster close to both
w and ai. We explain this further in Appendix A.

We illustrate this method in Figure 3 by pu-
rifying the senses of English words brilliant
and fox and Russian word лук, which has the
senses “bow” (weapon), “onion” (vegetable), and
“onion” (plant). Note how correct senses are re-
covered across POS and language and for proper
and common noun senses.

3.3.3 Applying WSI to Synset Matching
The problem addressed by sense purification is
that senses ai induced by Linear-WSI have too
many related words; purification solves this by
extracting a cluster of words related to w from
the words close to ai. When translating WordNet
synsets, we have a similar problem in that transla-
tions of a synset’s lemmas may not be relevant to
the synset itself. Thus we can try to create a puri-
fied representation of each candidate synset S ofw
by extracting a cluster of translated lemmas close
to w and one of its induced senses. We run purifi-
cation on every sense ai in the sparse representa-
tion (1) of w, using as a search-space V ′ = VS the
set of translations of all lemmas of synsets S′ re-
lated to S in PWN (i.e. S′ ∼ S as defined in Sec-
tion 3). To each synset S we associate the sense
aS and corresponding cluster CS that are optimal
in the objective (2) among all senses ai of w.

Although we find a sense aS and purified repre-
sentation CS for each candidate synset of w, we

note that an incorrect synset is likely to have a
lower objective value (2) than a correct synset as
it likely has fewer words related to w in its search-
space VS . However, using fS = f(w, aS , CS) as a
synset score is difficult as some synsets have very
small search-spaces, leading to inconsistent scor-
ing even for correct synsets.

Instead we use fS as part of a w-specific thresh-
old αw = min{α, uS∗ · vw}, where uS is the
vector representation of S from Section 3.2 and
S∗ = arg max fS + uS · vw. This attempts to ad-
dress problem (a) of the score-threshold method
— that some words have no synsets above the cut-
off α and returning only the highest-scoring synset
in such cases will not retrieve multiple sense for
polysemous words. By the construction of αw, if
w is polysemous, a synset other than the one with
the highest score uS ·vw may have a better value of
fS and thus found to be S∗; then all synsets with
higher scores will be matched to w, allowing for
multiple matches even if no synset clears the cut-
off α. Otherwise if w is monosemous, we expect
the correct synset S to have the highest value for
both uS · vw and fS , making S∗ = S. Then if no
synset has score greater than α the threshold will
be set to uS · vw, the highest synset-score, so only
the highest scoring synset will be matched to w.

To address problem (b) of the threshold method
— that w might have multiple correct and closely
related candidate synsets of which only some
clear the cutoff — we observe that closely related
synsets of w will have similar search-spaces VS
and so are likely to be associated to the same sense
ai. For example, in Figure 4 the candidates of
dalle related to its correct meanings as a flagstone
or slab are associated to the same sense a892 while
distractor synsets related to the incorrect sense as a
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Figure 4: The score-threshold and sense-agglomeration procedure for French word w = dalle (flagstone,
slab). Candidate synsets are given a score and matched to w if they clear a high threshold αw (as in
Section 3.2). If an unmatched synset shares a sense ai with a matched synset, it is compared to a low
threshold β (the sense-agglomeration procedure in Section 3.3.3).

flag are mostly matched to other senses. This mo-
tivates the sense agglomeration procedure, which
uses threshold-clearing synsets to match synsets
with the same sense below the score-threshold.
For β < α, the procedure is roughly as follows:

1. Run score-threshold method with cutoff αw.

2. For each synset S with score uS · vw below
the threshold, check for a synset S′ with score
uS′ · vw above the threshold and aS′ = aS .

3. If uS ·vw ≥ β and the clustersCS , CS′ satisfy
a cluster similarity condition, match S to w.

We include the lower cutoff β because even sim-
ilar synsets may not both be senses of the same
word. The cluster similarity condition, available in
Appendix B.2, ensures the relatedness of synsets
sharing a sense ai, as an erroneous synset S′ may
be associated to the same sense as a correct one.

In summary, the improved synset matching ap-
proach has two steps: 1-conduct score-threshold
matching using the modified threshold αw; 2-run
the sense-agglomeration procedure on all senses
ai of w having at least one threshold-clearing
synset S. Although for fixed α both steps focus
on improving the recall of the threshold method, in
practice they allow α to be higher, so that both pre-
cision and recall are improved. For example, note
the recovery of a correct synset left unmatched by
the score-threshold method in the simplified de-
piction of sense-agglomeration shown in Figure 4.

4 Evaluation of Methods

We evaluate our method’s accuracy and coverage
by constructing and testing WordNets for French
and Russian. For both we train 300-dimensional
SN word embeddings (Arora et al., 2016b) on
co-occurrences of words occurring at least 1000
times, or having candidate PWN synsets and oc-
curring at least 100 times, in the lemmatized
Wikipedia corpus. This yields |V | ≈ 50000. For
Linear-WSI we run sparse coding with sparsity
s = 4 and basis-size k = 2000 and use set-size
n = 5 for purification. To get candidate synsets
we use Google and Microsoft Translators and the
dictionary of the translation company ECTACO,
while for sentence-length MT we use Microsoft.

4.1 Testsets

A common way to evaluate accuracy of an auto-
mated WordNet is to compare its synsets or word
matchings to a manually-constructed one. How-
ever, the existing ELRA French Wordnet 2 is not
public and half the size of ours while Russian
WordNets are either even smaller and not linked
to PWN3 or obtained via direct translation4.

Instead we construct test sets for each language
that allow for evaluation of our methods and oth-
ers. We randomly chose 200 each of adjectives,
nouns, and verbs from the set of target language
words whose English translations appear in the
synsets of the Core WordNet. Their “ground truth”

2 http://catalog.elra.info/product_
info.php?products_id=550

3 http://project.phil.spbu.ru/RussNet/
4 http://wordnet.ru/
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Method POS F.5-Score∗ F1-Score∗ Precision∗ Recall∗ Coverage Synsets α β

Direct Translation
(MT + PWN)

Adj. 50.3 59.3 46.1 100.0 99.9 11271
Noun 56.2 64.6 52.2 100.0 100.0 74477
Verb 41.4 51.3 37.0 100.0 100.0 13017
Total 49.3 58.4 45.1 100.0 100.0 100174†

Wordnet Libre
du Français

(WOLF)
(Sagot and Fišer, 2008)

Adj. 66.3 58.6 78.1 53.4 84.8 6865
Noun 68.6 58.7 83.2 51.5 95.0 36667
Verb 60.8 48.4 81.0 39.6 88.2 7671
Total 65.2 55.2 80.8 48.2 92.2 52757†

Universal Wordnet
(de Melo and Weikum, 2009)

Adj. 64.5 51.5 88.3 42.3 69.2 7407
Noun 67.5 52.2 94.1 40.8 75.9 24670
Verb 55.4 39.5 88.0 28.5 76.2 5624
Total 62.5 47.7 90.1 37.2 75.0 39497†

Extended Open
Multilingual Wordnet

(Bond and Foster, 2013)

Adj. 58.4 40.8 90.9 28.4 54.7 2689
Noun 61.3 43.8 96.5 31.7 66.6 14936
Verb 47.8 29.4 95.9 18.6 57.7 2331
Total 55.9 38.0 94.5 26.2 63.2 20449†

Baseline:
Average Similarity

(Section 3.1)

Adj. 62.8±0.0 62.6±0.0 65.3±0.0 68.5±0.0 88.7 9687 0.31
Noun 67.3±0.0 65.4±0.1 71.6±0.1 69.0±0.1 92.2 37970 0.27
Verb 51.8±0.0 50.8±0.1 55.9±0.1 57.0±0.1 83.5 10037 0.26
Total 60.6±0.0 59.6±0.0 64.3±0.0 64.9±0.0 90.0 58962†

Method 1:
Synset Representation

(Section 3.2)

Adj. 65.9±0.0 60.4±0.0 75.9±0.1 59.5±0.1 85.1 8512 0.47
Noun 71.0±0.0 67.3±0.1 78.7±0.1 69.1±0.1 96.7 35663 0.41
Verb 61.6±0.0 53.0±0.0 78.7±0.1 49.8±0.1 89.9 8619 0.45
Total 66.2±0.0 60.2±0.0 77.8±0.0 59.5±0.1 93.7 53852†

Method 2:
Synset Representation

+ Linear-WSI
(Section 3.3)

Adj. 67.7±0.0 62.5±0.1 76.9±0.1 62.6±0.1 91.2 8912 0.56 0.42
Noun 73.0±0.0 66.0±0.1 83.7±0.1 62.0±0.2 90.9 34001 0.50 0.25
Verb 64.4±0.0 55.9±0.0 79.3±0.0 51.5±0.1 93.6 9262 0.46 0.28
Total 68.4±0.0 61.5±0.0 80.0±0.0 58.7±0.1 91.5 53208†

∗Micro-averages over a randomly held-out half of the data; parameters tuned on the other half. 95% asymptotic confidence
intervals found with 10000 randomized trials.
† Includes adverb synsets. For the last three methods they are matched with the same parameter values (α and β) as for adjectives.

Table 1: French WordNet Results

word senses are picked by native speakers, who
were asked to perform the same matching task de-
scribed in Section 3, i.e. select correct synsets
for a word given a set of candidates generated by
MT + PWN. For example, the French word foie
has one translation, liver with four PWN synsets:
1-“glandular organ”; 2-“liver used as meat”; 3-
“person with a special life style”; 4-“someone liv-
ing in a place.” The first two align with senses
of foie while the others do not, so the expert
marks the first two as good and the others as neg-
ative. Two native speakers for each language were
trained by an author with knowledge of WordNet
and at least 10 years of experience in each lan-
guage. Inconsistencies in the matchings of the two
speakers were resolved by the same author.

We get 600 words and about 12000 candidate
word-synset pairs for each language, with adjec-
tives and nouns having on average about 15 can-
didates and verbs having about 30. These num-
bers makes the test set larger than many others,

with French, Korean, and Persian WordNets cited
in Section 2 being evaluated on 183 pairs, 3260
pairs, and 500 words, respectively. Accuracy mea-
sured with respect to this ground truth estimates
how well an algorithm does compared to humans.

A significant characteristic of this test set is
its dependence on the machine translation sys-
tem used to get candidate synsets. While this can
leave out correct synset matches that the system
did not propose, by providing both correct and in-
correct candidate synsets we allow future authors
to focus on the semantic challenge of selecting
correct senses without worrying about finding the
best bilingual dictionary. This allows dictionary-
independent evaluation of automated WordNets,
an important feature in an area where the specific
translation systems used are rarely provided in
full. When comparing the performance of our con-
struction to that of previous efforts on this test set,
we do not penalize word-synset matches in which
the synset is not among the candidate synsets we
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generate for that word, negating the loss of pre-
cision incurred by other methods due to the use
of different dictionaries. We also do not penalize
other WordNets for test words they do not contain.

In addition to precision and recall, we report the
Coverage statistic as the proportion of the Core set
of most-used synsets, a semi-automatically con-
structed set of about 5000 PWN frequent senses,
that are matched to at least one word (Fellbaum,
1972). While an imperfect metric given different
sense usage by language, the synsets are universal-
enough for it to be a good indicator of usability.

4.2 Evaluation Results

We report the evaluation of methods in Section 3
in Tables 1 & 2 alongside evaluations of UWN
(de Melo and Weikum, 2009), OWM (Bond and
Foster, 2013), and WOLF (Sagot and Fišer, 2008).
Parameters α and β were tuned to maximize the
micro-averaged F.5-score 1.25·Precision·Recall

.25·Precision+Recall , used
instead of F1 to prioritize precision, which is of-
ten more important for application purposes.

Our synset representation method (Section 3.2)
exceeds the similarity baseline by 6% in F.5-score
for French and 10% for Russian. For French it is
competitive with the best other WordNet (WOLF)
and in both languages exceeds both multi-lingual
WordNets. Improving this method via Linear-WSI
(Section 3.3) leads to 2% improvement in F.5-
score for French and 1% for Russian. Our methods
also perform best in F1-score and Core coverage.

As expected from a Wiktionary-scraping
method, OMW achieves the best precision
across languages, although it and UWN have
low recall and Core coverage. The performance
of our best method for French exceeds that of
WOLF in F.5-score across POS while achieving
similar coverage. WOLF’s recall performance
is markedly lower than the evaluation in Sagot
and Fišer (2008, Table 4); we believe this stems
from our use of words matched to Core synsets,
not random words, leading to a more difficult
test set as common words are more-polysemous
and have more synsets to retrieve. There is no
comparable automated Russian-only WordNet,
with only semi-automated and incomplete efforts
(Yablonsky and Sukhonogov, 2006).

Comparing across POS, we do best on nouns
and worst on verbs, likely due to the greater pol-
ysemy of verbs. Between languages, performance
is similar for adjectives but slightly worse on Rus-

sian nouns and much worse on Russian verbs.
The discrepancy in verbs can be explained by a

difference in treating the reflexive case and aspec-
tual variants due to the grammatical complexity of
Russian verbs. In French, making a verb reflexive
requires adding a word while in Russian the verb
itself changes, e.g. to wash→to wash oneself is
laver→se laver in French but мыть→мыться in
Russian. Thus we do not distinguish the reflex-
ive case for French as the token found is the same
but for Russian we do, so both мыть and мыть-
ся may appear and have distinct synset matches.
Thus matching Russian verbs is challenging as the
reflexive usage of a verb is often contextually sim-
ilar to the non-reflexive usage. Another compli-
cation for Russian verbs is due to aspectual verb
pairs; thus to do has aspects (делать, сделать)
in Russian that are treated as distinct verbs while
in French these are just different tenses of the verb
faire. Both factors pose challenges for differentiat-
ing Russian verb senses by a distributional model.

Overall however the method is shown to be ro-
bust to how close the target language is to English,
with nouns and adjectives performing well in both
languages and the difference for verbs stemming
from an intrinsic quality rather than dissimilarity
with English. This can be further examined by
testing the method on a non-European language.

5 Conclusion and Future Work

We have shown how to leverage recent advances
in word embeddings for fully-automated WordNet
construction. Our best approach combining sen-
tence embeddings, and recent methods for WSI
obtains performance 5-16% above the naive base-
line in F.5-score as well as outperforming previ-
ous language-specific and multi-lingual methods.
A notable feature of our work is that we require
only a large corpus in the target language and au-
tomated translation into/from English, both avail-
able for many languages lacking good WordNets.

We further contribute new 600-word human-
annotated test sets split by POS for French and
Russian that can be used to evaluate future au-
tomated WordNets. These larger test sets give a
more accurate picture of a construction’s strengths
and weaknesses, revealing some limitations of
past methods. With WordNets in French and Rus-
sian largely automated or incomplete, the Word-
Nets we build also add an important tool for multi-
lingual natural language processing.
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Method POS F.5-Score∗ F1-Score∗ Precision∗ Recall∗ Coverage Synsets α β

Direct Translation
(MT + PWN)

Adj. 50.2 59.6 45.9 100.0 99.6 11412
Noun 41.2 50.2 37.1 100.0 100.0 73328
Verb 32.5 41.7 28.6 100.0 100.0 13185
Total 41.3 50.5 37.2 100.0 99.9 99470†

Universal Wordnet
(de Melo and Weikum, 2009)

Adj. 52.4 38.8 80.3 29.6 51.0 11412
Noun 65.0 53.0 87.5 45.1 71.1 19564
Verb 48.1 34.8 74.8 25.7 65.0 3981
Total 55.1 42.2 80.8 33.4 67.1 30015†

Extended Open
Multilingual Wordnet

(Bond and Foster, 2013)

Adj. 58.7 41.3 91.7 29.2 55.3 2419
Noun 67.8 53.1 93.5 42.5 68.4 14968
Verb 51.1 34.8 84.5 23.9 56.6 2218
Total 59.2 43.1 89.9 31.9 64.2 19983†

Baseline:
Average Similarity

(Section 3.1)

Adj. 61.4±0.0 64.6±0.1 60.9±0.0 77.3±0.1 92.1 10293 0.24
Noun 55.9±0.0 54.8±0.1 59.9±0.1 59.9±0.1 77.0 32919 0.29
Verb 46.3±0.0 46.5±0.1 49.0±0.1 55.1±0.1 84.1 9749 0.21
Total 54.5±0.0 55.3±0.0 56.6±0.0 64.1±0.1 80.5 54372†

Method 1:
Synset Representation

(Section 3.2)

Adj. 69.5±0.0 64.1±0.0 78.1±0.0 61.7±0.1 84.2 8393 0.43
Noun 69.8±0.0 65.5±0.0 77.6±0.1 66.0±0.1 85.2 29076 0.46
Verb 54.2±0.0 51.1±0.1 63.3±0.1 57.4±0.1 91.2 8303 0.39
Total 64.5±0.0 60.2±0.0 73.0±0.0 61.7±0.1 86.3 46911†

Method 2:
Synset Representation

+ Linear-WSI
(Section 3.3)

Adj. 69.7±0.0 64.9±0.1 77.3±0.0 63.6±0.1 93.3 9359 0.43 0.35
Noun 71.6±0.0 67.6±0.0 78.1±0.0 68.0±0.1 91.0 31699 0.46 0.33
Verb 54.4±0.0 49.7±0.1 64.9±0.1 52.6±0.2 91.9 8582 0.44 0.33
Total 65.2±0.0 60.7±0.0 73.4±0.0 61.4±0.1 91.5 50850†

∗Micro-averages over a randomly held-out half of the data; parameters tuned on the other half. 95% asymptotic confidence
intervals found with 10000 randomized trials.
† Includes adverb synsets. For the last three methods they are matched with the same parameter values (α and β) as for adjectives.

Table 2: Russian WordNet Results

Further improvement to our work may come
from other methods in word-embeddings, such
as multi-lingual word-vectors (Faruqui and Dyer,
2014). Our techniques can also be combined with
others, both language-specific and multi-lingual,
for automated WordNet construction. In addition,
our method for associating multiple synsets to the
same sense can contribute to efforts to improve
PWN through sense clustering (Snow et al., 2007).
Finally, our sense purification procedure, which
uses word-vectors to extract clusters representing
word-senses, likely has further WSI and WSD ap-
plications; such exploration is left to future work.
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A Purification Procedure

As discussed in Section 3.3.1, the Linear-WSI
model (Arora et al., 2016a) posits that there ex-
ists an overcomplete basis a1, . . . , ak ∈ Rd of unit
vectors such that each wordw ∈ V can be approx-
imately represented by a linear combination of at
most s basis vectors (see Equation 1). Finding the
basis vectors ai and their coefficientsRwi requires
solving the optimization problem

minimize ‖Y −RA‖2
subject to ‖Rw‖0 ≤ s ∀ w ∈ V

where Y ∈ R|V |×n has word-vectors as its rows,
R ∈ R|V |×k is the matrix of coefficients Rwi, and
A ∈ Rk×d has the overcomplete basis a1, . . . , ak
as its rows. This problem is non-convex and can
be solved approximately via the K-SVD algorithm
(Aharon et al., 2006).

Given a word w, the purification procedure is
a method for purifying the senses induced via
Linear-WSI (the vectors ai s.t. Rwi 6= 0) by rep-
resenting them as word-clusters related to both the
sense itself and the word. This is done so as to
create a more fine-grained collection of senses, as
Linear-WSI does not perform well for more than
a few thousand basis vectors, far fewer than the
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number of word-senses (Arora et al., 2016a). The
procedure is inspired by the hope that words re-
lated to each sense of w will form clusters near
both vw and one of its senses ai. Given a fixed set-
size n and a search-space V ′ ⊂ V , we realize this
hope via the optimization problem

maximize
C⊂V ′

γ

subject to

γ ≤ Median{vx · vw′ : w′ ∈ C\{x}} ∀ x ∈ C
γ ≤ Median{ai · vw′ : w′ ∈ C}
w ∈ C, |C| = n

This problem is equivalent to maximizing (2) with
constraints |C| = n and w ∈ C ⊂ V ′. The ob-
jective value is constrained to be the lowest me-
dian cosine similarity between any word x ∈ C
or the sense ai and the rest of C, so optimizing it
ensures that the words in C are closely related to
each other and to ai. Forcing the cluster to contain
w leads to the words in C being close to w as well.

For computational purposes we solve this prob-
lem approximately using a greedy algorithm that
starts with C = {w} and repeatedly adds the word
in V ′\C that results in the best objective value un-
til |C| = n. Speed of computation is also a reason
for using a search-space V ′ ⊂ V rather than the
entire vocabulary as a source of words for the clus-
ter; we found that restricting V ′ to be all words w′

s.t. min{vw′ · vw, vw′ · ai} ≥ .2 dramatically re-
duces processing time with little performance loss.

The purification procedure represents only one
sense of w, so to perform WSI we generate clus-
ters for all senses ai s.t. Rwi > 0. If two senses
have clusters that share a word other than w, only
the cluster with the higher objective value is re-
turned. To find the clusters displayed in Figure 3
we use this procedure with cluster size n = 5 on
English and Russian SN vectors decomposed with
basis size k = 2000 and sparsity s = 4.

B Applying WSI to Synset Matching

We use the purification procedure to represent the
candidate synsets of a wordw by clusters of words
related to w and one if its senses ai. First, for each
synset S we define the search-space

VS =
⋃
S′∼S

TS′

where TS′ is the set of translations of lemmas of
S′ as in Section 3.1. Then given a word w, one of

its candidate synsets S, and a fixed set size n, we
run the following procedure:

1. For each sense ai in the sparse representation
(1) of w let Ci be the output cluster of the
purification procedure run on sense ai with
search-space V ′ = VS .

2. Return the (sense, sense-cluster) pair
(aS , CS) with the highest purification
procedure objective value among senses ai.

In the following methods we will assume that each
candidate synset S of w has a sense aS and sense-
cluster CS associated to it in this way. Examples
of such clusters for the French word dalle (flag-
stone, slab) are provided in Table 3.

B.1 Word-Specific Threshold
One application of Linear-WSI is the creation of
a word-specific threshold αw to use in the score-
threshold method instead of a global cutoff α. We
do this by using the quality of the sense cluster CS
of each candidate synset S of w as an indicator of
the correctness of that synset. Recalling that uS
is the synset representation of S as a vector (see
Section 3.2) and letting fS = f(w, aS , CS) be the
objective value (2), we find αw as follows:

1. Find S∗ = arg max
S is a candidate of w

fS + uS · vw.

2. Let αw = min{α, uS∗ · vw}.
As this modified threshold may be lower than
more than one candidate synset of w it allows for
multiple synset matches even when no synset has
score high enough to clear the threshold α.

B.2 Sense-Agglomeration Procedure
We use Linear-WSI more explicitly through the
sense-agglomeration procedure, which attempts to
recover unmatched synsets using matched synsets
sharing the same sense ai ofw. We define the clus-
ter similarity ρ between word-clusters C1, C2 ⊂
V as the median of all cosine-similarities of pairs
of words in their set product, i.e.

ρ(C1, C2) = Median{vx · vy : x ∈ C1, y ∈ C2}.
Then we say that two clusters C1, C2 are similar if

ρ(C1, C2) ≥ min{ρ(C1, C1), ρ(C2, C2)},
i.e. if their cluster similarity with each other ex-
ceeds at least one’s cluster similarity with itself.
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Synset Associated
Sense aS

Purified Cluster Representation CS
Objective Value
f(w, aS , CS)

flag.n.01 a789 poteau (goalpost), flèche (arrow), haut (high, top), mât (matte) 0.23
flag.n.04 a892 flamme (flame), fanion (pennant), guidon, signal 0.06
flag.n.06 a892 dallage (paving), carrelage (tiling), pavement, pavage (paving) 0.36
flag.n.07 a1556 pan (section), empennage, queue, tail 0.14
iris.n.01 a1556 bœuf (beef), usine (factory), plante (plant), puant (smelly) 0.07
masthead.n.01 a1556 inscription, lettre (letter), catalogue (catalog), cotation (quotation) 0.10
pin.n.08 a1556 trou (hole), tertre (mound), marais (marsh), pavillon (house, pavillion) 0.17
slab.n.01 a892 carrelage (tiling), carreau (tile), tuile (tile), bâtiment (building) 0.27

Table 3: Purified Synset Representations of dalle (flagstone, slab). Note how the correct candidate
synsets (bolded) have clusters of words closely related to the correct meaning while the other clusters
have many unrelated words, leading to lower objective values.

Then given a global low threshold β ≤ α, for each
sense ai in the sparse representation (1), sense-
agglomeration consists of the following algorithm:

1. Let Mi be the set of candidate synsets S of w
that have aS = ai and score above the thresh-
old αw. Stop if Mi = ∅.

2. Let Ui be the set of candidate synsets S of w
that have aS = ai and score below the thresh-
old αw. Stop if Ui = ∅.

3. For each synset S ∈ Ui, ordered by synset-
score, check that CS is similar (in the above
sense) to all clusters CS′ for S′ ∈Mi and has
score higher than β. If both are true, add S to
Mi and remove S from Ui. Otherwise stop.

The sense-agglomeration procedure allows an un-
matched synset S to be returned as a correct synset
of w provided it shares a sense with a different
matched synset S′ and satisfies cluster similarity
and score-threshold constraints.
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Abstract

Abstract words refer to things that can not
be seen, heard, felt, smelled, or tasted
as opposed to concrete words. Among
other applications, the degree of abstract-
ness has been shown to be a useful infor-
mation for metaphor detection. Our con-
tribution to this topic are as follows: i) we
compare supervised techniques to learn
and extend abstractness ratings for huge
vocabularies ii) we learn and investigate
norms for multi-word units by propagat-
ing abstractness to verb-noun pairs which
lead to better metaphor detection, iii) we
overcome the limitation of learning a sin-
gle rating per word and show that multi-
sense abstractness ratings are potentially
useful for metaphor detection. Finally,
with this paper we publish automatically
created abstractness norms for 3 million
English words and multi-words as well
as automatically created sense-specific ab-
stractness ratings.

1 Introduction

The standard approach to studying abstractness is
to place words on a scale ranging between ab-
stractness and concreteness. Alternately, abstract-
ness can also be given a taxonomic definition in
which the abstractness of a word is determined by
the number of subordinate words (Kammann and
Streeter, 1971; Dunn, 2015).

In psycholinguistics abstractness is commonly
used for concept classification (Barsalou and
Wiemer-Hastings, 2005; Hill et al., 2014;
Vigliocco et al., 2014). In computational work, ab-
stractness has become an established information
for the task of automatic detection of metaphorical
language. So far metaphor detection has been car-

ried out using a variety of features including se-
lectional preferences (Martin, 1996; Shutova and
Teufel, 2010; Shutova et al., 2010; Haagsma and
Bjerva, 2016), word-level semantic similarity (Li
and Sporleder, 2009; Li and Sporleder, 2010),
topic models (Heintz et al., 2013), word embed-
dings (Dinh and Gurevych, 2016) and visual in-
formation (Shutova et al., 2016).

The underlying motivation of using abstract-
ness in metaphor detection goes back to Lakoff
and Johnson (1980), who argue that metaphor is
a method for transferring knowledge from a con-
crete domain to an abstract domain. Abstractness
was already applied successfully for the detection
of metaphors across a variety of languages (Tur-
ney et al., 2011; Dunn, 2013; Tsvetkov et al.,
2014; Beigman Klebanov et al., 2015; Köper and
Schulte im Walde, 2016b).

The abstractness information itself is typically
taken from a dictionary, created either by man-
ual annotation or by extending manually col-
lected ratings with the help of supervised learn-
ing techniques that rely on word representations.
While potentially less reliable, automatically cre-
ated norm-based abstractness ratings can easily
cover huge dictionaries. Although some meth-
ods have been used to learn abstractness, literature
lacks a comparison of these learning techniques.

We compare and evaluate different learning
techniques. In addition we show and investigate
the usefulness of extending abstractness ratings to
phrases as well as individual word senses. We ex-
trinsically evaluate these techniques on two verb
metaphor detection tasks: (i) a type-based setting
that makes use of phrase ratings, (ii) a token-based
classification for multi-sense abstractness norms.
Both settings benefit from our approach.
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2 Experiments

2.1 Propagating Abstractness: A
Comparison of Approaches & Ressources

2.1.1 Comparison of Approaches
Turney et al. (2011) first aproached to automati-
cally create abstractness norms for 114 501 words,
relying on manual ratings based on the MRC Psy-
cholinguistic Database (Coltheart, 1981). The un-
derlying algorithm (Turney and Littman, 2003) re-
quires vector representation and annotated training
samples of words. The algorithm itself performs a
greedy forward search over the vocabulary to learn
so-called paradigm words. Once paradigm words
for both classes (abstract & concrete) are learned,
a rating can be assigned to every word by com-
paring its vector representation against the vector
representations of the paradigm words.

Köper and Schulte im Walde (2016a) used the
same algorithm for a large collection of German
lemmas, and in the same way additional cre-
ated ratings for multiple norms including valency,
arousal and imageability.

A different method that has been used to ex-
tend abstractness norms based on low-dimensional
word embeddings and a Linear Regression classi-
fier (Tsvetkov et al., 2013; Tsvetkov et al., 2014).

We compare approaches across different pub-
licly available vector representations1, to study po-
tential differences across vector dimensionality we
compare vectors between 50 and 300 dimensions.
The Glove vectors (Pennington et al., 2014) have
been trained on 6billion tokens of Wikipedia plus
Gigaword (V=400K), while the word2vec cbow
model (Mikolov et al., 2013) was trained on a
Google internal news corpus with 100billion to-
kens (V=3million). For training and testing we
relied on the ratings from Brysbaert et al. (2014),
Dividing the ratings into 20% test (7 990) and 80%
training (31 964) for tuning hyper parameters we
took 1 000 ratings from the training data. We
kept the ratio between word classes. Evaluation is
done by comparing the new created ratings against
the test (gold) ratings using Spearman’s rank-order
correlation. We first reimplemented the algorithm
from Turney and Littman (2003) (T&L 03). In-
spired by recent findings of Gupta et al. (2015) we
apply the hypothesis that distributional vectors im-

1http://nlp.stanford.edu/projects/
glove/
https://code.google.com/archive/p/
word2vec/

plicitly encode attributes such as abstractness and
directly feed the vector representation of a word
into a classifier, either by using linear regression
(L-Reg), a regression forest (Reg-F) or a fully
connected feed forward neural network with up to
two hidden layers (NN).2

T&L 03 L-Reg. Reg-F. NN

Glove50 .76 .76 .78 .79
Glove100 .80 .79 .79 .85
Glove200 .78 .78 .76 .84
Glove300 .76 .78 .74 .85
W2V300 .83 .84 .79 .90

Table 1: Spearman’s ρ for the test ratings. Com-
paring representations and regression methods.

Table 1 shows clearly that we can learn ab-
stractness ratings with a very high correlation on
the test data using the word representations from
Google (W2V300) together with a neural net-
work for regression (ρ=.90). The NN method sig-
nificantly outperforms all other methods, using
Steiger (1980)’s test (p < 0.001).

2.1.2 Comparison of Ressources
Based on the comparison of methods in the pre-
vious section we propagated abstractness ratings
to the entire vocabulary of the W2V300 dataset
(3million words) and compare the correlation with
other existing norms of abstractness. For this com-
parison we use the common subset of two manu-
ally and one automatically created resource: MRC
Psycholinguistic Database, ratings from Brysbaert
et al. (2014) and the automatically created ratings
from Turney et al. (2011). We map all existing
ratings, as well as our newly created ratings, to
the same interval using the method from Köper
and Schulte im Walde (2016a). The mapping is
performed using a continuous function, that maps
the ratings to an interval ranging from very ab-
stract (0) to very concrete (10). The common sub-
set contains 3 665 ratings. Figure 1 shows the re-
sulting pairwise correlation between all four re-
sources. Despite being created automatically, we
see that the newly created ratings provide a high
correlation with both manually created collections
(ρ for MRS=.91, Brysbaert=.93). In addition, the
vocabulary of our ratings is much larger than any
existing database. Thus this new collection might

2NN Implementation based on https://github.
com/amten/NeuralNetwork

25



0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1MRC BRYS TURNEY NEW

MRC

BRYS

TURNEY

NEW

1 0.92

1

0.85

0.84

1

0.91

0.93

0.88

1

Figure 1: Pairwise Spearman’s ρ on commonly
covered subset. Red = high correlation.

be useful, especially for further research which re-
quires large vocabulary coverage.3

2.2 Abstractness for Phrases
A potential advantage of our method is that ab-
stractness can be learned for multi-word units as
long as the representation of these units live in the
same distributional vector space as the words re-
quired for the supervised training.

In this section we explore if ratings propa-
gated to verb-noun phrases provide useful infor-
mation for metaphor detection. As dataset we re-
lied on the collection from Saif M. Mohammad
and Turney (2016), who annotated different senses
of WordNet verbs for metaphoricity (Fellbaum,
1998).

We used the same subset of verb–direct object
and verb–subject relations as used in Shutova et
al. (2016). As preprocessing step we concatenated
verb-noun phrases by relying on dependency in-
formation based on a web corpus, the ENCOW14
corpus (Schäfer and Bildhauer, 2012; Schäfer,
2015). We removed words and phrases that ap-
peared less than 50 times in our corpus, thus our
selection covers 535 pairs, 238 of which were
metaphorical and 297 literal.

Given a verb-noun phrase, such as
stamp person, we obtained vector representations
using word2vec and the same hyper-parameters
that were used for the W2V300 embeddings
(Section 2.1.1) together with the best learning

3Ratings available at http://www.ims.
uni-stuttgart.de/data/en_abst_norms.html

method (NN). The technique allows us to propa-
gate abstractness to every vector, thus we learn
abstractness ratings for all three constituents:
verb, noun and the entire phrase.

For the metaphor classification experiment we
use the rating score and apply the Area Under
Curve (AUC) metric. AUC is a metric for bi-
nary classification. We assume that literal in-
stances gain higher scores (= more concrete) than
metaphorical word pairs. AUC considers all pos-
sible thresholds to divide the data into literal and
metaphorical. In addition to the rating score we
also show results based on cosine similarity and
feature combinations (Table 2).

Feat. Name Type AUC

- Random baseline .50
1 V-NN cosine .75
2 V-Phrase cosine .70
3 NN-Phrase cosine .68
4 V rating .53
5 NN rating .78
6 Phrase rating .71

Comb 1+2+3 cosine .75
Comb 4+5+6 rating .74
Comb all(1-6) mixed .80
Comb 1+5+6 best .84

Table 2: AUC Score single features and com-
binations. Classifying literal and metaphorical
phrases based on the Saif M. Mohammad and Tur-
ney (2016) dataset.

As shown in Table 2, the rating of the verb alone
(AUC=.53) provides almost no useful information.
The best performance based on a single feature is
the abstractness value of the noun (.78) followed
by the cosine between verb and noun vector repre-
sentation (.75). The phrase rating alone performs
moderate (.71). However when combining fea-
tures we found that the best combinations are ob-
tained by integrating the phrase rating. In more de-
tail, combining noun and phrase rating (5+6) ob-
tains a AUC of (.80). When adding the cosine (1)
we obtain the best score of (.84). For comparison,
the verb plus noun ratings (4+5) obtains a lower
score (.72), this shows that the phrase rating pro-
vides complementary and useful information.
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2.3 Sense-specific Abstractness Ratings

In this section we investigate if automatically
learned multi-sense abstractness ratings, that is
having different ratings per word sense, are poten-
tially useful for the task of metaphor detection.

Recent advances in word representation learn-
ing led to the development of algorithms for non-
parametric and unsupervised multi-sense repre-
sentation learning (Neelakantan et al., 2014; Liu
et al., 2015; Li and Jurafsky, 2015; Bartunov et
al., 2016). Using these techniques one can learn
a different vector representation per word sense.
Such representations can be combined with our
abstractness learning method from section 2.1.1.

While in theory any multi-sense learning tech-
nique can be applied, we decided for the one
introduced by Pelevina et al. (2016), as it per-
forms sense learning after single senses have been
learned. Starting from the public W2V300 repre-
sentations we apply the multi-sense learning tech-
nique using the default settings and learn sense-
specific word representations. Finally we prop-
agate abstractness to every newly created sense
representation by using the exact same model and
training data as in Section 1. For a given word in a
sentence we can now disambiguate the word sense
by comparing its sense-specific vector representa-
tion to all context words. The context words are
represented using the (single sense) global repre-
sentation. We always pick the sense representation
that obtains the largest similarity, measured by co-
sine. The potential advantage of this method is
that in a metaphor detection system we are now
able to look up word-sense-specific abstractness
ratings instead of globally obtained ratings.

For this experiment we use the VU Amster-
dam Metaphor Corpus (Steen, 2010) (VUA), fo-
cusing on verb metaphors. The collection contains
23 113 verb tokens in running text, annotated as
being used literally or metaphorically. In addition
we present results for the TroFi metaphor dataset
(Birke and Sarkar, 2006) containing 50 verbs and
3 737 labeled sentences. We pre-processed both
recourses using Stanford CoreNLP (Manning et
al., 2014) for lemmatization, part-of-speech tag-
ging and dependency parsing.

We present results by applying ten-fold cross-
validation over the entire data. For the VUA we
additionally present results for the test data us-
ing the same training/test split as in Beigman Kle-
banov et al. (2016).

Abstractness norms are implemented using the
same five feature dimensions as used by Turney
et al. (2011) plus dimensions respectively for sub-
ject and object, thus we rely on the seven feature,
namely:

1. Rating of the verbs subject

2. Rating of the verbs object

3. Average rating of all nouns (excluding proper
names)

4. Average rating of all proper names

5. Average rating of all verbs, excluding the tar-
get verb

6. Average rating of all adjectives

7. Average rating of all adverbs

For classification we used a balanced Logistic
Regression classifier following the findings from
Beigman Klebanov et al. (2015). While this de-
fault setup tries to generalize over unseen verbs by
only looking at a verb’s context we further present
results for a second setup that uses a 6th feature:
namely the lemma of the target verb itself (+L).
The purpose of the second system is to describe
performance with respect to the state of the art
(Beigman Klebanov et al., 2016), which among
other features also uses the verb lemma.

Feat. TroFi(10F) VUA(10F) VUA(Test)

1S .72 .42 .44
MS .74 .44* .46

1S(+L) .74 .61 .62
MS(+L) .75 .61 .62

Table 3: F-score (Metaphor). Classifying literal
and metaphorical verbs based on the VUA and
TroFi dataset. MS = multi-sense, 1S= single sense.

As shown in Table 3, the mutli-sense ratings
constantly outperform the single-sense ratings in
a direct comparison on all three sets. The dif-
ference in performance of single and multi-sense
ratings is statistically significant on the full VUA
dataset, using the χ2 test and ∗ for p < 0.05.
However we also notice that the effect vanishes
as soon as we combine the ratings with the lemma
of the verb, which is especially the case for the
VUA dataset where the lemma increases the per-
formance by a large margin. In contrast to related
work, the system with the verb unigram (+UL)
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can be considered state-of-the-art. When apply-
ing the same evaluation as Beigman Klebanov et
al. (2016), namely a macro-average over the four
genres of VUA, we obtain an average f-score of
.60 by using only eight feature dimensions and ab-
stractness ratings as external resource.4

3 Conclusion

In this paper we compared supervised methods
to propagate abstractness norms to words. We
showed that a neural-network outperforms other
methods. In addition we showed that norms for
multi-words phrases can be beneficial for type
based metaphor detection. Finally we showed how
norms can be learned for sense representations and
that sense specific norms show a clear tendency to
improve token-based verb metaphor detection.
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Abstract

This paper presents a novel approach to
the task of automatically inferring the
most probable diagnosis from a given
clinical narrative. Structured Knowledge
Bases (KBs) can be useful for such com-
plex tasks but not sufficient. Hence, we
leverage a vast amount of unstructured
free text to integrate with structured KBs.
The key innovative ideas include building
a concept graph from both structured and
unstructured knowledge sources and rank-
ing the diagnosis concepts using the en-
hanced word embedding vectors learned
from integrated sources. Experiments on
the TREC CDS and HumanDx datasets
showed that our methods improved the re-
sults of clinical diagnosis inference.

1 Introduction and Related Work

Clinical diagnosis inference is the problem of au-
tomatically inferring the most probable diagno-
sis from a given clinical narrative. Many health-
related information retrieval tasks can greatly ben-
efit from the accurate results of clinical diagnosis
inference. For example, in recent Text REtrieval
Conference (TREC) Clinical Decision Support
track (CDS1), diagnosis inference from medical
narratives has improved the accuracy of retriev-
ing relevant biomedical articles (Roberts et al.,
2015; Hasan et al., 2015; Goodwin and Harabagiu,
2016).

Solutions to the clinical diagnostic inferencing
problem require a significant amount of inputs
from domain experts and a variety of sources (Fer-
rucci et al., 2013; Lally et al., 2014). To ad-
dress such complex inference tasks, researchers
(Yao and Van Durme, 2014; Bao et al., 2014;
Dong et al., 2015) have utilized structured KBs

1http://www.trec-cds.org/

that store relevant information about various en-
tity types and relation triples. Many large-scale
KBs have been constructed over the years, such
as WordNet (Miller, 1995), Yago (Suchanek et
al., 2007), Freebase (Bollacker et al., 2008), DB-
pedia (Auer et al., 2007), NELL (Carlson et al.,
2010), UMLS Metathesaurus (Bodenreider, 2004)
etc. However, using KBs alone for inference tasks
(Bordes et al., 2014) has certain limitations such as
incompleteness of knowledge, sparsity, and fixed
schema (Socher et al., 2013; West et al., 2014).

On the other hand, unstructured textual re-
sources such as free texts from Wikipedia gen-
erally contain more information than structured
KBs. As a supplementary knowledge to mitigate
the limitations of structured KBs, unstructured text
combined with structured KBs provides improved
results for related tasks, for example, clinical ques-
tion answering (Miller et al., 2016). For pro-
cessing text, word embedding models (e.g. skip-
gram model (Mikolov et al., 2013b; Mikolov et
al., 2013a)) can efficiently discover and represent
the underlying patterns of unstructured text. Word
embedding models represent words and their rela-
tionships as continuous vectors. To improve word
embedding models, previous works have also suc-
cessfully leveraged structured KBs (Bordes et al.,
2011; Weston et al., 2013; Wang et al., 2014; Zhou
et al., 2015; Liu et al., 2015).

Motivated by the superior power of the integra-
tion of structured KBs and unstructured free text,
we propose a novel approach to clinical diagno-
sis inference. The novelty lies in the ways of in-
tegrating structured KBs with unstructured text.
Experiments showed that our methods improved
clinical diagnosis inference from different aspects
(Section 5.4). Previous work on diagnosis in-
ference from clinical narratives either formulates
the problem as a medical literature retrieval task
(Zheng and Wan, 2016; Balaneshin-kordan and
Kotov, 2016) or as a multiclass multilabel classi-
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fication problem in a supervised setting (Hasan et
al., 2016; Prakash et al., 2016). To the best of our
knowledge, there is no work on diagnoses infer-
ence from clinical narratives conducted in an un-
supervised way. Thus, we build such baselines for
this task.

2 Overview of the Approach

Our approach includes four steps in general: 1)
extracting source concepts, q, from clinical narra-
tives, 2) iteratively identifying corresponding ev-
idence concepts, a, from KBs and unstructured
text, 3) representing both source and evidence
concepts in a weighted graph via a regularizer-
enhanced skip-gram model, and 4) ranking the rel-
evant evidence concepts (i.e. diagnoses) based on
their association with the source concepts, S(q, a)
(computed by weighted dot product of two vec-
tors), to generate the final output. Figure 1 shows
the overview using an illustrative example.

Given source concepts as input, we build an
edge-weighted graph representing the connections
among all the concepts by iteratively retrieving
evidence concepts from both KBs and unstruc-
tured text. The weights of the edges represent the
strengths of the relationships between concepts.
Each concept is represented as a word embedding
vector. We combine all the source concept vec-
tors into a single vector representing a clinical sce-
nario. Source concepts are differentiated accord-
ing to the weighting scheme in Section 4.2. Evi-
dence concepts are also represented as vectors and
ranked according to their relevance to the source
concepts. For each clinical case, we find the most
probable diagnoses from the top-ranked evidence
concepts.

3 Knowledge Sources of Evidence
Concepts

In this study, we use UMLS Metathesaurus (Bo-
denreider, 2004) and Freebase (Bollacker et al.,
2008) as the structured KBs. Both KBs pro-
vide semantic relation triples in the following
format: <concept1, relation, concept2>. We
select UMLS relation types that are relevant
to the problem of clinical diagnosis inference.
These types include disease-treatment, disease-
prevention, disease-finding, sign or symptom,
causes etc. Freebase contains a large number
of triples from multiple domains. We select
61,243 triples from freebase that are classified as

medicine relation types. There are 19 such rela-
tion types in total. Most of them fall under the
“medicine.disease” category.

For unstructured text, we use articles from
Wikipedia and MayoClinic corpus as the supple-
mentary knowledge source. Important clinical
concepts mentioned in a Wikipedia/MayoClinic
page can serve as a critical clue to a clinical di-
agnosis. For example, in Figure 1, we see that
“dyspnea”, “shortness of breath”, “tachypnea” etc.
are the related signs and symptoms of the “Pul-
monary Embolism” diagnosis. We select 37,245
Wikipedia pages under the clinical diseases and
medicine category in this study. Most of the
page titles represent disease names. In addition,
MayoClinic2 disease corpus contains 1,117 pages,
which include sections of Symptoms, Causes,
Risk Factors, Treatments and Drugs, Prevention,
etc.

4 Methodology

4.1 Building Weighted Concept Graph
Both the source and the evidence concepts are
represented as nodes in a graph. A clinical case
is represented as a set of source concept nodes:
q = {q1, q2, . . .}. We build a weighted concept
graph from source concepts using Algorithm 1.

Algorithm 1: Build Concept Graph
Input : source concept nodes q
Output: graphG = (V,E)

1 S = q and V = q;
2 while S 6= ∅ do
3 for each qi in S do
4 if distance(qi, q) > 2 then
5 continue;
6 end
7 if triple< qi, r, aj > in KBs then
8 wij = 1;
9 e = (qi, aj) and e.value = wij ;

10 insert aj to V and S;
11 insert e toE;
12 end
13 Use qi as query, search in Unstructured Text Corpora, get

ResultR;
14 for each page-similarity pair (p, sij) inR do
15 e = (qi, title(p)) and e.value = sij ;
16 insert title(p) to V and S;
17 insert e toE;
18 end
19 remove qi from S;
20 end
21 end

Two kinds of evidence concept nodes are added
to the graph: 1) the entities from KBs (UMLS and
Freebase) (step 7-12 in Algorithm 1), and 2) the
entities from unstructured text pages (step 13-18).
If there exists a triple < qi, r, aj > in KBs, where

2http://www.mayoclinic.org/diseases-conditions
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Figure 1: Overview of our system.

r refers to a relation, an edge is used to connect
node qi and node aj . wij represents the weight for
that edge, and let wij = 1, if the corresponding
triple occurs at least once. Due to the incomplete-
ness of the KBs, there may exist multiple missing
connections between a potential evidence concept
aj and a source concept qi. Unstructured knowl-
edge from Wikipedia and MayoClinic can replen-
ish these missing connections. For each page p,
the page title represents an evidence concept aj .
We use each source concept qi as a query, and
page p as a document, and then calculate a query-
document similarity to measure the edge weight
wij between node aj and node qi. We only take
evidence concepts as all nodes connected to source
concepts in a distance of at most 2 (step 4-6).

4.2 Representing Clinical Case

We combine the source concepts q and get a sin-
gle vector vq to represent the clinical case narra-
tive. The source concepts from narratives for clin-
ical diagnosis inference should be differentiated.
Some source concepts are major symptoms for a
diagnosis, while others are less critical. These ma-
jor source concepts should be identified and given
higher weight values. We develop two kinds of
weighting schema for the differential expression
of the source concepts. The source concept is rep-
resented as vq = 1

N

∑
qi∈q γivqi . N is the total

number of source concepts. vqi is the vector rep-
resentation for one source concept qi.

(1) A longer concept usually convey more infor-
mation (e.g. malar rash vs. rash), so it should be
given more weights. We define this weight value
as γ1 = #Words inConcept.

(2) For some commonly seen concepts (e.g.
fever), usually, there are more edges connected to
them. Sometimes, a common concept is less im-
portant for diagnosis inference, while some unique
concepts are critical to infer a specific diagnosis.
We define this weight value for each concept as
γ2 = 1

#Connected Edges . A higher weight value
means the source concept is more unique.

4.3 Inferring Concepts for Diagnosis

Extracting Potential Evidence Concepts: From
source concept nodes q, we find their con-
nected concepts in the graph as evidence concepts.
Traversing all edges in a graph is computation-
ally expensive and often unnecessary for finding
potential diagnoses. The solution is to use a sub-
graph. We follow the idea proposed in Bordes et
al. (2014). The evidence concepts are defined as
all nodes connected to source concepts in a dis-
tance of at most 2.

Ranking Evidence Concepts: We rank each
evidence concept a′ according to its matching
score S(q, a′) to the source concepts. The match-
ing score S(q, a′) is a dot product of embedding
representation of the evidence concept a′ and the
source concept q by taking the edge weights wij

into consideration. S(q, a′) = wijva′ · vq. va′ and
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vq are embedding representations for a′ and q. The
embedding E ∈ Rk×N for concepts are trained
using embedding models (Section 4.4). N is the
total number of concepts and k is the predefined
dimensions for the embedding vector. Each con-
cept in the graph can find a k dimensional vector
representation in E. For a set of source concepts
and evidence concepts A(q), the top-ranked evi-
dence concept can be computed as:

a = argmax(a′∈A(q))S(q, a′) (1)

4.4 Word Embedding Models

We use the skip-gram model as the basic model.
The skip-gram model predicts surrounding words
wt−c, . . . , wt−1, wt+1, . . . , wt+c given the current
center word wt. We further enhance the skip-gram
model by adding a graph regularizer. Given a se-
quence of training words w1, w2, . . . , wT , the ob-
jective function is:

J = max
1

T

T∑
t=1

(1−λ)
∑

−c≤j≤c,j 6=0

log p(wt+j |wt)−λ
R∑

r=1

D(vt, vr),

(2)

where vt and vr are the representation vectors for
wordwt and wordwr. λ is a parameter to leverage
the graph regularizer and original objective. Sup-
pose, wordwt is mentioned having relations with a
set of other wordswr, r ∈ {1, . . . , R} in KBs. The
graph regularizer λ

∑R
r=1D(vt, vr) integrates ex-

tra knowledge about semantic relationships among
words within the graph structure. D(vt, vr) repre-
sents the distance between vt and vr. In our ex-
periments, the distance between two concepts is
measured using KL-Divergence. D(vt, vr) can be
calculated using any other types of distance met-
rics. By minimizing D(vt, vr), we expect if two
concepts have a close relation in KBs, their vector
representations will also be close to each other.

5 Experiments

5.1 Datasets for Clinical Diagnosis Inference

Our first dataset is from the 2015 TREC CDS
track (Roberts et al., 2015). It contains 30 top-
ics, where each topic is a medical case narrative
that describes a patient scenario. Each case is as-
sociated with the ground truth diagnosis. We use
MetaMap3 to extract the source concepts from a
narrative and then manually refine them to remove
redundancy.

3https://metamap.nlm.nih.gov/

Our second dataset is curated from HumanDx4,
a project to foster integrating efforts to map health
problems to their possible diagnoses. We curate
diagnosis-findings relationships from HumanDx
and create a dataset with 459 diagnosis-findings
entries. Note that, the findings from this dataset
are used as the given source concepts for a clinical
scenario.

5.2 Training Data for Word Embeddings

We curate a biomedical corpus of around 5M
sentences from two data sources: PubMed Cen-
tral5 from the 2015 TREC CDS snapshot6 and
Wikipedia articles under the “Clinical Medicine”
category7. After sentence splitting, word tok-
enization, and stop words removal, we train our
word embedding models on this corpus. UMLS
Metathesaurus and Freebase are used as KBs to
train the graph regularizer. We use stochastic gra-
dient descent (SGD) to maximize the objective
function and set the parameters empirically.

5.3 Results

We use Mean Reciprocal Rank (MRR) and Aver-
age Precision at 5 (P@5) to evaluate our models.
MRR is a statistical measure to evaluate a process
that generates a list of possible responses to a sam-
ple of queries, ordered by probability of correct-
ness. Average P@5 is calculated as precision at
top 5 predicted results divided by the total number
of topics. Since our dataset only has one correct
diagnosis for each topic, all results have poor Av-
erage P@5 scores.

Table 1 presents the results for our experi-
ments. We report two baselines: Skip-gram refers
to the basic word embedding model, and Skip-
gram* refers to the graph-regularized model us-
ing KBs. We also show the results for using dif-
ferent unstructured knowledge sources and differ-
ent weighting schema. We can see that the best
scores are obtained by the graph-regularized mod-
els with both the unstructured knowledge sources
with variable weighting schema (Section 4.2).

5.4 Discussion

Unstructured text is a critical supplement: We
analyze the source concepts and the corresponding
evidence concepts for CDS topics, and investigate

4https://www.humandx.org/
5https://www.ncbi.nlm.nih.gov/pmc/
6http://www.trec-cds.org/2015.html#documents
7https://en.wikipedia.org/wiki/Category:Clinical medicine
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TREC CDS HumanDx
Method MRR Average P@5 MRR Average P@5

Baselines
Skip-gram 21.66 8.88 18.56 5.08
Skip-gram* 22.60 8.88 18.63 5.15

Skip-gram* + Different Unstructured Text Datasets
Wikipedia 26.01 8.96 19.42 5.76
MayoClinic 32.64 9.52 19.46 5.80
Both 32.29 9.60 19.12 5.76

Skip-gram* + Both Text Datasets + Different Weights
γ1 32.22 10.40 21.09 5.88
γ2 32.77 12.00 20.86 5.93

Table 1: Evaluation results.

the origin of the correct diagnoses. 70% of the
correct diagnoses can be inferred from Wikipedia,
60% of the correct diagnoses from MayoClinic,
56% of the correct diagnoses from Freebase, and
only 7% are from UMLS. Hence, Wikipedia and
MayoClinic are very important sources for finding
the correct diagnoses.

Source concepts should be differentiated: In
clinical narratives, some concepts are more critical
than others for the clinical diagnosis inference. We
developed two weighting schema to assign higher
weight values to more important concepts. The re-
sults in Table 1 show that differentiating the source
concepts with different weight values has a large
impact on the model performance.

Enhanced skip-gram is better: We propose
the enhanced skip-gram model by using a graph
regularizer to integrate the semantic relationships
among concepts from KBs. Experimental results
show that diagnosis inference is improved by us-
ing word embedding representations from the en-
hanced skip-gram model.

6 Conclusion

We proposed a novel approach to the task of clin-
ical diagnosis inference from clinical narratives.
Our method overcomes the limitations of struc-
tured KBs by making use of the integrated struc-
tured and unstructured knowledge. Experimen-
tal results showed that the enhanced skip-gram
model with differential expression of source con-
cepts improved the performance on two bench-
mark datasets.
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Abstract

This paper proposes a method for classi-
fying the type of lexical-semantic relation
between a given pair of words. Given an
inventory of target relationships, this task
can be seen as a multi-class classification
problem. We train a supervised classi-
fier by assuming that a specific type of
lexical-semantic relation between a pair of
words would be signaled by a carefully de-
signed set of relation-specific similarities
between the words. These similarities are
computed by exploiting “sense represen-
tations” (sense/concept embeddings). The
experimental results show that the pro-
posed method clearly outperforms an ex-
isting state-of-the-art method that does not
utilize sense/concept embeddings, thereby
demonstrating the effectiveness of the
sense representations.

1 Introduction

Given a pair of words, classifying the type of
lexical-semantic relation that could hold between
them may have a range of applications. In particu-
lar, discovering typed lexical-semantic relation in-
stances is vital in building a new lexical-semantic
resource, as well as for populating an existing
lexical-semantic resource. As argued in (Boyd-
Graber et al., 2006), even Princeton WordNet
(henceforth PWN) (Miller, 1995) is noted for its
sparsity of useful internal lexical-semantic rela-
tions. A distributional thesaurus (Weeds et al.,
2014), usually built with an automatic method
such as that described in (Rychlý and Kilgar-
riff, 2007), often comprises a disorganized seman-
tic network internally, where a variety of lexical-
semantic relations are incorporated without having
proper relation labels attached. These issues could

be addressed if an accurate method for classifying
the type of lexical-semantic relation is available.

A number of research studies on the classifi-
cation of lexical-semantic relationships have been
conducted. Among them, Necsuleşcu et al. (2015)
recently presented two classification methods that
utilize word-level feature representations includ-
ing word embedding vectors. Although the re-
ported results are superior to the compared sys-
tems, neither of the proposed methods exploited
“sense representations,” which are described as the
fine-grained representations of word senses, con-
cepts, and entities in the description of this work-
shop1.

Motivated by the above-described issues and
previous work, this paper proposes a supervised
classification method that exploits sense represen-
tations, and discusses their utilities in the lexical
relation classification task. The major rationales
behind the proposed method are: (1) a specific
type of lexical-semantic relation between a pair of
words would be indicated by a carefully designed
set of relation-specific similarities associated with
the words; and (2) the similarities could be ef-
fectively computed by exploiting sense represen-
tations.

More specifically, for each word in the pair, we
first collect relevant sets of sense/concept nodes
(node sets) from an existing lexical-semantic re-
source (PWN), and then compute similarities for
some designated pairs of node sets, where each
node is represented by an embedding vector de-
pending on its type (sense/concept). In terms
of its design, each node set pair is constructed
such that it is associated with a specific type
of lexical-semantic relation. The resulting ar-
ray of similarities, along with the underlying
word/sense/concept embedding vectors is finally

1https://sites.google.com/site/
senseworkshop2017/background
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fed into the classifier as features.
The empirical results that use the BLESS

dataset (Baroni and Lenci, 2011) demonstrate that
our method clearly outperformed existing state-of-
the-art methods (Necsuleşcu et al., 2015) that did
not employ sense/concept embeddings, confirm-
ing that properly combining the similarity features
also with the underlying semantic/conceptual-
level embeddings is indeed effective. These re-
sults in turn highlight the utility of “the sense rep-
resentations” (the sense/concept embeddings) cre-
ated by the existing system referred to as AutoEx-
tend (Rothe and Schütze, 2015).

The remainder of the paper first reviews related
work (section 2), and then presents our approach
(section 3). As our experiments (section 4) uti-
lize the BLESS dataset, the experimental results
are directly compared with that of (Necsuleşcu
et al., 2015) (section 5). Although our methods
were proved to be superior through the experi-
ments, our operational requirement (sense/concept
embeddings should be created from the underly-
ing lexical-semantic resource) could be problem-
atic especially when having to process unknown
words. We conclude the present paper by dis-
cussing future work to address this issue (section
6).

2 Related work

A lexical-semantic relationship is a fundamental
relationship that plays an important role in many
NLP applications. A number of research efforts
have been devoted to developing an automated and
accurate method to type the relationship between
an arbitrary pair of words. Most of these stud-
ies (Fu et al., 2014; Kiela et al., 2015; Shwartz
et al., 2016), however, concentrated on the hyper-
nymy relation, since it is the most fundamental
relationship that forms the core taxonomic struc-
ture in a lexical-semantic resource. In compari-
son, fewer studies considered a broader range of
lexical-semantic relations, e.g., (Necsuleşcu et al.,
2015) and our present work.

Lenci and Benotto (2012), among the
hypernymy-centered researches, compared
existing directional similarity measures (Kotler-
man et al., 2010) to identify hypernyms, and
proposed a new measure that slightly modified
an existing measure. The rationale behind their
work is: as hypernymy is a prominent asymmetric
semantic relation, it might be detected by the

higher similarity score yielded by an asymmetric
similarity measure. Their idea of exploiting a
specific type of similarity to detect a specific type
of lexical-semantic relationship is highly feasible.

Recently, distributional and distributed word
representations (word embeddings) have been
widely utilized, partly because the offset vec-
tor simply brought about by vector subtraction
over word embeddings can capture some rela-
tional aspects including a lexical-semantic rela-
tionship. Given these useful resources, Weeds et
al. (2014) presented a supervised classification ap-
proach that employs a pair of distributional vec-
tors for a given word pair as the feature, argu-
ing that concatenation and subtraction were al-
most equally effective vector operations. Simi-
lar lines of work were presented by (Necsuleşcu
et al., 2015) and (Vylomova et al., 2016): the
former suggested concatenation might be slightly
superior to subtraction, whereas the latter espe-
cially highlighted the subtraction. Here it should
be noted that Necsuleşcu et al. (2015) employed
two kinds of vectors: one is a CBOW-based vec-
tor (Mikolov et al., 2013b), and the other involves
word embeddings with a dependency-based skip-
gram model (Levy and Goldberg, 2014).

The present work exploits semantic/conceptual-
level embeddings, which were actually derived
by applying the AutoExtend (Rothe and Schütze,
2015) system. Among the recent proposals
for deriving semantic/conceptual-level embed-
dings (Huang et al., 2012; Pennington et al., 2014;
Neelakantan et al., 2014; Iacobacci et al., 2015),
we adopt the AutoExtend system, since it ele-
gantly exploits the network structure provided by
an underlying semantic resource, and naturally
consumes existing word embeddings. More im-
portantly, the underlying word embeddings are di-
rectly comparable with the derived sense represen-
tations. In the present work, we applied the Au-
toExtend system to the Word2Vec CBOW embed-
dings (Mikolov et al., 2013b) by referring to PWN
version 3.0 as the underlying lexical-semantic re-
source. As far as the authors know, AutoExtend-
derived embeddings have been evaluated in the
tasks of similarity measurements and word sense
disambiguation: they are yet to be applied to a se-
mantic relation classification task.

There are a few datasets (Baroni and Lenci,
2011; Santus et al., 2015) available that were pre-
pared for the evaluation of lexical-semantic rela-
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Figure 1: Creating node sets and node set pairs (in hypernymy relation).

tion classification tasks. We utilized the BLESS
dataset (Baroni and Lenci, 2011) in order to di-
rectly compare our proposed method with the re-
lated methods given in (Necsuleşcu et al., 2015).

3 Proposed method

We adopt a supervised learning approach for clas-
sifying the type of semantic relationship between
a pair of words (w1, w2), expecting that the plau-
sibility of a specific semantic lexical-relationship
can be measured by the similarity between the
senses/concepts associated with each of the words.

Figure 1 exemplifies the fundamental rationale
behind the proposed method. We assume that the
plausibility of the hypernymy relation between “al-
ligator” (w1) and “reptile” (w2) can be mainly
measured by the similarity between the set of hy-
pernym concepts of “alligator” (Shyper

w1 ) and the
set of concepts of “reptile” (Sw2). Based on this
assumption, we calculate the similarities by the
following steps. Recall that these similarities are
assumed to measure the plausibilities of relation-
ships that could hold between a given word pair.

1. Collect pre-defined types of node sets for
each word (five types; detailed in section
3.1).

2. Build some useful pairs of node sets by con-
sidering the possible relationships assumed to
be held between the words (7 pair types; de-
tailed in section 3.2).

3. Calculate the similarities for each node set
pair by three types of calculation methods
(detailed in section 3.3).

In total we calculate 21 (7 pairs × 3 meth-
ods) similarities per word pair along with the co-
sine similarity between word embeddings. We use
these similarities and vector pairs that yielded the
similarities as feature.

3.1 Collecting node sets for each word

By consulting PWN, we collect the following five
types of node sets for each word. These node set
types are selected so as to characterize relevant
lexical-semantic relationships in the target inven-
tory detailed in section 4.1.

• Lw: a set of senses that a word w has

• Sw: a set of concepts each denoted by a mem-
ber of Lw

• Shyper
w : a set of concepts whose member is

directly linked from a member of Sw by the
PWN hypernymy relation

• Sattri
w : a set of concepts whose member is

directly linked from a member of Sw by the
PWN attribute relation

• Smero
w : a set of concepts whose member is

directly linked from a member of Sw by the
PWN meronymy relation
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3.2 Building node set pairs

Given a pair of words (w1, w2), we build seven
types of node set pairs as shown in Table 1. Each
row in the table defines the combination of node
sets and presents the associated mnemonic.

Table 1: Node set pairs built for (w1, w2).
Node set pair Mnemonic
Lw1 Lw2 sense
Sw1 Sw2 concept

Shyper
w1 Sw2 hyper

Shyper
w1 Shyper

w2 coord
Sattri

w1
Sw2 attri 1

Sw1 Sattri
w2

attri 2
Smero

w1
Sw2 mero

These types of node set pairs are defined in ex-
pecting that:

• sense, concept: captures semantic similar-
ity/relatedness between the words;

• hyper: captures hypernymy relation between
the words;

• coord: dictates if the words share a common
hypernym;

• attri 1, attri 2: dictates if w1 describes some
aspect of w2 (attri 1) or vice versa (attri 2);

• mero: captures the meronymy relation be-
tween the words.

Note that the italicized words indicate lexical
relationships often used in linguistic literature.

3.3 Similarity calculation

In a pair of node sets, each node set could have
a different number of elements, meaning that we
cannot apply element-wise computation (e.g., co-
sine) for measuring the similarity between the
node sets. We thus propose the following three
similarity calculation methods and compare them
in the experiments.

In the following formulations: c indicates a cer-
tain node set pair type defined in Table 1; (Xw1 ,
Xw2) is the node set pair for (w1, w2) specified
by c; and sim( ~x1, ~x2) is the cosine similarity be-
tween ~x1 and ~x2.

simc
max method:

simc
max(w1, w2) = max

x1∈Xw1 ,x2∈Xw2

sim( ~x1, ~x2)

(1)
As the formula defines, this method selects a com-
bination of the node sets that yield the maximum
similarity, implying that it achieves a disambigua-
tion functionality.

The vector pair from the most similar node sets
( ~x1, ~x2) is also used as feature. The actual usage
of this pair in the experiments is detailed in section
4.2.

simc
sum method:

simc
sum(w1, w2) = sim(

∑
x1∈Xw1

~x1,
∑

x2∈Xw2

~x2)

(2)
As defined by the formula, this method firstly

makes a holistic meaning representation by sum-
ming all embeddings of the nodes contained in
each node set. We devised this method with the
expectation that it could dictate semantic related-
ness rather than semantic similarity (Budanitsky
and Hirst, 2006). The pair of the summed embed-
dings (

∑
x1∈Xw1

~x1,
∑

x2∈Xw2
~x2) is also used as

feature.

simc
med method:

simc
med(w1, w2) = median

x1∈Xw1 ,x2∈Xw2

sim( ~x1, ~x2)

(3)
The method is expected to express the similar-
ity between mediated representations of each node
set. Instead of the arithmetic average, we employ
the median to select a representative node in each
node set, allowing us to use the associated vector
pair as feature.

4 Experiments

We evaluated the effectiveness of the proposed su-
pervised approach by conducting a series of clas-
sification experiments using the BLESS dataset
(Baroni and Lenci, 2011). Among the possi-
ble learning algorithms, we adopted the Random
ForestTMalgorithm as it maintains a balance be-
tween performance and efficiency. The results
are assessed by using standard measures such as
Precision (P ), Recall (R), and F1. We em-
ployed the pre-trained Word2Vec embeddings2.

2300-dimensional vectors by CBoW, available
at https://code.google.com/archive/p/
word2vec/
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We trained sense/concept embeddings by apply-
ing the AutoExtend system3 (Rothe and Schütze,
2015) while using the Word2Vec embeddings as
the input and consulting PWN 3.0 as the underly-
ing lexical-semantic resource.

4.1 Dataset
We utilized the BLESS dataset, which was de-
veloped for the evaluation of distributional se-
mantic models. It provides 14,400 tetrads of
(w1, w2, lexical-semantic relation type, topical do-
main type): where the topical domain type des-
ignates a semantic class from the coarse semantic
classification system consisting of 17 English con-
crete noun categories (e.g., tools, clothing, vehi-
cles, and animals). The lexical-semantic relation
types defined in BLESS and their counts are de-
scribed as follows:

• COORD (3565 word pairs): they are co-
hyponyms (e.g., alligator-lizard).

• HYPER (1337 word pairs): w2 is a hypernym
of w1 (e.g., alligator-animal).

• MERO (2943 word pairs): w2 is a com-
ponent/organ/member of w1 (e.g., alligator-
mouth).

• ATTRI (2731 word pairs): w2 is an adjective
expressing an attribute of w1 (e.g., alligator-
aquatic).

• EVENT (3824 word pairs): w2 is a verb re-
ferring to an action/activity/happening/event
associated with w1 (e.g., alligator-swim).

Note here that these lexical-semantic relation
types are not completely concord with the PWN
relations described in section 3.1.

Data division: In order to compare the per-
formance for the present task we divided the
data in three ways: In-domain, Out-of-domain
(as employed in (Necsuleşcu et al., 2015)), and
Collapsed-domain. For the In-domain setting, the
data in the same domain were used both for train-
ing and testing. We thus conducted a five-fold
cross validation for each domain. For the Out-of-
domain setting, one domain is used for testing and
the remaining data is used for training. In addi-
tion, we prepared the Collapsed-domain setting,
where we conducted a 10-fold cross validation for
the entire dataset irrespective of the domain.

3The default hyperparameters were used.

4.2 Comparing methods
A supervised relation classification system
referred to as WECE (Word Embeddings
Classification systEm) in (Necsuleşcu et al.,
2015) was especially chosen for comparisons,
since this method combines and uses the word
embeddings of a given word pair (w1, w2) as
feature. They compare two types of approaches
described as WECEoffset and WECEconcat:
WECEoffset uses the offset of the word
embeddings ( ~w2 − ~w1) as the feature vector,
whereas WECEconcat uses the concatenation
of the word embeddings. Moreover, they use
two types of word embeddings: a bag-of-words
model (BoW ) (Mikolov et al., 2013a) and
a dependency-based skip-gram model (Dep)
(Levy and Goldberg, 2014). In summary, the
WECE system has the following variations:
WECEoffset

BoW , WECEoffset
Dep , WECEconcat

BoW and
WECEconcat

Dep .
As described in Section 3, we utilize 22 kinds

of similarity and the underlying vector as fea-
tures. In order to make reasonable comparisons,
we compare two vector composition methods. In
addition to the already described array of similari-
ties, the Proposalconcat method uses the concate-
nated vector of the underlying vectors, whereas
the Proposalconcat method employs the differ-
ence vector. As a result, the dimensionalities of
the resulting vectors employed in these methods
are 13,222 (22 similarities + 22× 600 dimensions
for concatenated vectors) and 6,622 (22 similari-
ties + 22× 300 dimensions for difference vectors),
respectively.

Baseline: As detailed in section 3, our meth-
ods utilize PWN neighboring concepts linked by
particular lexical-semantic relationships, such as
(hypernymy, attribute, and meronymy).
We thus set the baseline as follows while respect-
ing the direct relational links defined in PWN.

• Given a word pair (w1, w2), if any concept in
Sw1 and that in Sw2 are directly linked by a
certain relationship in PWN, let w1 and w2 be
in the relation.

Note that the baseline method cannot find any
word pair that is annotated to have the EVENT
relation in the BLESS dataset, because there are
no links in PWN that share the same or a simi-
lar definition. Likewise it is not capable for the
method to find any word pair with the ATTRI
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In-domain Out-of-domain Collapsed-domain
P R F1 P R F1 P R F1

WECEoffset
BoW 0.900 0.909 0.904 0.680 0.669 0.675 - - -

WECEoffset
Dep 0.853 0.865 0.859 0.687 0.623 0.654 - - -

Proposaloffset 0.913 0.907 0.906 0.766 0.762 0.753 0.867 0.867 0.865
WECEconcat

BoW 0.899 0.910 0.904 0.838 0.570 0.678 - - -
WECEconcat

Dep 0.859 0.870 0.865 0.782 0.638 0.703 - - -
Proposalconcat 0.973 0.971 0.971 0.839 0.819 0.812 0.970 0.970 0.970

Table 2: Comparison of the overall classification results.

relation in BLESS, because the definition of the
attribute relationship in PWN differs from
the definition of the ATTRI relation in the BLESS
dataset. Thus, we can only compare the results for
the relationships COORD, HYPER, and MERO
with the common measures, P , R, and F1.

5 Results

5.1 Major results

Table 2 compares our results with that of the
WECE systems in the three data set divisions
(In/Out/Collapsed domains). The results show that
Proposalconcat performed best in all measures of
each division (shown in bold font). We observe
two common trends across the approaches includ-
ing WECE: (1) Every score in the Out-of-domain
setting was lower than that in the In-domain set-
ting; and (2) The methods using vector concatena-
tion achieved higher scores than those using vector
offsets. The former trend is reasonable, since in-
formation that is also more relevant to the test data
is contained in the training data in the In-domain
settings. The latter trend suggests that concate-
nated vectors may be more informative than off-
set vectors, supporting the conclusion presented in
(Necsuleşcu et al., 2015).

Nevertheless, the results in the table clearly
show that Proposaloffset outperformed both
WECEconcat

BoW and WECEconcat
Dep not only in Pre-

cision but also in Recall in the Out-of-domain
setting. This may confirm that sense represen-
tations, acquired by exploiting a richer structure
encoded in PWN, are richer in semantic content
than word embeddings learned from textual cor-
pora, and hence, even the offset vectors are capa-
ble of abstracting some characteristics of potential
lexical-semantic relations between a word pair ef-
fectively.

Table 3 breaks down the results obtained

Relationship P R F1
COORD 0.761 0.559 0.645
by Baseline 0.550 0.108 0.180
HYPER 0.767 0.654 0.706
by Baseline 0.746 0.199 0.314
MERO 0.625 0.809 0.705
by Baseline 0.934 0.034 0.065
ATTRI 0.913 0.995 0.952
EVENT 0.974 0.983 0.979

Table 3: Breakdown of the results obtained by
ProposalOoD

concat. The Baseline results are shown
in italics.

by Proposalconcat in the Out-of-domain setting
(ProposalOoD

concat), and compares them with the
Baseline results, showing that Proposalconcat

clearly outperformed the Baseline in Recall and
F1. This clearly confirms that the direct relational
links defined in PWN are insufficient for classify-
ing the BLESS relationships. With respect to the
internal comparison of the ProposalOoD

concat results,
a prominent fact is the high-performance classi-
fication of the ATTRI and EVENT relationships.
By definition, these relationships link a noun to an
adjective (ATTRI) or to a verb (EVENT), whereas
the COORD, HYPER, and MERO relationships
connect a noun to another noun. This may sug-
gest that the information carried by part-of-speech
plays a role in this classification task.

Table 4 further details the results obtained by
ProposalOoD

concat by showing the confusion ma-
trix, also endorsing that the fine-grained classifi-
cation of inter-noun relationships (COORD, HY-
PER, and MERO) is far more difficult than dis-
tinguishing cross-POS relationships (ATTRI and
EVENT). In particular, as suggested in (Shwartz
et al., 2016), synonymy is difficult to distinguish
from hypernymy even by humans.
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HYPER COORD ATTRI MERO EVENT
HYPER 875 157 10 282 13
COORD 189 1994 220 1118 44
ATTRI 1 13 2716 1 0
MERO 74 423 24 2380 42
EVENT 2 32 5 27 3758

Table 4: Confusion matrix for the results by ProposalOoD
concat in the Out-of-domain setting.

5.2 Ablation tests

This section more closely considers the re-
sults in the Out-of-domain setting. Table 5
shows the results of the ablation tests for the
ProposalOoD

concat setting, comparing the effective-
ness of the source of the similarities. Each
row other than ProposalOoD

concat displays the re-
sults when the designated feature is ablated. The
−word row shows the result when ablating the
601-dimensional features created from the pair
of word embeddings, and the other rows show
the results when ablating the corresponding 1803-
dimensional features (three similarities and the
three vector pairs that yielded the similarities) gen-
erated from each node set pair.

P R F1 F1 diff
ProposalOoD

concat 0.839 0.819 0.812 -
−word 0.845 0.827 0.819 0.008
−sense 0.833 0.815 0.806 -0.006
−concept 0.826 0.809 0.802 -0.010
−coord 0.834 0.811 0.803 -0.009
−hyper 0.826 0.803 0.800 -0.012
−attri1 0.826 0.806 0.798 -0.014
−attri2 0.842 0.820 0.814 0.002
−mero 0.835 0.813 0.806 -0.006

Table 5: Ablation tests comparing the effective-
ness of each node set.

This table suggests that the concept, hyper, and
attri1 node set pairs are effective, as indicated
by the relatively large decreases in F1. Surpris-
ingly, however, the features generated from the
word embeddings affected the performance. This
implies that abstract-level semantics encoded in
sense/concept embeddings are more robust in the
classification of the target lexical-semantic rela-
tionships. However, the utility of sense embed-
dings was modest.This may result from the learn-
ing method in AutoExtend: it tries to split a word
embedding into the senses’ embeddings without
considering the virtual distribution of senses in the

Word2Vec training corpus. It is a potential future
work to address this issue.

Table 6 compares the effectiveness of the types
of features. The only similarities row shows the re-
sults when ablating the vectoral features and only
using the 22-dimensional similarity features (21
semantic/conceptual-level similarities along with
a word-level similarity). On the other hand, the
only vector pairs row shows the results from the
adverse setting, using the 22 vector pairs (using
13,200-dimensional features).

P R F1 F1 diff
ProposalOoD

concat 0.839 0.819 0.812 -
only similarities 0.704 0.687 0.683 -0.129
only vector pairs 0.834 0.812 0.804 -0.007

Table 6: Effectiveness comparison of the types of
features.

It is shown that using vectorial features would
produce more accurate results than simply using
the similarity features, confirming the general as-
sumption: more features yield more accurate re-
sults. However, we would have to emphasize that,
even only with the similarity features, our ap-
proach outperformed the comparable method in
Recall (shown in the Out-of domain columns of
Table 2 ).

Table 7 shows the results of the other abla-
tion tests, comparing the effectiveness of the sim-
ilarity calculation methods. Each row in the ta-
ble displays the result when ablating the 4207-
dimensional features (seven similarities plus seven
vector pairs that yielded these similarities).

As the results in the table show, the F1 scores
did not change significantly in each ablated con-
dition, showing that the effect provided by the ab-
lated method is completed by the remaining meth-
ods. There exists some redundancy in preparing
these three calculation methods.
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P R F1 F1 diff
ProposalOoD

concat 0.839 0.819 0.812 -
−simmax 0.835 0.812 0.805 -0.007
−simsum 0.843 0.822 0.816 0.004
−simmed 0.838 0.811 0.805 -0.007

Table 7: Additional ablation tests comparing the
similarity calculation methods.

6 Discussion

This section discusses two issues: the first is asso-
ciated with the usage of PWN in the experiments
using BLESS, and the other is concerned with the
“lexical memorization” problem.

Usage of PWN: As detailed in Section 3, our
methods utilize neighboring concepts linked
by the particular lexical-semantic relations
hypernymy, attribute, and meronymy
defined in PWN. Some may consider that the
HYPER, ATTRI, and MERO relationships can
be estimated simply by consulting the above-
mentioned PWN relationships. However, this is
definitely NOT the case, since almost all of the
semantic relation instances in the BLESS dataset
are not immediately defined in PWN: Among the
14,400 BLESS instances, only 951 are defined
in PWN. For an obvious example, there are no
links in PWN that are labeled event, which is a
type of semantic relation defined in BLESS. The
low Recall results presented in Table 3 endorsed
this fact, and clearly show the sparsity of useful
semantic links in PWN. However, for some of
the lexical-semantic relation types that exhibit
transitivity, such as hypernymy, consulting the
PWN indirect links could be effectively utilized
to improve the results.

Lexical memorization: Levy et al. (2015) re-
cently argued that the results achieved by many su-
pervised methods are inflated because of the “lex-
ical memorization” effect, which only learns “pro-
totypical hypernymy” relations. For example, if a
classifier encounters many positive examples such
as (X, animals), where X is a hyponym of animal
(e.g., dog, cat, ...), it only learns to classify any
word pair as a hypernym as far as the second word
is “animal.” We argue that our method can be ex-
pected to be relatively free from this issue. The
similarity features are not affected by this effect,
since any similarity calculation is a symmetric op-
eration, and independent of word order. More-

over, the simc
max or simc

med method selects a pair
of sense/concept embeddings, where the combi-
nation usually differs depending on the combi-
nation of node sets. On one hand, the simc

sum

method could be affected by the memorization ef-
fect, since the vectorial feature for the prototypical
hypernym is invariable.

7 Conclusion

This paper proposed a method for classifying the
type of lexical-semantic relation that could hold
between a given pair of words. The empirical
results clearly outperformed those previously ob-
tained with the state-of-the-art results, demonstrat-
ing that our rationales behind the proposal are
valid. In particular, it would be reasonable to
assume that the plausibility of a specific type of
lexical-semantic relation between the words could
be chiefly recovered by a carefully designed set
of relation-specific similarities. These results also
highlight the utility of “the sense representations,”
since our similarity calculation methods rely on
the sense/concept embeddings created by the Au-
toExtend system.

Future work could follow two directions. First,
we need to improve the classification of inter-noun
semantic relations. We may particularly need to
distinguish the hypernym relationship, which is
asymmetric, from the symmetric coordinate rela-
tionship. In this regard, we would need to improve
the creation of node sets and the combinations to
capture the innate difference of the relationships.

Second, we need to address the potential draw-
back of our proposal, which comes from our oper-
ational requirement: a lack of sense/concept em-
beddings is crucial, as we cannot collect relevant
node sets in this case. Therefore, we need to de-
velop a method to assign some of the existing con-
cepts to an unknown word, which is not contained
in PWN, by seeking the nearest concept in the re-
source. A possible method would first seek the
nearest concept in the underlying lexical-semantic
resource for an unknown word, and then induce a
revised set of sense/concept embeddings by itera-
tively applying the AutoExtend system.
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Abstract

Usage similarity (USim) is an approach to
determining word meaning in context that
does not rely on a sense inventory. Instead,
pairs of usages of a target lemma are rated
on a scale. In this paper we propose un-
supervised approaches to USim based on
embeddings for words, contexts, and sen-
tences, and achieve state-of-the-art results
over two USim datasets. We further con-
sider supervised approaches to USim, and
find that although they outperform unsu-
pervised approaches, they are unable to
generalize to lemmas that are unseen in the
training data.

1 Usage similarity

Word senses are not discrete. In many cases, for
a given instance of a word, multiple senses from
a sense inventory are applicable, and to varying
degrees (Erk et al., 2009). For example, consider
the usage of wait in the following sentence taken
from Jurgens and Klapaftis (2013):

1. And is now the time to say I can hardly
wait for your impending new novel about the
Alamo?

Annotators judged the WordNet (Fellbaum, 1998)
senses glossed as ‘stay in one place and antici-
pate or expect something’ and ‘look forward to the
probable occurrence of’, to have applicability rat-
ings of 4 out of 5, and 2 out of 5, respectively, for
this usage of wait. Moreover, Erk et al. (2009)
also showed that this issue cannot be addressed
simply by choosing a coarser-grained sense inven-
tory. That a clear line cannot be drawn between the
various senses of a word has been observed as far
back as Johnson (1755). Some have gone so far as

to doubt the existence of word senses (Kilgarriff,
1997).

Sense inventories also suffer from a lack of
coverage. New words regularly come into us-
age, as do new senses for established words. Fur-
thermore, domain-specific senses are often not in-
cluded in general-purpose sense inventories. This
issue of coverage is particularly relevant for social
media text, which contains a higher rate of out-
of-vocabulary words than more-conventional text
types (Baldwin et al., 2013).

These issues pose problems for natural lan-
guage processing tasks such as word sense disam-
biguation and induction, which rely on, and seek
to induce, respectively, sense inventories, and have
traditionally assumed that each instance of a word
can be assigned one sense.1 In response to this,
alternative approaches to word meaning have been
proposed that do not rely on sense inventories. Erk
et al. (2009) carried out an annotation task on “us-
age similarity” (USim), in which the similarity of
the meanings of two usages of a given word are
rated on a five-point scale.

Lui et al. (2012) proposed the first computa-
tional approach to USim. They considered ap-
proaches based on topic modelling (Blei et al.,
2003), under a wide range of parameter settings,
and found that a single topic model for all tar-
get lemmas (as opposed to one topic model per
target lemma) performed best on the dataset of
Erk et al. (2009). Gella et al. (2013) considered
USim on Twitter text, noting that this model of
word meaning seems particularly well-suited to
this text type because of the prevalence of out-of-
vocabulary words. Gella et al. (2013) also con-
sidered topic modelling-based approaches, achiev-
ing their best results using one topic model per

1Recent word sense induction systems and evaluations
have, however, considered graded senses and multi-sense ap-
plicability (Jurgens and Klapaftis, 2013).
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target word, and a document expansion strategy
based on medium frequency hashtags to combat
the data sparsity of tweets due to their relatively
short length. The methods of Lui et al. (2012) and
Gella et al. (2013) are unsupervised; they do not
rely on any gold standard USim annotations.

In this paper we propose unsupervised ap-
proaches to USim based on embeddings for words
(Mikolov et al., 2013; Pennington et al., 2014),
contexts (Melamud et al., 2016), and sentences
(Kiros et al., 2015), and achieve state-of-the-art
results over the USim datasets of both Erk et al.
(2009) and Gella et al. (2013). We then consider
supervised approaches to USim based on these
same methods for forming embeddings, which
outperform the unsupervised approaches, but per-
form poorly on lemmas that are unseen in the
training data.

2 USim models

In this section we describe how we represent a tar-
get word usage in context, and then how we use
these representations in unsupervised and super-
vised approaches to USim.

2.1 Usage representation

We consider four ways of representing an instance
of a target word based on embeddings for words,
contexts, and sentences. For word embeddings,
we consider word2vec (Mikolov et al., 2013) and
GloVe (Pennington et al., 2014). In each case we
represent a token instance of the target word in a
sentence as the average of the word embeddings
for the other words occurring in the sentence, ex-
cluding stopwords.

Context2vec (Melamud et al., 2016) can be
viewed as an extension of word2vec’s continuous
bag-of-words (CBOW) model. In CBOW, the con-
text of a target word token is represented as the av-
erage of the embeddings for words within a fixed
window. In contrast, context2vec uses a richer rep-
resentation based on a bidirectional LSTM cap-
turing the full sentential context of a target word
token. During training, context2vec embeds the
context of word token instances in the same vec-
tor space as word types. As this model explicitly
embeds word contexts it seems particularly well-
suited to USim.

Kiros et al. (2015) proposed skip-thoughts, a
sentence encoder that can be viewed as a sentence-
level version of word2vec’s skipgram model, i.e.,

during training, the encoding of a sentence is
used to predict surrounding sentences. Kiros et
al. (2015) showed that skip-thoughts out-performs
previous approaches to measuring sentence-level
relatedness. Although our goal is to determine the
meaning of a word in context, the meaning of a
sentence could be a useful proxy for this.2

2.2 Unsupervised approach

In the unsupervised setup, we measure the simi-
larity between two usages of a target word as the
cosine similarity between their vector representa-
tions, obtained by one of the methods described
in Section 2.1. This method does not require gold
standard training data.

2.3 Supervised approach

We also consider a supervised approach. For a
given pair of token instances of a target word, t1
and t2, we first form vectors v1 and v2 represent-
ing each of the two instances of the target, using
one of the approaches in Section 2.1. To represent
each pair of instances, we follow the approach of
Kiros et al. (2015). We compute the componen-
twise product, and absolute difference, of v1 and
v2, and concatenate them. This gives a vector of
length 2d — where d is the dimensionality of the
embeddings used — representing each pair of in-
stances. We then train ridge regression to learn
a model to predict the similarity of unseen usage
pairs.

3 Materials and methods

3.1 USim Datasets

We evaluate our methods on two USim datasets
representing two different text types: ORIGINAL,
the USim dataset of Erk et al. (2009), and TWIT-
TER from Gella et al. (2013). Both USim datasets
contain pairs of sentences; each sentence in each
pair includes a usage of a particular target lemma.
Each sentence pair is rated on a scale of 1–5 for
how similar in meaning the usages of the target
words are in the two sentences.

ORIGINAL consists of sentences from Mc-
Carthy and Navigli (2007), which were drawn
from a web corpus (Sharoff, 2006). This dataset
contains 34 lemmas, including nouns, verbs, ad-
jectives, and adverbs. Each lemma is the target

2Inference requires only a single sentence, so the model
can infer skip-thought vectors for sentences taken out-of-
context, as in the USim datasets.
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word in 10 sentences. For each lemma, sentence
pairs (SPairs) are formed based on all pairwise
comparisons, giving 45 SPairs per lemma. An-
notations were provided by three native English
speakers, with the average taken as the final gold
standard similarity. In a small number of cases the
annotators were unable to judge similarity. Erk et
al. (2009) removed these SPairs from the dataset,
resulting in a total of 1512 SPairs.

TWITTER contains SPairs for ten nouns from
ORIGINAL. In this case the “sentences” are in
fact tweets. 55 SPairs are provided for each noun.
Unlike ORIGINAL, the SPairs are not formed on
the basis of all pairwise comparisons amongst a
smaller set of sentences. This dataset was anno-
tated via crowd sourcing and carefully cleaned to
remove outlier annotations.

3.2 Evaluation

Following Lui et al. (2012) and Gella et al. (2013)
we evaluate our systems by calculating Spear-
man’s rank correlation coefficient between the
gold standard similarities and the predicted simi-
larities. This enables direct comparison of our re-
sults with those reported in these previous studies.

We evaluate our supervised approaches using
two cross-validation methodologies. In the first
case we apply 10-fold cross-validation, randomly
partitioning all SPairs for all lemmas in a given
dataset. Using this approach, the test data for a
given fold consists of SPairs for target lemmas
that were seen in the training data. To determine
how well our methods generalize to unseen lem-
mas, we consider a second cross-validation setup
in which we partition the SPairs in a given dataset
by lemma. Here the test data for a given fold con-
sists of SPairs for one lemma, and the training data
consists of SPairs for all other lemmas.

3.3 Embeddings

We train word2vec’s skipgram model on two
corpora:3 (1) a corpus of English tweets col-
lected from the Twitter Streaming APIs4 from
November 2014 to March 2015 containing 1.3 bil-
lion tokens; and (2) an English Wikipedia dump
from 1 September 2015 containing 2.6 billion to-
kens. Because of the relatively-low cost of train-
ing word2vec, we consider several settings of

3In preliminary experiments the alternative word2vec
CBOW model achieved substantially lower correlations than
skipgram, and so CBOW was not considered further.

4https://dev.twitter.com/

D W ORIGINAL TWITTER

50 2 0.251 0.246
50 5 0.262 0.272
50 8 0.286 0.282

100 2 0.267 0.248
100 5 0.273 0.253
100 8 0.273 0.298
300 2 0.275 0.266
300 5 0.279 0.295
300 8 0.281 0.300

Table 1: Spearman’s ρ on each dataset using
the unsupervised approach with word2vec embed-
dings trained using several settings for the number
of dimensions (D) and window size (W ). The best
ρ for each dataset is shown in boldface.

window size (W=2,5,8) and number of dimen-
sions (D=50,100,300). Embeddings trained on
Wikipedia and Twitter are used for experiments on
ORIGINAL and TWITTER, respectively.

For the other embeddings we use pre-trained
models. We use GloVe vectors from Wikipedia
and Twitter, with 300 and 200 dimensions, for ex-
periments on ORIGINAL and TWITTER, respec-
tively.5 For context2vec we use a 600 dimen-
sional model trained on the ukWaC (Ferraresi et
al., 2008), a web corpus of approximately 2 bil-
lion tokens.6 We use a skip-thoughts model with
4800 dimensions, trained on a corpus of books.7

We use these context2vec and skip-thoughts mod-
els for experiments on both ORIGINAL and TWIT-
TER.

4 Experimental results

We first consider the unsupervised approach using
word2vec for a variety of window sizes and num-
ber of dimensions. Results are shown in Table 1.
All correlations are significant (p < 0.05). On
both ORIGINAL and TWITTER, for a given num-
ber of dimensions, as the window size is increased,
ρ increases. Embeddings for larger window sizes
tend to better capture semantics, whereas em-
beddings for smaller window sizes tend to bet-
ter reflect syntax (Levy and Goldberg, 2014); the

5http://nlp.stanford.edu/projects/
glove/

6https://github.com/orenmel/
context2vec

7https://github.com/ryankiros/
skip-thoughts
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Dataset Embeddings Unsupervised Supervised
All Lemma

ORIGINAL

Word2vec 0.281* 0.435* 0.220*
GloVe 0.218* 0.410* 0.230*

Skip-thoughts 0.177* 0.436* 0.099*
Context2vec 0.302* 0.417* 0.172*

TWITTER

Word2vec 0.300* 0.384* 0.196*
GloVe 0.122* 0.314* 0.134*

Skip-thoughts 0.095* 0.360* 0.058
Context2vec 0.122* 0.193* 0.067

Table 2: Spearman’s ρ on each dataset using
the unsupervised method, and supervised meth-
ods with cross-validation folds based on random
sampling across all lemmas (All) and holding out
individual lemmas (Lemma), for each embedding
approach. The best ρ for each experimental setup,
on each dataset, is shown in boldface. Significant
correlations (p < 0.05) are indicated with *.

more-semantic embeddings given by larger win-
dow sizes appear to be better-suited to the task
of predicting USim. For a given window size, a
higher number of dimensions also tends to achieve
higher ρ. For example, for a given window size,
D = 300 gives a higher ρ than D = 50 in each
case, except for W = 8 on ORIGINAL.

The best correlations reported by Lui et al.
(2012) on ORIGINAL, and Gella et al. (2013)
on TWITTER, were 0.202 and 0.29, respectively.
The best parameter settings for our unsupervised
approach using word2vec embeddings achieve
higher correlations, 0.286 and 0.300, on ORIGI-
NAL and TWITTER, respectively. Lui et al. (2012)
and Gella et al. (2013) both report drastic vari-
ation in performance for different settings of the
number of topics in their models. We also observe
some variation with respect to parameter settings;
however, any of the parameter settings considered
achieves a higher correlation than Lui et al. (2012)
on ORIGINAL. For TWITTER, parameter settings
with W ≥ 5 and D ≥ 100 achieve a correlation
comparable to, or greater than, the best reported
by Gella et al. (2013)

We now consider the unsupervised approach,
using the other embeddings. Based on the previ-
ous findings for word2vec, we only consider this
model with W = 8 and D = 300 here. Results
are shown in Table 2 in the column labeled “Unsu-
pervised”. For ORIGINAL, context2vec performs
best (and indeed outperforms word2vec for all pa-
rameter settings considered). This result demon-
strates that approaches to predicting USim that ex-
plicitly embed the context of a target word can

outperform approaches based on averaging word
embeddings (i.e., word2vec and GloVe) or em-
bedding sentences (skip-thoughts). This result is
particularly strong because we consider a range
of parameter settings for word2vec, but only used
the default settings for context2vec.8 Word2vec
does however perform best on TWITTER. The
relatively poor performance of context2vec and
skip-thoughts here could be due to differences be-
tween the text types these embedding models were
trained on and the evaluation data. GloVe per-
forms poorly, even though it was trained on tweets
for these experiments, but that it performs less
well than word2vec is consistent with the findings
for ORIGINAL.

Turning to the supervised approach, we first
consider results for cross-validation based on ran-
domly partitioning all SPairs in a dataset (column
“All” in Table 2). The best correlation on TWIT-
TER (0.384) is again achieved using word2vec,
while the best correlation on ORIGINAL (0.434)
is obtained with skip-thoughts. The difference in
performance amongst the various embedding ap-
proaches is, however, somewhat less here than in
the unsupervised setting. For each embedding ap-
proach, and each dataset, the correlation in the
supervised setting is better than that in the unsu-
pervised setting, suggesting that if labeled train-
ing data is available, supervised approaches can
give substantial improvements over unsupervised
approaches to predicting USim.9 However, this
experimental setup does not show the extent to
which the supervised approach is able to gener-
alize to previously-unseen lemmas.

The column labeled “Lemma” in Table 2 shows
results for the supervised approach for cross-
validation using lemma-based partitioning. In
these experiments, the test data consists of usages
of a target lemma that was not seen as a target
lemma during training. For each dataset, the corre-
lations achieved here for each type of embedding
are lower than those of the corresponding unsu-
pervised method, with the exception of GloVe. In

8The context2vec model has 600 dimensions, and was
trained on the ukWac, whereas our word2vec model for
ORIGINAL is trained on Wikipedia. To further compare these
approaches we also trained word2vec on the ukWaC with 600
dimensions and a window size of 8. These word2vec settings
also did not outperform context2vec.

9These results on ORIGINAL must be interpreted cau-
tiously, however. The same sentences, albeit in different
SPairs, occur in both the training and testing data for a given
fold. This issue does not affect TWITTER.
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the case of ORIGINAL, the higher correlation for
GloVe relative to the unsupervised setup appears
to be largely due to improved performance on ad-
verbs. Nevertheless, for each dataset, the correla-
tions achieved by GloVe are still lower than those
of the best unsupervised method on that dataset.
These results demonstrate that the supervised ap-
proach generalizes poorly to new lemmas. This
negative result indicates an important direction
for future work — identifying strategies to train-
ing supervised approaches to predicting USim that
generalize to unseen lemmas.

5 Conclusions

Word senses are not discrete, and multiple senses
are often applicable for a given usage of a word.
Moreover, for text types that have a relatively-
high rate of out-of-vocabulary words, such as so-
cial media text, many words will be missing from
sense inventories. USim is an approach to deter-
mining word meaning in context that does not rely
on a sense inventory, addressing these concerns.

We proposed unsupervised approaches to USim
based on embeddings for words, contexts, and sen-
tences. We achieved state-of-the-art results over
USim datasets based on Twitter text and more-
conventional texts. We further considered super-
vised approaches to USim based on these same
methods for forming embeddings, and found that
although these methods outperformed the unsu-
pervised approaches, they performed poorly on
lemmas that were unseen in the training data.

The approaches to learning word embeddings
that we considered (word2vec and GloVe) both
learn a single vector representing each word type.
There are, however, approaches that learn multiple
embeddings for each type that have been applied
to predict word similarity in context (Huang et al.,
2012; Neelakantan et al., 2014, for example). In
future work, we intend to also evaluate such ap-
proaches for the task of predicting usage similar-
ity. We also intend to consider alternative strate-
gies to training supervised approaches to USim in
an effort to achieve better performance on unseen
lemmas.
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Abstract
Properly written texts in Igbo, a low re-
source African language, are rich in both
orthographic and tonal diacritics. Dia-
critics are essential in capturing the dis-
tinctions in pronunciation and meaning of
words, as well as in lexical disambigua-
tion. Unfortunately, most electronic texts
in diacritic languages are written without
diacritics. This makes diacritic restoration
a necessary step in corpus building and
language processing tasks for languages
with diacritics. In our previous work, we
built some n−gram models with simple
smoothing techniques based on a closed-
world assumption. However, as a classi-
fication task, diacritic restoration is well
suited for and will be more generalisable
with machine learning. This paper, there-
fore, presents a more standard approach
to dealing with the task which involves
the application of machine learning algo-
rithms.

1 Introduction

Diacritics are marks placed over, under, or through
a letter in some languages to indicate a different
sound value from the same letter. English does not
have diacritics (apart from a few borrowed words)
but many of the world’s languages use a wide
range of diacritized letters in their orthography.
Automatic Diacritic Restoration Systems (ADRS)
enable the restoration of missing diacritics in texts.
Many forms of such tools have been proposed, de-
signed and developed but work on Igbo is still in
its early stages.

1.1 Diacritics and Igbo language
Igbo, a major Nigerian language and the native
language of the people of the south-eastern Nige-

ria, is spoken by over 30 million people world-
wide. It uses the Latin scripts and has many di-
alects. Most written works, however, use the of-
ficial orthography produced by the O. nwu. Com-
mittee1.

The orthography has 8 vowels (a, e, i, o, u, i., o. ,
u. ) and 28 consonants (b, gb, ch, d, f, g, gw, gh, h,
j, k, kw, kp, l, m, n, nw, ny, ṅ, p, r, s, sh, t, v, w, y,
z).

Table 1, shows Igbo characters with their ortho-
graphic or tonal (or both) diacritics and possible
changes in meanings of the words they appear in2.

Char Ortho Tonal
a – à,á, ā
e – è,é, ē
i i. ı̀, ı́, ī, ı̀., ı́., ī.
o o. ò, ó, ō, ò. , ó. , ō.
u u. ù, ú, ū, ù. , ú. , ū.
m – m̀,ḿ, m̄
n ṅ ǹ,ń, n̄

Table 1: Igbo diacritic complexity

Most Igbo electronic texts collected from so-
cial media platforms are riddled with flaws rang-
ing from dialectal variations and spelling errors to
lack of diacritics. For instance, consider this raw
excerpt from a chat on a popular Nigerian online
chat forum www.nairaland.com3:

otu ubochi ka’m no na amaghi ihe mu
na uwa ga-eje. kam noo n’eche ihe
a,otu mmadu wee kpoturum,m lee anya
o buru nwoke mara mma puru iche,mma
ya turu m n’obi.o gwam si nne kedu

1http://www.columbia.edu/itc/mealac/pritchett/00fwp/igbo/
txt onwu 1961.pdf

2m and n, nasal consonants, are sometimes treated as tone
marked vowels.

3Source: http://www.nairaland.com/189374/igbo-love-
messages
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k’idi.onu ya dika onu ndi m’ozi, ihu ya
dika anyanwu ututu,ahu ya n’achakwa
bara bara ka mmiri si n’okwute. ka ihe
niile no n’agbam n’obi,o sim na ohuru
m n’anya.na ochoro k’anyi buru enyi,a
hukwuru m ya n’anya.anyi wee kweko-
rita wee buru enyi onye’a m n’ekwu
maka ya bu odinobi m,onye ihe ya
n’amasi m

In the above example, you can observe that
there is zero presence of diacritics - tonal or or-
thographic - in the entire text. As pointed out
above, although there are other issues with regards
to standard in the text, lack of diacritics seems to
be harder to control or avoid than the others. This
is partly because diacritics or lack of it does af-
fect human understanding a great deal; and also
the rigours a writer will go through to insert them
may not worth the effort. The challenge, however,
is that NLP systems built and trained with such
poor quality non standard data will most likely be
unreliable.

1.2 Diacritic restoration and other NLP
systems

Diacritic restoration is important for other NLP
systems such as speech recognition, text gener-
ation and machine translations systems. For ex-
ample, although most translation systems are now
very impressive, not a lot of them support Igbo
language. However, for the few that do (e.g.
Google Translate), diacritic restoration still plays
a huge role in how well they perform. The exam-
ple below shows the effect of diacritic marks on
the output of Google Translate’s Igbo-to-English
translation.

Statement Google Translate Comment
O ji egbe ya gbuo egbe He used his gun to kill gun wrong
O ji égbè ya gbuo égbé He used his gun to kill kite correct
Akwa ya di n’elu akwa ya It was on the bed in his room fair
Ákwà ya di n’elu àkwà ya his clothes on his bed correct
Oke riri oke ya Her addiction confused
Òké riri òkè ya Mouse ate his share correct
O jiri ugbo ya bia He came with his farm wrong
O jiri u. gbo. ya bia He came with his car correct

Table 2: Diacritic disambiguation for Google
Translate

1.3 Diacritic restoration and WSD
Yarowsky (1994a) observed that, although dia-
critic restoration is not a hugely popular task in
NLP research, it shares similar properties with

such tasks as word sense disambiguation with re-
gards to resolving both syntactic and semantic am-
biguities. Indeed it was referred to as an instance
of a closely related class of problems which in-
cludes word choice selection in machine transla-
tion, homograph and homophone disambiguation
and capitalisation restoration (Yarowsky, 1994b).

Diacritic restoration, like sense disambiguation,
is not an end in itself but an “intermediate task”
(Wilks and Stevenson, 1996) which supports bet-
ter understanding and representation of meanings
in human-machine interactions. In most non-
diacritic languages, sense disambiguation systems
can directly support such tasks as machine transla-
tion, information retrieval, text processing, speech
processing etc. (Ide and Véronis, 1998). But it
takes more for diacritic languages, where possible,
to produce standard texts. So for those languages,
to achieve good results with such systems as listed
above, diacritic restoration is required as a boost
for the sense disambiguation task.

We note however, that although diacritic
restoration is related to word sense disambigua-
tion (WSD), it does not eliminate the need for
sense disambiguation. For example, if the word-
key akwa is successfully restored to àkwà, it could
still be referring to either bed or bridge. Another
good example is the behaviour of Google Trans-
late as the context around the word àkwà changes.

Statement Google Translate Comment
Akwa ya di n’elu akwa It was on the high confused
Akwa ya di n’elu akwa ya It was on the bed in his room fair
Ákwà ya di n’elu àkwà His clothing was on the bridge okay
Ákwà ya di n’elu àkwà ya His clothing on his bed good

Table 3: Disambiguation challenge for Google
Translate

The last two statements, with proper diacrit-
ics on the ambiguous wordkey akwa seem both
correct. Some disambiguation system in Google
Translate must have been used to select the right
form. However, it highlights the fact that such a
disambiguation system may perform better when
diacritics are restored.

2 Problem Definition

As explained above, lack of diacritics can often
lead to some lexical ambiguities in written Igbo
sentences. Although a human reader can, in most
cases, infer the intended meaning from context,
the machine may not. Consider the sentences in
sections 2.1 and 2.2 and their literal translations:
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Figure 1: Illustrative View of the Diacritic
Restoration Process (Ezeani et al., 2016)

2.1 Missing orthographic diacritics
1. Nwanyi ahu banyere n’ugbo ya. (The woman

entered her [farm|boat/craft])

2. O kwuru banyere olu ya. (He/she talked
about his/her [neck/voice|work/job])

2.2 Missing tonal diacritics
1. Nwoke ahu nwere egbe n’ulo ya. (That man

has a [gun|kite] in his house)

2. O dina n’elu akwa. (He/she is lying on the
[cloth|bed,bridge|egg|cry])

3. Egwu ji ya aka. (He/she is held/gripped by
[fear|song/dance/music])

Ambiguities arise when diacritics – ortho-
graphic or tonal – are omitted in Igbo texts. In the
first examples, we could see that ugbo(farm) and
u. gbo. (boat/craft) as well as olu(neck/voice) and
o. lu. (work/job) were candidates in their sentences.

Also the second examples show that égbé(kite)
and égbè(gun); ákwà(cloth), àkwà(bed or
bridge), àkwá(egg), or even ákwá(cry) in a philo-
sophical or artistic sense; as well as égwù(fear)
and égwú(music) are all qualified to replace the
ambiguous word in their respective sentences.

3 Related Literature

Diacritic restoration techniques for low resource
languages adopt two main approaches: word
based and character based.

3.1 Word level diacritic restoration
Different schemes of the word-based approach
have been described. They generally involve pre-
processing, candidate generation and disambigua-
tion. Simard (1998) applied POS-tags and HMM

language models for French. On the Croatian
language, Šantić et al. (2009) used substitution
schemes, a dictionary and language models in im-
plementing a similar architecture. For Spanish,
Yarowsky (1999) used dictionaries with decision
lists, Bayesian classification and Viterbi decoding
the surrounding context.

Crandall (2005), using Bayesian approach,
HMM and a hybrid of both, as well as differ-
ent evaluation method, attempted to improve on
Yarowsky’s work. Cocks and Keegan (2011)
worked on Māori using naı̈ve Bayes and word-
based n-grams relating to the target word as in-
stance features. Tufiş and Chiţu (1999) used POS
tagging to restore Romanian texts but backed off to
character-based approach to deal with “unknown
words”. Generally, there seems to be a consensus
on the superiority of the word-based approach for
well resourced languages.

3.2 Grapheme or letter level diacritic
restoration

For low-resource languages, there is often lack of
adequate data and resources (large corpora, dic-
tionaries, POS-taggers etc.). Mihalcea (2002) as
well as Mihalcea and Nastase (2002) argued that
letter-based approach will help to resolve the issue
of lack of resources. They implemented instance
based and decision tree classifiers which gave a
high letter-level accuracy. However, their evalua-
tion method implied a possibly much lower word-
level accuracy.

Versions of Mihalcea’s approach with improved
evaluation methods have been implemented on
other low resourced languages (Wagacha et al.,
2006; De Pauw et al., 2011; Scannell, 2011). Wa-
gacha et al. (2006), for example, reviewed the
evaluation method in Mihalcea’s work and intro-
duced a word-level method for Gĩkũyũ. De Pauw
et al. (2011) extended Wagacha’s work by apply-
ing the method to multiple languages.

Our earlier work on Igbo diacritic restoration
(Ezeani et al., 2016) was more of a proof of con-
cept aimed at extending the initial work done by
Scannell (2011). We built a number of n–gram
models – basically unigrams, bigrams and tri-
grams – along with simple smoothing techniques.
Although we got relatively high results, our eval-
uation method was based on a closed-world as-
sumption where we trained and tested on the same
set of data. Obviously, that assumption does not
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model the real world and so it is being addressed
in this paper.

3.3 Igbo Diacritic Restoration

Igbo is low-resourced and is generally neglected
in NLP research. However, an attempt at restoring
Igbo diacritics was reported by Scannell (2011)
in which a combination of word- and character-
level models were applied. Two lexicon lookup
methods were used: LL which replaces ambigu-
ous words with the most frequent word and LL2
that uses a bigram model to determine the right re-
placement.

They reported word-level accuracies of 88.6%
and 89.5% for the models respectively. But the
size of training corpus (31k tokens with 4.3k word
types) was too little to be representative and there
was no language speaker in the team to validate
the data used and the results produced. Therefore,
we implemented a range of more complex n-gram
models, using similar evaluation techniques, on
a comparatively larger sized corpus (1.07m with
14.4k unique tokens) and had improved on their
results (Ezeani et al., 2016).

In this work, we introduce machine learning ap-
proaches to further generalise the process and to
better learn the intricate patterns in the data that
will help better restoration.

4 Experimental Setup

4.1 Experimental Data

The corpus used in these experiments were col-
lected from the Igbo version of the bible available
from the Jehova Witness website4. The basic cor-
pus statistics are presented in Table 4.

In Table 4, we refer to the “latinized” form of a
word as its wordkey5. Less than 10% (529/15696)
of the wordkeys are ambiguous. However, these
ambiguous wordkeys represent 529 ambiguous
sets that yield 348,509 of the corpus words (i.e.
words that share the same wordkey with at least
one other word). These ambiguous words consti-
tutes approximately 38.22% (348,509/911892) of
the entire corpus. Some of the top most occurring,
as well as the bottom least occurring ambiguous
sets are shown in Table 5.

4jw.org
5Expectedly, many Igbo words are the same with their

wordkeys

Item Number
Total tokens 1070429
Total words 902150
Numbers/punctuations 168279
Unique words 563383
Ambiguous words 348509
Wordkeys 15696
Unique wordkeys 15167
Ambiguous wordkeys 529

2 variants 502
3 variants 15
4 variants 10
5 variants 2
>5 variants 0

Approx. ambiguity 38.22%

Table 4: Corpus statistics

Top Variants(count)
na(29272) ná(1332), na(27940)
o(22418) o(4757), ò(64), ó(5), o. (17592)
Bottom Variants(count)
Giteyim(2) Giteyi.m(1), Giteyim(1)
Galim(2) Galim(1), Gali.m(1)

Table 5: Most and least frequent wordkeys

4.2 Preprocessing

The preprocessing task relied substantially on the
approaches used by Onyenwe et al. (2014). Ob-
served language based patterns were preserved.
For example, ga–, na– and n’ are retained as they
are due to the specific lexical functions the spe-
cial characters “–” or “ ’ ” confer on them. For
instance, while na implies conjunction (e.g. ji na
ede: yam and cocoa-yam), na– is a verb auxiliary
(e.g. Obi na–agba o. so. : Obi is running) and n’ is
shortened form of the preposition na (e.g. O. di.
n’elu àkwà: It is on the bed.).

Also for consistency, diacritic formats are nor-
malized using the unicode’s Normalization Form
Canonical NFC composition. For example, the
character é from the combined unicode charac-
ters e (u0065) and ´ (u0301) will be decomposed
and recombined as a single canonically equivalent
character é (u00e9). Also the character ṅ, which is
often wrongly replaced with ñ and n̄ in some text,
is generally restored back to its standard form.

The diacritic marking of the corpus used in this
research is sufficient but not full or perfect. The
orthographic diacritics (mostly dot-belows) have
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been included throughout. However, the tonal dia-
critics are fairly sparse, having been included only
where they were for disambiguation (i.e. where
the reader might not be able to decide the correct
form from context.

Therefore, through manual inspection, some
observed errors and anomalies were corrected by
language speakers. For example, 3153 out of 3154
occurrences of the key mmadu were of the class
mmadu. . The only one that was mmadu was cor-
rected to mmadu. after inspection. By repeating
this process, a lot of the generated ambiguous sets
were resolved and removed from the list to reduce
the noise. Examples are as shown in the table be-
low:

wordkey Freq var1Freq var2Freq
akpu 106 ákpu. –1 akpu. –105
agbu 112 agbu. –111 ágbu. –1
aka 3690 aka–3689 ákà–1
iri 2036 iri–2035 i.ri.–1

Table 6: Some examples of corrected and removed
ambiguous set

4.3 Feature extraction for training instances
The feature sets for the classification models
were based on the works of Scannell (2011) on
character-based restoration which was extended
by Cocks and Keegan (2011) to deal with word-
based restoration for Māori. These features con-
sist of a combination of n-grams – represented in
the form (x,y), where x is the relative position to
the target key and y is the token length – at dif-
ferent positions within the left and right context of
the target word. The datasets are built as described
below for each of the ambiguous keys:

• FS1[(-1,1), (1,1)]: Unigrams on each side of
the target key

• FS2[(-2,2), (2,2)]: Bigrams on each side

• FS3[(-3,3), (3,3)]: Trigrams on each side

• FS4[(-4,4), (4,4)]: 4-grams on each side

• FS5[(-5,5), (5,5)]: 5-grams on each side

• FS6[(-2,1), (-1,1), (1,1), (2,1)]: 2 unigrams
on both sides

• FS7[(-3,1), (-2,1), (-1,1), (1,1), (2,1), (3,1)]:
3 unigrams on each side

• FS8[(-4,1), (-3,1), (-2,1), (-1,1), (1,1), (2,1),
(3,1), (4,1)]: 4 unigrams on each side

• FS9[(-5,1), (-4,1), (-3,1), (-2,1), (-1,1), (1,1),
(2,1), (3,1), (4,1), (5,1)]: 5 unigrams on each
side

• FS10[(-2,2), (-1,1), (1,1), (2,2)]: 1 unigram
and 1 bigram on each side

• FS11[(-3,3), (-2,2), (2,2), (3,3)]: 1 bigram
and 1 trigram on each side

• FS12[(-3,3), (-2,2), (-1,1), (1,1), (2,2), (3,3)]:
1 unigram, 1 bigram and 1 trigram on each
side

• FS13[(-4,4), (-3,3), (-2,2), (-1,1), (1,1), (2,2),
(3,3), (4,4)]: 1 unigram, 1 bigram, 1 trigram
and a 4-gram on each side

4.3.1 Appearance threshold and stratification
We removed low-frequency wordkeys in our data
by defining an appearance threshold as a percent-
age of the total tokens in our data. This is given by
the

appThreshold =
C(wordkeys)
C(tokens)

∗ 100

and wordkeys with appThreshold below the stated
value6 were removed from the experiment.

As part of our data preparation for a stan-
dard cross-validation, we also passed each of
our datasets through a simple stratification pro-
cess. Instances of each label7, where possible, are
evenly distributed to appear at least once in each
fold or removed from the dataset.

Our stratification algorithm basically picks only
labels from each dataset that have a population p
such that p >= nfolds. nfolds is the number of
folds which in our case has a default value of 10.
In order to make the task a little more challeng-
ing, this process was augmented by the removal
of some high frequency, but low entropy datasets
where using the most common class (MCC) pro-
duces very high accuracies8. Entropy is loosely
used here to refer to the degree of dominance of a
particular class across the dataset and it is simply
defined as:

entropy = 1− max[Count(labeli)]
len(dataset)

6In this work, we used an appThreshold of 0.005%
7labels are basically diacritic variants.
8Datasets with more than 95% accuracy on the most com-

mon class (i.e. with entropy lower than 0.05) were removed.
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where i = 1..n and n =number of distinct labels
in the dataset. Table 7 shows 10 of the 30 lowest
entropy datasets that were removed by this pro-
cess.

wordkey Counts MCCscore Label(count)
e(2) 5476 99.78% è(12); e(5464)
anyi(2) 5390 99.63% anyi.(5370); ànyi.(20)
ma(2) 6713 99.61% ma(6687); mà(26)
ike(2) 3244 99.54% ikè(15); ike(3229)
unu(2) 8662 99.53% ùnu(41); unu(8621)
Ha(2) 2266 99.29% Hà(16); Ha(2250)
a(2) 12275 99.10% a(12165); à(110)
onye(2) 8937 98.87% onye(8836); ònye(101)
ohu(2) 790 98.73% ohu(780); o.hu. (10)
eze(2) 2633 98.14% eze(2584); ezé(49)

Table 7: Low entropy datasets

At end of these pruning processes, our remain-
ing datasets came to 110 with the distribution as
follows:

• datasets with only 2 variants: = 93

• datasets with 3 variants: = 7

• datasets with 4 variants: = 8

• datasets with 5 variants: = 2

Some datasets that originally had multiple vari-
ants lost some of their variants. For example, the
dataset from akwa which originally had five vari-
ants and 1067 instances comprising of ákwá (355),
ákwà(485), akwa(216), àkwà(1) and àkwá(10) re-
tained only four variants (after dropping àkwà)
and 1066 instances.

4.4 Classification algorithms
This work applied versions of five of the com-
monly used machine learning algorithms in NLP
classification tasks namely:

- Linear Discriminant Analysis(LDA)

- K Nearest Neighbors(KNN)

- Decision Trees(DTC)

- Support Vector Machines(SVC)

- Naı̈ve Bayes(MNB)

Their default parameters on Scikit-learn toolkit
were used with 10-fold cross-validation and the
evaluation metrics used is mainly the accuracy of
prediction of the correct diacritic form in the test
data. The effect of the accuracy obtained for a
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Figure 2: Evaluation of algorithm performance on
each feature set model

dataset on the overall performance depends on the
weight of the dataset. Each dataset is assigned a
weight corresponding to the number of instances
it generates from the corpus which is determined
by its frequency of occurrence.

So the actual performance of each learning al-
gorithm, on a particular feature set model, is the
overall weighted average of the its performances
across all the 110 datasets. The bottom line ac-
curacy is the result of replacing each word with
its wordkey which gave an accuracy of 30.46%.
However, the actual baseline to beat is 52.79%
which is achieved by always predicting the most
common class.

4.5 Results and Discussions
The results of our experiments are as shown in Ta-
ble 8 and Figure 2.

Models LDA KNN DTC SVM MNB
Baseline: 52.79%
FS1 77.65% 91.47% 94.49% 74.64% 74.64%
FS2 77.65% 91.47% 94.49% 74.64% 74.64%
FS3 74.48% 73.70% 84.60% 74.92% 74.64%
FS4 73.71% 67.18% 81.00% 74.64% 74.64%
FS5 74.68% 62.48% 76.70% 74.64% 74.64%
FS6 76.21% 85.98% 91.54% 71.39% 71.39%
FS7 72.74% 79.20% 90.94% 71.39% 71.39%
FS8 72.74% 79.20% 90.94% 71.39% 71.39%
FS9 76.99% 73.88% 89.50% 75.46% 74.67%
FS10 76.18% 85.41% 92.89% 75.11% 74.64%
FS11 73.94% 74.83% 86.23% 75.29% 74.64%
FS12 76.99% 73.88% 89.50% 75.46% 74.67%
FS13 76.99% 73.88% 89.50% 75.46% 74.67%

Table 8: Summary of results

The experiments indicate that on the average all
the algorithms were able to beat the baseline on all
models. The decision tree algorithm (DTC) per-
formed best across all models with an average ac-
curacy of 88.64% (Figure 3), and the highest accu-
racy of 94.49% (Table 8) on both the FS1 and FS2
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models. However, with an average standard devi-
ation of 0.076 (Figure 4) for its results, it appears
to be the least reliable.

As the next best performing algorithm, KNN
falls below DTC in average accuracy (91.47%)
but seems slightly more reliable. It did, however,
struggle more than others as the dimension of fea-
ture n-grams increased (see its performance on
FS3, FS4 and FS5). This may be due to the in-
crease in sparsity of features and the difficulty to
find similar neighbours. The other algorithms –
LDA, SVM and MNB – just trailed behind and
although their results are a lot more reliable espe-
cially SVM and MNB (Figure 4). But this may
be an indication that their strategies are not explo-
rative enough. However, it could be observed that
they traced a similar path in the graph and also had
their highest results with the same set of models
(i.e. FS9, FS12 and FS13) with wider context.

On the models, we observed that the unigrams
and bigrams have better predictive capacity than
the other n-grams. Most of the algorithms got
comparatively good results with FS1, FS2, FS6
and FS10 (Figure 5) each of which has the uni-
gram closest to the target word (i.e. in the±1 posi-
tion) in the feature set. Also, models that excluded
the closest unigrams on both sides (e.g. FS11)
and those with fairly wider context did not per-
form comparatively well across algorithms.
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Figure 3: Average performance of algorithms

Again, it appears that beyond the three closest
unigrams (i.e. those in the −3 through +3 posi-
tions), the classifiers tend to be confused by ad-
ditional context information. Generally, FS1 and
FS2 stood out across all algorithms as the best
models while FS6 and FS7 also did well espe-
cially with DTC, KNN and LDA.
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Figure 4: Average standard deviation for algo-
rithms
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Figure 5: Average performance of models

4.6 Future Research Direction
Although our results show a substantial improve-
ment from the baseline accuracy by all the algo-
rithms on all the models, there is still a lot of room
for improvement. Our next experiments will in-
volve attempts to improve the results by focusing
on the following key aspects:

- Reviewing the feature set models:
So far we have used instances with similar
features on both sides of the target words. In
our next experiments, we may consider vary-
ing these features.

- Exploiting the algorithms:
We were more explorative with the algo-
rithms and so only the default parameters of
the algorithms on Scikit-learn were tested.
Subsequent experiments will involve tuning
the parameters of the algorithms and possibly
using more evaluation metrics.

- Expanding data size and genre:
A major challenge for this research work is
lack of substantially marked corpora. So al-
though, we achieved a lot with the bible data,
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it is inadequate and not very representative of
the contemporary use of the language. Future
research efforts will apply more resources to
increasing the data size across other genres.

- Predicting unknown words:
Our work is yet to properly address the prob-
lem of unknown words. We are considering a
closer inspection of the structural patterns in
the target word to see if they contain elements
with predictive capacity.

- Broad based standardization:
Beside lack of diacritics online Igbo texts
are riddled with spelling errors, lack of stan-
dard orthographic and dialectal forms, poor
writing styles, foreign words and so on. It
may therefore be good to consider a broader
based process that includes, not just diacritic
restoration but other aspects of standardiza-
tion.

- Interfacing with other NLP systems:
Although it seems obvious, it will be inter-
esting to investigate, in empirical terms, the
relationship between diacritic restoration and
others NLP tasks and systems such as POS-
tagging, morphological analysis and even the
broader field of word sense disambiguation.
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Abstract

Creating high-quality wide-coverage mul-
tilingual semantic lexicons to support
knowledge-based approaches is a chal-
lenging time-consuming manual task.
This has traditionally been performed by
linguistic experts: a slow and expensive
process. We present an experiment in
which we adapt and evaluate crowdsourc-
ing methods employing native speakers to
generate a list of coarse-grained senses un-
der a common multilingual semantic tax-
onomy for sets of words in six languages.
451 non-experts (including 427 Mechan-
ical Turk workers) and 15 expert partic-
ipants semantically annotated 250 words
manually for Arabic, Chinese, English,
Italian, Portuguese and Urdu lexicons. In
order to avoid erroneous (spam) crowd-
sourced results, we used a novel task-
specific two-phase filtering process where
users were asked to identify synonyms in
the target language, and remove erroneous
senses.

1 Introduction

Machine understanding of the meaning of words,
phrases, sentences and documents has challenged
computational linguists since the 1950s, and much
progress has been made at multiple levels. Differ-
ent types of semantic annotation have been devel-
oped, such as word sense disambiguation, seman-
tic role labelling, named entity recognition, senti-
ment analysis and content analysis. Common to
all of these tasks, in the supervised setting, is the
requirement for a wide coverage semantic lexicon
acting as a knowledge base from which to select
or derive potential word or phrase level sense an-
notations.

The creation of large-scale semantic lexical re-
sources is a time-consuming and difficult task. For
new languages, regional varieties, dialects, or do-
mains the task will need to be repeated and then
revised over time as word meanings evolve. In
this paper, we report on work in which we adapt
crowdsourcing techniques to speed up the creation
of new semantic lexical resources. We evaluate
how efficient the approach is, and how robust the
semantic representation is across six languages.

The task that we focus on here is a particularly
challenging one. Given a word, each annotator
must decide on its meaning[s] and assign the word
to single or multiple tags in a pre-existing seman-
tic taxonomy. This task is similar to that under-
taken by trained lexicographers during the process
of writing or updating dictionary entries. Even for
experts, this is a complex task. Kilgarriff (1997)
highlighted a number of issues related to lexicog-
raphers ‘lumping’ or ‘splitting’ senses of a word
and cautioned that even lexicographers do not be-
lieve in words having a “discrete, non-overlapping
set of senses”. Véronis (2001) showed that inter-
annotator agreement is very low in sense tagging
using a traditional dictionary. For our purpose, we
use the USAS taxonomy.1 If a linguist were un-
dertaking this task, as they have done in the past
with Finnish (Löfberg et al., 2005) and Russian
(Mudraya et al., 2006) USAS taxonomies, they
would first spend some time learning the seman-
tic taxonomy. In this experimental scenario, we
aim to investigate whether or not non-expert na-
tive speakers can succeed on the word-to-senses
classification task without being trained on the tax-
onomy in advance, therefore mitigating a signifi-
cant overhead for the work. In addition, further
motivation for our experiments is to validate the
applicability of the USAS taxonomy (Rayson et

1The UCREL Semantic Analysis System (USAS), see
http://ucrel.lancaster.ac.uk/usas/
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al., 2004), with a non-expert crowd, as a frame-
work for multilingual sense representation. The
USAS taxonomy was selected for this experiment
since it offers a manageable coarse-grained set
of categories that have already been applied to a
number of languages. This taxonomy is distinct
from other potential choices, such as WordNet.
The USAS tagset is originally loosely based on
the Longman Lexicon of Contemporary English
(McArthur, 1981) and has a hierarchical structure
with 21 major domains (see table 1) subdividing
into three levels. Versions of the USAS tagger
or tagset exist in 15 languages in total and for
each language, native speakers have re-evaluated
the applicability of the tagset with some specific
extensions for Chinese (Qian and Piao, 2009) but
otherwise the tagset is stable across all languages.
For each language tagger, separate linguistic re-
sources (lexicons) have been created, but they all
use the same taxonomy.

Domain Description
A General and abstract terms
B The body and the individual
C Arts and crafts
E Emotion
F Food and farming
G Government and public
H Architecture, housing and the home
I Money and commerce in industry
K Entertainment, sports and games
L Life and living things
M Movement, location, travel and

transport
N Numbers and measurement
O Substances, materials, objects and

equipment
P Education
Q Language and communication
S Social actions, states and processes
T Time
W World and environment
X Psychological actions, states and

processes
Y Science and technology
Z Names and grammar

Table 1: USAS top level semantic fields

In terms of main contributions, our research
goes beyond the previous work on crowdsourc-
ing word meanings which requires workers to pick

a word sense from an existing list that matches
provided contextual examples, such as a concor-
dance list. In our work, we require the partici-
pants to define the list of all possible senses that a
word could take in different contexts. We also see
that our two-stage filtering process tailored for this
task helps to improve results. We compare inter-
rater scores for two groups of experts and non-
experts to examine the feasibility of extracting
high-quality semantic lexicons via the untrained
crowd. Non-experts achieved results between 45-
97% for accuracy, between 48-92% for complete-
ness, with an average of 18% of tasks having er-
roneous senses being left in. Experts scored 64-
96% for accuracy, 72-95% for completeness, but
achieve better results in terms of only 1% of erro-
neous senses left behind. Our experimental results
show that the non-expert crowdsourced annotation
process is of a good quality and comparable to that
of expert linguists in some cases, although there
are variations across different languages. Crowd-
sourcing provides a promising approach for the
speedy generation and expansion of semantic lex-
icons on a large scale. It also allows us to validate
the semantic representations embedded in our tax-
onomy in the multilingual setting.

2 Related Work

The crowdsourcing approach, in particular Me-
chanical Turk (MTurk), has been successfully ap-
plied for a number of different Natural Language
Processing (NLP) tasks. Alonso and Mizzaro
(2009) adopted MTurk for five types of NLP tasks,
resulting in high agreement between expert gold
standard labels and non-expert annotations, where
a small number of workers can emulate an ex-
pert. With the possibility of achieving good re-
sults quickly and cheaply, MTurk has been tested
for a variety of tasks, such as image annotation
(Sorokin and Forsyth, 2008), Wikipedia article
quality assessment (Kittur et al., 2008), machine
translation (Callison-Burch, 2009), extracting key
phrases from documents (Yang et al., 2009), and
summarization (El-Haj et al., 2010). Practical is-
sues such as payment and task design play an im-
portant part in ensuring the quality of the resulting
work. Many designers pay between $0.01 to $0.10
for a task taking a few minutes. Quality control
and evaluation are usually achieved through con-
fidence scores and gold-standards (Donmez et al.,
2009; Bhardwaj et al., 2010). Past research has
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shown (Aker et al., 2012) that the use of radio but-
ton design seems to lead to better results compared
to the free text design. Particularly important in
our case is the language demographics of MTurk
(Pavlick et al., 2014), since we need to find enough
native speakers in a number of languages.

There is a growing body of crowdsourcing work
related to semantic annotation. Snow et al. (2008)
applied MTurk to the Word Sense Disambiguation
(WSD) task and achieved 100% precision with
simple majority voting for the correct sense of
the word ‘president’ in 177 example sentences.
Rumshisky et al. (2012) derived a sense inven-
tory and sense-annotated corpus from MTurkers
comparison of senses in pairs of example sen-
tences. They used clustering methods to iden-
tify the strength of coders’ tags, something that
is poorly suited to rejecting work from spammers
(participants who try to cheat the system with
scripts or random answers) and would likely not
transfer well to our experiment.

Akkaya et al. (2010) also performed WSD us-
ing MTurk workers. They discuss a number of
methods for ensuring quality, accountability, and
consistency using 9 tasks per word and simple ma-
jority voting. Kapelner et al. (2012) increased the
scale to 1,000 words for the WSD task and found
that workers repeating the task do not learn with-
out feedback. A set-based agreement metric was
used by Passonneau et al. (2006) to assess the
validity of polysemous selections of word senses
from WordNet categories. Their objective was to
take into account similarity between items within a
set, however, this may not be desirable in our case
due to the limited depth of the USAS taxonomy.

Directly related to our research here are the
experiments reported in Piao et al. (2015). A
set of prototype semantic lexicons were auto-
matically generated by transferring semantic tags
from the existing USAS English semantic lex-
icon entries to their translation equivalents in
Italian, Chinese and Portuguese via dictionaries
and bilingual lexicons. While some dictionar-
ies involved, including Chinese/English and Por-
tuguese/English dictionaries, provided high qual-
ity lexical translations for core vocabularies of
these languages, the bilingual lexicons, including
FreeLang English/Italian, English/Portuguese lex-
icons2 and LDC English/Chinese word list, con-
tain erroneous and inaccurate translations. To re-

2http://www.freelang.net/dictionary/

duce the error rate, some manual cleaning was car-
ried out, particularly on the English-Italian bilin-
gual lexicons. Because of the substantial amount
of time needed for such manual work, the rest of
the lexical resources were used with only minor
sporadic manual checking. Due to the noise intro-
duced from the bilingual lexicons, as well as the
ambiguous nature of the translation, the automati-
cally generated semantic lexicons for the three lan-
guages contain errors, including erroneous seman-
tic tags caused by incorrect translations, and inac-
curate semantic tags caused by ambiguous trans-
lations. When these automatically generated lexi-
cons were integrated and applied in the USAS se-
mantic tagger, the tagger suffered from error rates
of 23.51%, 12.31% and 10.28% for Italian, Chi-
nese and Portuguese respectively.

The improvement of the semantic lexicons is
therefore an urgent and challenging task, and we
hypothesise that the crowdsourcing approach can
potentially provide an effective means for address-
ing this issue on a large scale, while at the same
time allowing us to further validate the representa-
tion of word senses in the USAS sense inventory
(i.e. the semantic tagset) for these languages.

3 Semantic Labeling Experiment

We test the wisdom of the crowd in building
lexicons and applying the same multilingual se-
mantic representation in six languages: Arabic,
Chinese, English, Italian, Portuguese and Urdu.
These languages were selected to provide a range
of language families, inflectional and derivational
morphology, while covering significant number of
speakers worldwide. For each language, we ran-
domly selected 250 words. All experiments pre-
sented here use the USAS taxonomy to describe
semantic categories3 (Rayson et al., 2004).

3.1 Gold Standard Semantic Tags

To prepare gold standard data we asked a group
of linguists (up to two per language) to manu-
ally check 250 randomly selected words for each
of the six languages, starting from the data pro-
vided by Piao et al. (2015). For additional lan-
guages (those not in Piao et al. (2015)), the Arabic
and Urdu gold standards were completed manu-
ally by native speaker linguists who translated the
250 words, and we instructed the translators to opt
for the most familiar Arabic or Urdu equivalents

3http://ucrel.lancaster.ac.uk/usas/semtags.txt
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of the English words. This was further confirmed
by checking the list of words by two other Arabic
and Urdu native speakers. Here the base form of
verbs in Arabic is taken to be the present simple
form of the verb in the interest of convenience and
because there is no part of speech tag for ‘present
tense of a lexical verb’. Hence, the three-letter
past tense verbs are tagged as ‘past form of lex-
ical verb’, rather than as base forms. Also, while
present and past participles (e.g., ‘interesting’, ‘in-
terested’) are tagged as adjectives in English, these
are labeled in Arabic as nouns in stand-alone po-
sitions but they can also function as adjective pre-
modifying nouns. Linguists then used the USAS
semantic tagset to semantically label each word
with the most suitable senses.

3.2 Non-expert Participants

Non-expert participants are defined as those who
are not familiar with the USAS taxonomy in ad-
vance of the experiment. We selected Amazon’s
Mechanical Turk4 – an online marketplace for
work that requires human intelligence – and pub-
lished “Human Intelligence Tasks” (HITs) for En-
glish, Chinese and Portuguese only. For Ara-
bic, Italian, and Urdu initial experiments using
MTurk showed that not enough native speakers
are available to complete the tasks. Therefore,
we employed 12 non-expert participants directly
with four native speakers for each of the three lan-
guages. All participants used the same interface
(Figure 1).

On MTurk, we paid workers an average of 7 US
dollars per hour. We paid Portuguese workers 50%
more to try and attract more participants due to
the lack of Portuguese native speakers on MTurk.
We paid the other directly contacted participants
an average of 8 British pounds per hour. Those
payments were made using Amazon5 and Apple
iTunes6 vouchers.

3.3 Expert Participants

Expert participants are defined as those who were
already familiar with the USAS taxonomy before
the experiments took place. For four languages
(Arabic, English, Chinese and Urdu) we asked a
total of 15 participants (3 for English and 4 for
the other languages) to carry out the same task as

4http://www.mturk.com
5https://www.amazon.co.uk
6http://www.apple.com

the non-experts. All expert and non-expert partici-
pants (whether MTurk workers or direct-contact)
used the same user interface (Figure 1) as de-
scribed in section 3.5.

3.4 Experimental Design
Obtaining reliable results from the crowd remains
a challenging task (Kazai et al., 2009), which
requires a careful experimental design and pre-
selection of crowdsourcers. In our experiments,
we worked on minimising the effort required by
participants through designing a user-friendly in-
terface.7 Aside from copying the final output code
to a text-box everything else is done using mouse
clicks. Poorly designed experiments can nega-
tively affect the quality of the results conducted
by MTurk workers (Downs et al., 2010; Welinder
et al., 2010; Kazai, 2011).

Feedback from a short sample run with local
testers helped us update the interface and provide
more information to make the task efficient. Fig-
ure 1 shows a sample task for the word ‘car’. The
majority of the testers were able to complete the
task within five minutes. In response to feedback
by some of the testers we provided the “Instruc-
tions” section in the six languages under consider-
ation.

Term to Classify

car
Tags

Please add tags to describe the term, arranging them from the most commonly used sense to the least.

 Please label the word below with a number of tags that represent its meaning. Attach as many (no 

 more than 10), or as few,  as you deem appropriate for all senses of the word, placing them in
 descending order of importance. Tags can be assigned in a (positive or negative manner (for example,

"occasionally" is tagged negatively for frequency

 To assign a tag, click on the add tag button, and select a box from the category selection. This will add 

an entry in the list, that .can then be sorted so that the most commonly used tag is at the top

Please remove any unrelated tags and make sure you do not exceed 10 tags in total

 To help you with identifying common senses of a word, we have provided a number of links to 

 dictionaries, thesauri, and  corpora (where you can see real­world usage). The References button will

bring these up over the top of other things, so you can still browse the tags

Example: "Jordan" could be : 'Geographical name' or 'Personal name'

 Please submit your selections by clicking in the Submit button at the end of the page and wait until you 

 receive a confirmation  message where you need to copy the output­code and provide it to us, as in

the following example: f962bed5616612c8c7053f6e97e72b129edb4990-b5f5-47ab-8e7e-

bfc61c6515ec

Instructions Istruzioni التعليمات 用户指南 Information Contact

 Movement/transportation: land

American football

SubmitAdd Tag             References

Figure 1: Sample Task for the word “Car”

3.5 Online Semantic Labeling
As shown in Figure 1, we asked the participants to
label each word presented to them with a number

7Our underlying code is freely available on GitHub at
https://github.com/UCREL/BLC-WSD-Frontend
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References 

Click on any of the following links for more 

information about the word: happy 

 dictionary.com 

 thesaurus.com 

 British National Corpus 

hide 

Figure 2: Dictionary and Thesauri References

of tags that represent the word’s possible mean-
ings. The participants were asked to attach as
many, or as few, as they deemed appropriate for
all senses of the word, placing them in descending
order of likelihood.

To assign a tag, the participants click on the
Add Tag button, and navigate to a box from the
category selection where they can select a subcat-
egory (Figures 3 and 4). By following these steps
the participants add an entry in the list, that can
then be sorted by dragging and dropping the se-
lected tags so that the most commonly used tag is
at the top. We asked the users to remove any un-
related tags and make sure they do not exceed 10
tags in total.

 

General & Abstract 

Terms 

15 subcategories 

The Body & 

Individual 

5 subcategories 

Arts & Crafts 

1 subcategories 

Life & Living Things 

3 subcategories 

Numbers & 

Measurement 

6 subcategories 

Education 

1 subcategories 

Science & 

Technology 

2 subcategories 

Time 

4 subcategories 

Money & 

Commerce 

4 subcategories 

Figure 3: Categories

To help them when identifying common senses
of a given word, we provided a number of links to
dictionaries, thesauri, and corpora (where they can
see real-world usage) for each language. The Ref-
erences are displayed alongside the interface, so
they can still browse the tags (Figure 2). Partici-
pants are free to use other resources as they see fit.
The participants then needed to submit their selec-
tions by clicking the Submit button at the end of

 

Anatomy and 
physiology 

Terms relating to the (human) 
body and bodily processes 

 

Health and disease 

Terms relating to the (state of 
the) physical condition 

 

Clothes and personal 
belongings 

Terms relating to clothes 
and other personal belongings 

 

Cleaning and personal 
care 

Terms relating to 
domestic/personal hygiene 

 

+ Select ‒ Select + Select ‒ Select 

+ Select ‒ Select + Select ‒ Select 

Figure 4: Subcategories

the page and wait until they receive a confirmation
message where they need to copy the output-code
and provide it to us.

For each word we targeted a total of four non-
expert participants and four expert participants to
allow measurement and comparison of the agree-
ment within each group to investigate the variabil-
ity of task results and participants, rather than to
take a simple weighted combination to produce an
agreed list.

3.6 Filtering
Even though crowdsourcing has been shown to
be effective in achieving expert quality for a va-
riety of NLP tasks (Snow et al., 2008; Callison-
Burch, 2009), we still needed to filter out work-
ers who were not taking the task seriously or were
attempting to manipulate the system for personal
gain (spamming).

In order to avoid these spamming crowdsourced
results, we designed a novel task-specific two
stage filtering process that we considered more
suitable for this type of task than previous filtering
approaches. Our two stage process encompasses
filters that are appropriate for experts and non-
experts, and is applicable whether participants are
using MTurk or not.

In stage one filtering, we asked the MTurk
workers to select the correct synonym of the pre-
sented word from a list of noisy candidates in or-
der to avoid rejection of their HITs. The list con-
tained four words where only one word correctly
fitted as a synonym. In order to set up the first
filtering task for MTurk workers (on English, Chi-
nese and Portuguese tasks), we used Multilingual
WordNet to obtain the most common synonym for
each word. The stage one filtering was not needed
for Arabic, Italian and Urdu, since these non-
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expert participants were directly contacted and we
knew that they were native speakers and would not
submit random results. The synonyms were vali-
dated by linguists in each of the three languages
and choices were randomly shuffled before be-
ing presented to the workers. Stage one filtering
removed 12% of English HITS, 2% of Chinese,
and 6% of the Portuguese submissions. In our re-
sults presented below, we only considered tasks by
workers who chose the correct synonyms and re-
jected the others.

For the stage two filter, we injected random er-
roneous senses for each of the 250 words into the
initial list of tags and the participants were ex-
pected to remove these in order to pass. We de-
liberately injected wrong and unrelated semantic
tags in between ‘potentially’ correct ones before
shuffling the order of the tags. For example, ex-
amining the pre-selected tags for the word ‘car’ in
Figure 1 we can see that the semantic tag ‘Ameri-
can Football’ is unrelated to the word ‘car’ and in
fact does not exist in the USAS semantic taxon-
omy. The potentially correct tag such as ‘Move-
ment/transportation: land’ does exist in the se-
mantic lexicon. Results where participants fail to
pass stage two are still retained in the experiment
and we report on the usefulness of this filter in
section 4. All participants (MTurk workers and
directly-contacted; experts and non-experts) un-
dertook stage 2 filtering. Our experimental design
did not reveal to the participants any details of the
two stage filtering process.

4 Results and Discussion

To evaluate the results8 we adopted three main
metrics (inspired by those used in the SemEval
procedures): Accuracy, Completeness, and Corre-
lation.

Accuracy: measure the accuracy of the partic-
ipant’s selection of tags (WTags) by counting the
matching tags between the worker’s selection and
the gold standards (GTags). To compute Accu-
racy we divide the number of matching tags by the
number of tags selected by the participants.

Accuracy =
WTags ∩GTags

WTags

Completeness: measure the completeness of the
participant’s selection of tags (WTags) by finding

8All expert and non-expert results are available as
CSV files on https://github.com/UCREL/Multilingual-
USAS/tree/master/papers/eacl2017 sense workshop

whether the gold standard tags (GTags) are com-
pletely or partially contained within the worker’s
selection. To compute Completeness we divide the
number of matching tags by the number of gold
standard tags.

Completeness =
WTags ∩GTags

GTags

Correlation: To test the similarity of tag selec-
tion between workers and gold standards we used
Spearman’s rank correlation coefficient.

In addition to the three metrics mentioned above
we used three factors that work as indicators of the
quality of the tagging process:

• Strict: Whether worker’s tags are identical to
the gold standard (same tags in the same or-
der);

• First Tag Correct: Whether the first tag se-
lected by the worker matches the first tag in
the gold standard;

• Fuzzy: Whether tags selected by a worker are
contained within the gold standard tags (in
any order).

For each language we asked for up to four an-
notators per word (1,000 HITs per language). For
Portuguese, where the participants were all from
MTurk, we only received 694 HITs even though
we paid participants working on Portuguese 50%
more than we paid for the English tasks.

Table 29 shows the aggregate averages of the
non-expert HITs. In total, direct-contact partic-
ipants and MTurk workers performed well and
achieved comparable results to the gold standard
in places. Around 50% of the English, Chinese,
Urdu, and Portuguese HITs had the correct tags se-
lected with around 15% being identical to the gold
standards. In nearly all of the cases, Portuguese
workers chose the correct tags although they were
in a different order than the gold standard. Arabic
participants achieved a high completeness score
relative to the gold standard tags, but a close anal-
ysis of the results show the participants have sug-
gested more tags than the gold standards.

The results for English suggest that the non-
expert workers are consistent as can be observed

9For this and the following tables, we use: Acc: Accuracy,
Com: Completeness, Corr: Spearman’s, Err: Erroneous tags,
Str: Strict, 1st: first tag correct, Fuz: Fuzzy.
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Lang Acc Com Cor Err Str 1st Fuz
En 61.4 69.3 0.38 29% 16% 65% 38%
Ar 55.5 87.1 0.35 8% 8% 55% 19%
Zh 45.2 56.1 0.22 2% 15% 46% 27%
It 45.7 47.9 0.06 31% 7% 38% 22%
Pt 58.5 56.3 0.21 18% 19% 50% 94%
Ur 97.6 91.9 0.51 1% 53% 78% 95%

Table 2: Summary of performance [Non experts]

by looking at the Accuracy (Acc) and Complete-
ness (Com) results. Spearman’s correlation (Cor)
suggests that the workers correlate with the expert
gold standard tags, which is consistent with previ-
ous findings that MTurk is effective for a variety of
NLP tasks through achieving expert quality (Snow
et al., 2008; Callison-Burch, 2009). The majority
of the workers matched the first tag correctly (1st)
by ordering the tags so the most important (core
sense) tag appeared at the top of their selection.
The erroneous tags (Err) column shows that many
workers did not remove some of the deliberately-
wrong tags (see Section 3.5). This reflects the lack
of training of the workers, but our checking of the
results showed that the erroneous tags were not se-
lected as first choice. Strict (Str) and Fuzzy (Fuz)
show that many workers were consistent with the
gold standard tags in terms of both tag selection
and order. It is worth mentioning that languages
differ in terms of ambiguity (e.g. Urdu is less am-
biguous than Arabic) which can be observed in the
differences between language results.

As mentioned earlier, we did not use MTurk for
the Arabic lexicon, due to the lack of Arabic na-
tives speakers on MTurk. Instead, we found four
student volunteers who offered to help in seman-
tically tagging the words, again without any train-
ing on the tagset. The results show consistent ac-
curacy and completeness. It is worth noting that
the Arabic participants obtained higher accuracy
and completeness scores by having higher agree-
ment with the gold standard tags. The Arabic lan-
guage participants selected fewer erroneous tags
than the English ones. The majority of the par-
ticipants got the first tag correct. Arabic partici-
pants failed to match the order of tags in the gold
standards as reflected by lower correlation. This
is expected due to the fact that Arabic is highly
inflectional and derivational, which increases am-
biguity and presents a challenge to the interpreta-
tion of the words (El-Haj et al., 2014). Difficulties

in knowing the exact sense of an out of context
Arabic word could result in disagreement when it
comes to ordering the senses (see Section 3.1).

For the Chinese language, the result table shows
that there is a slightly lower correlation between
the non-expert workers’ tags and the gold stan-
dards. Observing the erroneous results column we
can see that the workers have made very few mis-
takes and deleted the random unrelated tags. The
Strict and Fuzzy scores suggest the results to be of
high quality. The participants managed to get the
first tag correct in many cases.

For the Italian language, we sourced four non-
expert undergrad student participants who are all
native Italian speakers but not familiar with the
tagset. The participants’ results do not correlate
well with the gold standards. As the tags descrip-
tion are all in English the annotators found it diffi-
cult to correctly select the senses and had to trans-
late some tags into Italian which could have re-
sulted in shifting the meaning of those tags, to
communicate with them we had an Italian/English
bilingual linguist as a mediator.

As with Arabic and Italian, for the Urdu lan-
guage we sourced four non-expert participants
who are all native Urdu speakers but not familiar
with the tagset. Urdu results show that participants
correlate well with the gold standards. We also
notice a lower percentage of erroneous tags than
other languages. The First Tag and Fuzzy scores
suggest the results to be of high quality. The par-
ticipants also managed to get the first tag correct in
many cases. The participants all agreed it was easy
to define word senses with the words being less
ambiguous compared to other languages. This is
shown in the high results achieved when compared
to non-experts of the other languages.

We received only 694 HITs for Portuguese tasks
on MTurk, which suggests there are fewer Por-
tuguese speakers compared to English and Chi-
nese speakers among the MTurk workers. The
results for Portuguese in some cases are of very
high quality. It should be noted that the gold stan-
dard tags were selected and manually checked by a
Brazilian Portuguese native speaker expert. There
is a difference between European and Brazil-
ian Portuguese which could result in ambiguous
words for speakers from the two regions (Frota
and Vigário, 2001).

Table 3 shows the results obtained by using the
second filtering mechanism to discard HITs where
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Lang Acc Com Cor
En 70.4 69.0 0.36
Ar 56.6 87.6 0.34
Zh 45.6 55.9 0.22
It 54.4 53.5 0.09
Pt 61.3 54.0 0.20
Ur 97.6 91.9 0.51

Table 3: Summary of performance with Second
Filter [Non experts]

random erroneous tags were not completely re-
moved. This enables us to increase accuracy for
English by 9.0%, Italian by 8.7% and Portuguese
by 2.8% without negatively affecting complete-
ness or correlation.

In order to allow better interpretation of the non-
experts’ scores, we repeated the experiments on
a smaller scale with up to four experts per lan-
guage (English, Arabic, Chinese and Urdu), who
were already familiar with the USAS taxonomy
and were researchers in the fields of corpus or
computational linguistics. Experts used the same
task interface to assign senses to 50 words each.
The results are presented in Table 4. Most notably,
experts consistently excel at removing erroneous
tags, leaving only a very small number in the data.

English experts performed much better than
English non-experts on completeness, correlation
and strict measures while their accuracy scores are
comparable. Arabic experts performed much bet-
ter than Arabic non-experts on the accuracy, strict
and fuzzy scores while the 1st score is compa-
rable. Chinese experts performed slightly better
than Chinese non-experts on Accuracy, complete-
ness and Fuzzy while other scores were compa-
rable. Urdu experts scored relatively more highly
on strict and 1st measures while other scores were
comparable to Urdu non-experts. Finally, Tables 5
and 6 show the Observed Agreement (OA), Fleiss’
Kappa and Krippendorff’s alpha scores for the
inter-rater agreement between Expert and Non Ex-
pert participants. According to (Landis and Koch,
1977) our inter-rater scores show fair agreement
between annotators. This serves to illustrate the
task is complex even for experts.

Overall these results show that untrained crowd-
sourcing workers can produce results that are com-
parable to those of experts when performing se-
mantic annotation tasks. Directly-contacted and
MTurk workers achieved similar levels of results

Lang Acc Com Cor Err Str 1st Fuz
En 66.1 83 0.61 1% 31% 75% 40%
Ar 78.8 72.4 0.22 1% 39% 51% 73%
Zh 50.4 60.2 0.21 1% 15% 44% 31%
Ur 96.2 94.8 0.69 1% 63% 89% 93%

Table 4: Summary of performance [Experts]

Language Measure OA Fleiss K–alpha
English First Tag 0.82 0.46 0.46

Fuzzy 0.64 0.27 0.27
Strict 0.69 0.32 0.32

Arabic First Tag 0.77 0.55 0.55
Fuzzy 0.84 0.59 0.59
Strict 0.21 0.55 0.55

Chinese First Tag 0.62 0.23 0.24
Fuzzy 0.75 0.41 0.41
Strict 0.83 0.31 0.32

Urdu First Tag 0.83 0.10 0.10
Fuzzy 0.91 0.35 0.35
Strict 0.71 0.37 0.38

Table 5: Total Inter-rater agreement [Experts].

overall. This shows that the novel two-phase fil-
tering method used in our experiment is effective
for maintaining the quality of the results.

5 Conclusion and Future Work

In order to accelerate the task of creating multilin-
gual semantic lexicons with coarse-grained word
senses using a common multilingual semantic rep-
resentation scheme, we employed non-expert na-
tive speakers via MTurk who were not trained
with the semantic taxonomy. Overall, the non-
expert participants semantically tagged 250 words
in each of six languages: Arabic, Chinese, En-
glish, Italian, Portuguese and Urdu. We analysed
the results using a number of metrics to consider
the correct likelihood order of tags relative to a
gold-standard, along with correct removal of ran-
dom erroneous semantic tags, and completeness
of tag lists. Crowdsourcing has been applied suc-
cessfully for other NLP tasks in previous research,
and we build on previous success in WSD tasks in
three ways. Firstly, we have specific requirements
for semantic tagging purposes in terms of placing
coarse-grained senses into a semantic taxonomy
rather than stand-alone definitions. Hence, our ex-
perimental set-up allows us to validate the sense
inventory in a multilingual setting, carried out here
for six languages. Secondly, we extend the usual
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Language Measure OA Fleiss K–alpha
English First Tag 0.71 0.36 0.36

Fuzzy 0.58 0.11 0.11
Strict 0.79 0.20 0.20

Arabic First Tag 0.66 0.32 0.32
Fuzzy 0.71 0.05 0.05
Strict 0.86 0.03 0.03

Chinese First Tag 0.73 0.45 0.45
Fuzzy 0.74 0.38 0.38
Strict 0.85 0.41 0.41

Italian First Tag 0.67 0.31 0.31
Fuzzy 0.67 0.03 0.03
Strict 0.89 0.12 0.13

Portuguese First Tag 0.64 0.22 0.22
Fuzzy 0.63 0.13 0.13
Strict 0.80 0.18 0.18

Urdu First Tag 0.72 0.16 0.16
Fuzzy 0.95 0.45 0.45
Strict 0.74 0.49 0.49

Table 6: Total Inter-rater agreement [Non Ex-
perts].

classification task of putting a word into one of
an existing list of senses, instead asking partici-
pants to list all possible senses that a word could
take in different contexts. Thirdly, we have de-
ployed a novel two-stage filtering approach which
has been shown to improve the quality of our re-
sults by filtering out spam responses using a sim-
ple synonym recognition task as well as HITs re-
moving random erroneous tags. Our experiment
suggests that the crowdsourcing process can pro-
duce results of good quality and is comparable to
the work done by expert linguists. We showed that
it is possible for native speakers to apply the hier-
archical semantic taxonomy without prior training
by the application of a graphical browsing inter-
face to assist selection and annotation process.

In the future, we will apply the method on a
larger scale to the full semantic lexicons includ-
ing multiword expressions, which are important
for contextual semantic disambiguation. We will
also investigate whether adaptations to our method
are required to include more languages such as
Czech, Malay and Spanish. In order to pursue the
work beyond the existing languages in the USAS
system, we will extend bootstrapping methods re-
ported in Piao et al. (2015) with vector-based tech-
niques and evaluate their appropriateness for mul-
tiple languages. Finally, we will test whether
(a) provision of words in context through concor-

dances, (b) prototypical examples for each seman-
tic tag, or (c) semantic tag labels in the same lan-
guage as the task word, as part of the resources
available to participants would further enhance the
accuracy of the crowdsourcing annotation process.
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Abstract

We introduce a new method for unsuper-
vised knowledge-based word sense disam-
biguation (WSD) based on a resource that
links two types of sense-aware lexical net-
works: one is induced from a corpus us-
ing distributional semantics, the other is
manually constructed. The combination of
two networks reduces the sparsity of sense
representations used for WSD. We evalu-
ate these enriched representations within
two lexical sample sense disambiguation
benchmarks. Our results indicate that (1)
features extracted from the corpus-based
resource help to significantly outperform a
model based solely on the lexical resource;
(2) our method achieves results compara-
ble or better to four state-of-the-art unsu-
pervised knowledge-based WSD systems
including three hybrid systems that also
rely on text corpora. In contrast to these
hybrid methods, our approach does not re-
quire access to web search engines, texts
mapped to a sense inventory, or machine
translation systems.

1 Introduction

The representation of word senses and the dis-
ambiguation of lexical items in context is an on-
going long-established branch of research (Agirre
and Edmonds, 2007; Navigli, 2009). Tradition-
ally, word senses are defined and represented in
lexical resources, such as WordNet (Fellbaum,
1998), while more recently, there is an increased
interest in approaches that induce word senses
from corpora using graph-based distributional ap-
proaches (Dorow and Widdows, 2003; Biemann,
2006; Hope and Keller, 2013), word sense embed-
dings (Neelakantan et al., 2014; Bartunov et al.,

2016) and combination of both (Pelevina et al.,
2016). Finally, some hybrid approaches emerged,
which aim at building sense representations us-
ing information from both corpora and lexical re-
sources, e.g. (Rothe and Schütze, 2015; Camacho-
Collados et al., 2015a; Faralli et al., 2016). In
this paper, we further explore the last strain of
research, investigating the utility of hybrid sense
representation for the word sense disambiguation
(WSD) task.

In particular, the contribution of this paper is
a new unsupervised knowledge-based approach to
WSD based on the hybrid aligned resource (HAR)
introduced by Faralli et al. (2016). The key dif-
ference of our approach from prior hybrid meth-
ods based on sense embeddings, e.g. (Rothe and
Schütze, 2015), is that we rely on sparse lexical
representations that make the sense representation
readable and allow to straightforwardly use this
representation for word sense disambiguation, as
will be shown below. In contrast to hybrid ap-
proaches based on sparse interpretable represen-
tations, e.g. (Camacho-Collados et al., 2015a), our
method requires no mapping of texts to a sense in-
ventory and thus can be applied to larger text col-
lections. By linking symbolic distributional sense
representations to lexical resources, we are able to
improve representations of senses, leading to per-
formance gains in word sense disambiguation.

2 Related Work

Several prior approaches combined distributional
information extracted from text (Turney and Pan-
tel, 2010) from text with information available
in lexical resources, such as WordNet. Yu and
Dredze (2014) proposed a model to learn word
embeddings based on lexical relations of words
from WordNet and PPDB (Ganitkevitch et al.,
2013). The objective function of their model
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combines the objective function of the skip-gram
model (Mikolov et al., 2013) with a term that takes
into account lexical relations of a target word.
Faruqui et al. (2015) proposed a related approach
that performs a post-processing of word embed-
dings on the basis of lexical relations from the
same resources. Pham et al. (2015) introduced an-
other model that also aim at improving word vec-
tor representations by using lexical relations from
WordNet. The method makes representations of
synonyms closer than representations of antonyms
of the given word. While these three models im-
prove the performance on word relatedness eval-
uations, they do not model word senses. Jauhar
et al. (2015) proposed two models that tackle this
shortcoming, learning sense embeddings using the
word sense inventory of WordNet.

Iacobacci et al. (2015) proposed to learn
sense embeddings on the basis of the BabelNet
lexical ontology (Navigli and Ponzetto, 2012).
Their approach is to train the standard skip-
gram model on a pre-disambiguated corpus us-
ing the Babelfy WSD system (Moro et al., 2014).
NASARI (Camacho-Collados et al., 2015a) re-
lies on Wikipedia and WordNet to produce vec-
tor representations of senses. In this approach,
a sense is represented in lexical or sense-based
feature spaces. The links between WordNet and
Wikipedia are retrieved from BabelNet. MUFFIN
(Camacho-Collados et al., 2015b) adapts several
ideas from NASARI, extending the method to the
multi-lingual case by using BabelNet synsets in-
stead of monolingual WordNet synsets.

The approach of Chen et al. (2015) to learn-
ing sense embeddings starts from initialization
of sense vectors using WordNet glosses. It pro-
ceeds by performing a more conventional context
clustering, similar what is found to unsupervised
methods such as (Neelakantan et al., 2014; Bar-
tunov et al., 2016).

Rothe and Schütze (2015) proposed a method
that learns sense embedding using word embed-
dings and the sense inventory of WordNet. The
approach was evaluated on the WSD tasks using
features based on the learned sense embeddings.

Goikoetxea et al. (2015) proposed a method for
learning word embeddings using random walks on
a graph of a lexical resource. Nieto Piña and Jo-
hansson (2016) used a similar approach based on
random walks on a WordNet to learn sense embed-
dings.

All these diverse contributions indicate the ben-
efits of hybrid knowledge sources for learning
word and sense representations.

3 Unsupervised Knowledge-based WSD
using Hybrid Aligned Resource

We rely on the hybrid aligned lexical semantic re-
source proposed by Faralli et al. (2016) to perform
WSD. We start with a short description of this re-
source and then discuss how it is used for WSD.

3.1 Construction of the Hybrid Aligned
Resource (HAR)

The hybrid aligned resource links two lexical
semantic networks using the method of Faralli
et al. (2016): a corpus-based distributionally-
induced network and a manually-constructed net-
work. Sample entries of the HAR are presented
in Table 1. The corpus-based part of the resource,
called proto-conceptualization (PCZ), consists of
sense-disambiguated lexical items (PCZ ID), dis-
ambiguated related terms and hypernyms, as well
as context clues salient to the lexical item. The
knowledge-based part of the resource, called
conceptualization, is represented by synsets of
the lexical resource and relations between them
(WordNet ID). Each sense in the PCZ network is
subsequently linked to a sense of the knowledge-
based network based on their similarity calculated
on the basis of lexical representations of senses
and their neighbors. The construction of the PCZ
involves the following steps (Faralli et al., 2016):

Building a Distributional Thesaurus (DT). At
this stage, a similarity graph over terms is induced
from a corpus, where each entry consists of the
most similar 200 terms for a given term using the
JoBimText method (Biemann and Riedl, 2013).

Word Sense Induction. In DTs, entries of pol-
ysemous terms are mixed, i.e. they contain related
terms of several senses. The Chinese Whispers
(Biemann, 2006) graph clustering is applied to the
ego-network (Everett and Borgatti, 2005) of the
each term, as defined by its related terms and con-
nections between then observed in the DT to de-
rive word sense clusters.

Labeling Word Senses with Hypernyms.
Hearst (1992) patterns are used to extract hy-
pernyms from the corpus. These hypernyms
are assigned to senses by aggregating hypernym
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PCZ ID WordNet ID Related Terms Hypernyms Context Clues
mouse:0 mouse:1 rat:0, rodent:0, monkey:0, ... animal:0, species:1, ... rat:conj and, white-footed:amod, ...
mouse:1 mouse:4 keyboard:1, computer:0, printer:0 ... device:1, equipment:3, ... click:-prep of, click:-nn, ....
keyboard:0 keyboard:1 piano:1, synthesizer:2, organ:0 ... instrument:2, device:3, ... play:-dobj, electric:amod, ..
keyboard:1 keyboard:1 keypad:0, mouse:1, screen:1 ... device:1, technology:0 ... computer, qwerty:amod ...

Table 1: Sample entries of the hybrid aligned resource (HAR) for the words “mouse” and “keyboard”.
Trailing numbers indicate sense identifiers. Relatedness and context clue scores are not shown for brevity.

relations over the list of related terms for the given
sense into a weighted list of hypernyms.

Disambiguation of Related Terms and Hyper-
nyms. While target words contain sense distinc-
tions (PCZ ID), the related words and hypernyms
do not carry sense information. At this step, each
hypernym and related term is disambiguated with
respect to the induced sense inventory (PCZ ID).
For instance, the word “keyboard” in the list of
related terms for the sense “mouse:1” is linked
to its “device” sense represented (“keyboard:1”)
as “mouse:1” and “keyboard:1” share neighbors
from the IT domain.

Retrieval of Context Clues. Salient contexts of
senses are retrieved by aggregating salient depen-
dency features of related terms. Context features
that have a high weight for many related terms ob-
tain a high weight for the sense.

3.2 HAR Datasets

We experiment with two different corpora for PCZ
induction as in (Faralli et al., 2016), namely a 100
million sentence news corpus (news) from Giga-
word (Parker et al., 2011) and LCC (Richter et al.,
2006), and a 35 million sentence Wikipedia cor-
pus (wiki).1 Chinese Whispers sense clustering is
performed with the default parameters, producing
an average number of 2.3 (news) and 1.8 (wiki)
senses per word in a vocabulary of 200 thousand
words each, with the usual power-law distribution
of sense cluster sizes. On average, each sense
is related to about 47 senses and has assigned 5
hypernym labels. These disambiguated distribu-
tional networks were linked to WordNet 3.1 using
the method of Faralli et al. (2016).

3.3 Using the Hybrid Aligned Resource in
Word Sense Disambiguation

We experimented with four different ways of en-
riching the original WordNet-based sense repre-

1The used PCZ and HAR resources are available at:
https://madata.bib.uni-mannheim.de/171

sentation with contextual information from the
HAR on the basis of the mappings listed below:

WordNet. This baseline model relies solely on
the WordNet lexical resource. It builds sense
representations by collecting synonyms and sense
definitions for the given WordNet synset and
synsets directly connected to it. We removed stop
words and weight words with term frequency.

WordNet + Related (news). This model aug-
ments the WordNet-based representation with re-
lated terms from the PCZ items (see Table 1). This
setting is designed to quantify the added value of
lexical knowledge in the related terms of PCZ.

WordNet + Related (news) + Context (news).
This model includes all features of the previous
models and complements them with context clues
obtained by aggregating features of the words
from the WordNet + Related (news) (see Table 1).

WordNet + Related (news) + Context (wiki).
This model is built in the same way as the pre-
vious model, but using context clues derived from
Wikipedia (see Section 3.2).

In the last two models, we used up to 5000
most relevant context clues per word sense. This
value was set experimentally: performance of the
WSD system gradually increased with the num-
ber of context clues reaching a plateau at the value
of 5000. During aggregation, we excluded stop
words and numbers from context clues. Besides,
we transformed syntactic context clues presented
in Table 1 to terms, stripping the dependency type.
so they can be added to other lexical representa-
tions. For instance, the context clue “rat:conj and”
of the entry “mouse:0” was reduced to the feature
“rat”.

Table 2 demonstrates features extracted from
WordNet as compared to feature representations
enriched with related terms of the PCZ.

Each WordNet word sense is represented with
one of the four methods described above. These
sense representations are subsequently used to per-
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Model Sense Representation

WordNet memory, device, floppy, disk, hard, disk, disk, computer, science, computing, diskette, fixed, disk, floppy, magnetic,
disc, magnetic, disk, hard, disc, storage, device

WordNet + Related (news)

recorder, disk, floppy, console, diskette, handset, desktop, iPhone, iPod, HDTV, kit, RAM, Discs, Blu-ray, computer, GB, mi-
crochip, site, cartridge, printer, tv, VCR, Disc, player, LCD, software, component, camcorder, cellphone, card, monitor, display,
burner, Web, stereo, internet, model, iTunes, turntable, chip, cable, camera, iphone, notebook, device, server, surface, wafer,
page, drive, laptop, screen, pc, television, hardware, YouTube, dvr, DVD, product, folder, VCR, radio, phone, circuitry, partition,
megabyte, peripheral, format, machine, tuner, website, merchandise, equipment, gb, discs, MP3, hard-drive, piece, video, storage
device, memory device, microphone, hd, EP, content, soundtrack, webcam, system, blade, graphic, microprocessor, collection,
document, programming, battery, keyboard, HD, handheld, CDs, reel, web, material, hard-disk, ep, chart, debut, configuration,
recording, album, broadcast, download, fixed disk, planet, pda, microfilm, iPod, videotape, text, cylinder, cpu, canvas, label,
sampler, workstation, electrode, magnetic disc, catheter, magnetic disk, Video, mobile, cd, song, modem, mouse, tube, set, ipad,
signal, substrate, vinyl, music, clip, pad, audio, compilation, memory, message, reissue, ram, CD, subsystem, hdd, touchscreen,
electronics, demo, shell, sensor, file, shelf, processor, cassette, extra, mainframe, motherboard, floppy disk, lp, tape, version, kilo-
byte, pacemaker, browser, Playstation, pager, module, cache, DVD, movie, Windows, cd-rom, e-book, valve, directory, harddrive,
smartphone, audiotape, technology, hard disk, show, computing, computer science, Blu-Ray, blu-ray, HDD, HD-DVD, scanner,
hard disc, gadget, booklet, copier, playback, TiVo, controller, filter, DVDs, gigabyte, paper, mp3, CPU, dvd-r, pipe, cd-r, playlist,
slot, VHS, film, videocassette, interface, adapter, database, manual, book, channel, changer, storage

Table 2: Original and enriched representations of the third sense of the word “disk” in the WordNet sense
inventory. Our sense representation is enriched with related words from the hybrid aligned resource.

form WSD in context. For each test instance con-
sisting of a target word and its context, we select
the sense whose corresponding sense representa-
tion has the highest cosine similarity with the tar-
get word’s context.

4 Evaluation

We perform an extrinsic evaluation and show the
impact of the hybrid aligned resource on word
sense disambiguation performance. While there
exist many datasets for WSD (Mihalcea et al.,
2004; Pradhan et al., 2007; Manandhar et al.,
2010, inter alia), we follow Navigli and Ponzetto
(2012) and use the SemEval-2007 Task 16 on
the “Evaluation of wide-coverage knowledge re-
sources” (Cuadros and Rigau, 2007). This task is
specifically designed for evaluating the impact of
lexical resources on WSD performance. The Sem-
Eval-2007 Task 16 is, in turn, based on two “lexi-
cal sample” datasets, from the Senseval-3 (Mihal-
cea et al., 2004) and SemEval-2007 Task 17 (Prad-
han et al., 2007) evaluation campaigns. The first
dataset has coarse- and fine-grained annotations,
while the second contains only fine-grained sense
annotations. In all experiments, we use the offi-
cial task’s evaluator to compute standard metrics
of recall, precision, and F-score.

5 Results

Impact of the corpus-based features. Figure 1
compares various sense representations in terms
of F-score. The results show that, expanding
WordNet-based sense representations with distri-
butional information gives a clear advantage over
the original representation on both Senseval-3 and
SemEval-2007 datasets. Using related words spe-
cific to a given WordNet sense provides dramatic

improvements in the results. Further expansion of
the sense representation with context clues (cf. Ta-
ble 1) provide a modest further improvement on
the SemEval-2007 dataset and yield no further im-
provement on the case of the Senseval-3 dataset.

Comparison to the state-of-the-art. We com-
pare our approach to four state-of-the-art sys-
tems: KnowNet (Cuadros and Rigau, 2008), Ba-
belNet, WN+XWN (Cuadros and Rigau, 2007),
and NASARI. KnowNet builds sense representa-
tions based on snippets retrieved with a web search
engine. We use the best configuration reported in
the original paper (KnowNet-20), which extends
each sense with 20 keywords. BabelNet in its
core relies on a mapping of WordNet synsets and
Wikipedia articles to obtain enriched sense rep-
resentations. The WN+XWN system is the top-
ranked unsupervised knowledge-based system of
Senseval-3 and SemEval-2007 datasets from the
original competition (Cuadros and Rigau, 2007).
It alleviates sparsity by combining WordNet with
the eXtended WordNet (Mihalcea and Moldovan,
2001). The latter resource relies on parsing of
WordNet glosses.

For KnowNet, BabelNet, and WN+XWN we
use the scores reported in the respective original
publications. However, as NASARI was not eval-
uated on the datasets used in our study, we used
the following procedure to obtain NASARI-based
sense representations: Each WordNet-based sense
representation was extended with all features from
the lexical vectors of NASARI.2

Thus, we compare our method to three hybrid
systems that induce sense representations on the

2We used the version of lexical vectors (July 2016) featur-
ing 4.4 million of BabelNet synsets, yet covering only 72%
of word senses of the two datasets used in our experiments.
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Figure 1: Performance of different word sense representation strategies.

Senseval-3 fine-grained SemEval-2007 fine-grained
Model Precision Recall F-score Precision Recall F-score
Random 19.1 19.1 19.1 27.4 27.4 27.4
WordNet 29.7 29.7 29.7 44.3 21.0 28.5
WordNet + Related (news) 47.5 47.5 47.5 54.0 50.0 51.9
WordNet + Related (news) + Context (news) 47.2 47.2 47.2 54.8 51.2 52.9
WordNet + Related (news) + Context (wiki) 46.9 46.9 46.9 55.2 51.6 53.4
BabelNet 44.3 44.3 44.3 56.9 53.1 54.9
KnowNet 44.1 44.1 44.1 49.5 46.1 47.7
NASARI (lexical vectors) 32.3 32.2 32.2 49.3 45.8 47.5
WN+XWN 38.5 38.0 38.3 54.9 51.1 52.9

Table 3: Comparison of our approach to the state of the art unsupervised knowledge-based methods on
the SemEval-2007 Task 16 (weighted setting). The best results overall are underlined.

basis of WordNet and texts (KnowNet, BabelNet,
NASARI) and one purely knowledge-based sys-
tem (WN+XWN). Note that we do not include the
supervised TSSEM system in this comparison, as
in contrast to all other considered methods, it re-
lies on a large sense-labeled corpus.

Table 3 presents results of the evaluation.
On the Senseval-3 dataset, our hybrid models
show better performance than all unsupervised
knowledge-based approaches considered in our
experiment. On the SemEval-2007 dataset, the
only resource which exceeds the performance of
our hybrid model is BabelNet. The extra perfor-
mance of BabelNet on the SemEval dataset can
be explained by its multilingual approach: addi-
tional features are obtained using semantic rela-
tions across synsets in different languages. Be-
sides, machine translation is used to further enrich
coverage of the resource (Navigli and Ponzetto,
2012).

These results indicate on the high quality of
the sense representations obtained using the hy-
brid aligned resource. Using related words of
induced senses improves WSD performance by
a large margin as compared to purely WordNet-
based model on both datasets. Adding extra con-
textual features further improves slightly results
on one dataset. Thus, we recommend enriching
sense representations with related words and op-

tionally with context clues. Finally, note that,
while our method shows competitive results com-
pared to other state-of-the-art hybrid systems, it
does not require access to web search engines
(KnowNet), texts mapped to a sense inventory
(BabelNet, NASARI), or machine translation sys-
tems (BabelNet).

6 Conclusion

The hybrid aligned resource (Faralli et al., 2016)
successfully enriches sense representations of a
manually-constructed lexical network with fea-
tures derived from a distributional disambiguated
lexical network. Our WSD experiments on two
datasets show that this additional information ex-
tracted from corpora let us substantially outper-
form the model based solely on the lexical re-
source. Furthermore, a comparison of our sense
representation method with existing hybrid ap-
proaches leveraging corpus-based features demon-
strate its state-of-the-art performance.
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and Chris Biemann. 2006. Exploiting the Leipzig
Corpora Collection. In Proceedings of the Fifth
Slovenian and First International Language Tech-
nologies Conference (IS-LTC), Ljubljana, Slovenia.

Sascha Rothe and Hinrich Schütze. 2015. Autoex-
tend: Extending word embeddings to embeddings
for synsets and lexemes. In Proceedings of the
53rd Annual Meeting of the Association for Compu-
tational Linguistics and the 7th International Joint
Conference on Natural Language Processing (Vol-
ume 1: Long Papers), pages 1793–1803, Beijing,
China, July. Association for Computational Linguis-
tics.

Peter D. Turney and Patrick Pantel. 2010. From fre-
quency to meaning: Vector space models of seman-
tics. JAIR, 37:141–188.

Mo Yu and Mark Dredze. 2014. Improving lexical
embeddings with semantic knowledge. In Proceed-
ings of the 52nd Annual Meeting of the Association
for Computational Linguistics (Volume 2: Short Pa-
pers), pages 545–550, Baltimore, Maryland. Asso-
ciation for Computational Linguistics.

78



Proceedings of the 1st Workshop on Sense, Concept and Entity Representations and their Applications, pages 79–90,
Valencia, Spain, April 4 2017. c©2017 Association for Computational Linguistics

One Representation per Word — Does it make Sense for Composition?

Thomas Kober, Julie Weeds, John Wilkie, Jeremy Reffin and David Weir
TAG laboratory, Department of Informatics, University of Sussex

Brighton, BN1 9RH, UK
{t.kober, j.e.weeds, jw478, j.p.reffin, d.j.weir}@sussex.ac.uk

Abstract

In this paper, we investigate whether an
a priori disambiguation of word senses is
strictly necessary or whether the meaning
of a word in context can be disambiguated
through composition alone. We evaluate
the performance of off-the-shelf single-
vector and multi-sense vector models on
a benchmark phrase similarity task and a
novel task for word-sense discrimination.
We find that single-sense vector models
perform as well or better than multi-sense
vector models despite arguably less clean
elementary representations. Our findings
furthermore show that simple composition
functions such as pointwise addition are
able to recover sense specific information
from a single-sense vector model remark-
ably well.

1 Introduction

Distributional word representations based on
counting co-occurrences have a long history in
natural language processing and have successfully
been applied to numerous tasks such as sentiment
analysis, recognising textual entailment, word-
sense disambiguation and many other important
problems. More recently low-dimensional and
dense neural word embeddings have received a
considerable amount of attention in the research
community and have become ubiquitous in numer-
ous NLP pipelines in academia and industry. One
fundamental simplifying assumption commonly
made in distributional semantic models, however,
is that every word can be encoded by a single rep-
resentation. Combining polysemous lexemes into
a single vector has the consequence of essentially
creating a weighted average of all observed mean-
ings of a lexeme in a given text corpus.

Therefore a number of proposals have been
made to overcome the issue of conflating several
different senses of an individual lexeme into a
single representation. One approach (Reisinger
and Mooney, 2010; Huang et al., 2012) is to try
directly inferring a predefined number of senses
from data and subsequently label any occurrences
of a polysemous lexeme with the inferred inven-
tory. Similar approaches are proposed by Reddy
et al. (2011) and Kartsaklis et al. (2013) who show
that appropriate sense selection or disambigua-
tion typically improves performance for compo-
sition of noun phrases (Reddy et al., 2011) and
verb phrases (Kartsaklis et al., 2013). Dinu and
Lapata (2010) proposed a model that represents
the meaning of a word as a probability distribu-
tion over latent senses which is modulated based
on contextualisation, and report improved perfor-
mance on a word similarity task and the lexi-
cal substitution task. Other approaches leverage
an existing lexical resource such as BabelNet or
WordNet to obtain sense labels a priori to creat-
ing word representations (Iacobacci et al., 2015),
or as a postprocessing step after obtaining initial
word representations (Chen et al., 2014; Pilehvar
and Collier, 2016). While these approaches have
exhibited strong performance on benchmark word
similarity tasks (Huang et al., 2012; Iacobacci et
al., 2015) and some downstream processing tasks
such as part-of-speech tagging and relation identi-
fication (Li and Jurafsky, 2015), they have been
weaker than the single-vector representations at
predicting the compositionality of multi-word ex-
pressions (Salehi et al., 2015), and at tasks which
require the meaning of a word to be considered
in context; e.g, word sense disambiguation (Ia-
cobacci et al., 2016) and word similarity in con-
text (Iacobacci et al., 2015).

In this paper we consider what happens when
distributional representations are composed to
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form representations for larger units of meaning.
In a compositional phrase, the meaning of the
whole can be inferred from the meaning of its
parts. Thus, assuming compositionality, the rep-
resentation of a phrase such as black mood, should
be directly inferable from the representations for
black and for mood. Further, one might suppose
that composing the correct senses of the individ-
ual lexemes would result in a more accurate repre-
sentation of that phrase. However, our counter-
hypothesis is that the act of composition con-
textualises or disambiguates each of the lexemes
thereby making the representations of individual
senses redundant. We investigate this hypothe-
sis by evaluating the performance of single-vector
representations and multi-sense representations at
both a benchmark phrase similarity task and at a
novel word-sense discrimination task.

Our contributions in this work are thus as fol-
lows. First, we provide quantitative and qualita-
tive evidence that even simple composition func-
tions have the ability to recover sense-specific in-
formation from a single-vector representation of
a polysemous lexeme in context. Second, we in-
troduce a novel word-sense discrimination task1,
which can be seen as the first stage of word-sense
disambiguation. The goal is to find whether the
occurrences of a lexeme in two or more senten-
tial contexts belong to the same sense or not, with-
out necessarily labelling the senses. While it has
received relatively little attention in recent years,
it is an important natural language understanding
problem and can provide important insights into
the process of semantic composition.

2 Evaluating Distributional Models of
Composition

For evaluation we use several readily available
off-the-shelf word embeddings, that have al-
ready been shown to work well for a number
of different NLP applications. We compare the
300-dimensional skip-gram word2vec (Mikolov
et al., 2013) word embeddings2 to the depen-
dency based version of word2vec — henceforth
dep2vec3 (Levy and Goldberg, 2014) — and the

1Our task is available from https://github.com/
tttthomasssss/sense2017

2Available from: https://code.google.com/p/
word2vec/

3Available from: https://levyomer.
wordpress.com/2014/04/25/
dependency-based-word-embeddings/

SENSEMBED model4 by Iacobacci et al. (2015),
which creates word-sense embeddings by per-
forming word-sense disambiguation prior to run-
ning word2vec.

We note that word2vec and dep2vec use
a single vector per word approach and therefore
conflate the different senses of a polysemous lex-
eme. On the other hand, SENSEMBED utilises Ba-
belfy (Moro et al., 2014) as an external knowledge
source to perform word-sense disambiguation and
subsequently creates one vector representation per
word sense.

For composition we use pointwise addition for
all models as this has been shown to be a strong
baseline in a number of studies (Hashimoto et
al., 2014; Hill et al., 2016). We also experi-
mented with pointwise multiplication as compo-
sition function but, similar to Hill et al. (2016),
found its performance to be very poor (results not
reported). We model any out-of-vocabulary items
as a vector consisting of all zeros and determine
proximity of composed meaning representations
in terms of cosine similarity. We lowercase and
lemmatise the data in our task but do not perform
number or date normalisation, or removal of rare
words.

3 Phrase Similarity

Our first evaluation task is the benchmark phrase
similarity task of Mitchell and Lapata (2010). This
dataset consists of 108 adjective-noun (AN), 108
noun-noun (NN) and 108 verb-object (VO) pairs.
The task is to compare a compositional model’s
similarity estimates with human judgements by
computing Spearman’s ρ. An average ρ of 0.47-
0.48 represents the current state-of-the-art perfor-
mance on this task (Hashimoto et al., 2014; Kober
et al., 2016; Wieting et al., 2015).

For single-sense representations, the strategy
for carrying out this task is simple. For each
phrase in each pair, we compose the constituent
representations and then compute the similarity
of each pair of phrases using the cosine similar-
ity. For multi-sense representations, we adapted
the strategy which has been used successfully in
various word similarity experiments (Huang et al.,
2012; Iacobacci et al., 2015). Typically, for each
word pair, all pairs of senses are considered and
the similarity of the word pair is considered to be

4Available from: http://lcl.uniroma1.it/
sensembed/
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the similarity of the closest pair of senses. The
fact that this strategy works well suggests that
when humans are asked to judge word similar-
ity, the pairing automatically primes them to se-
lect the closest senses. Extending this to phrase
similarity requires us to compose each possible
pair of senses for each phrase and then select
the sense configuration which results in maximal
phrase similarity. For comparison, we also give
results for the configuration which results in mini-
mal phrase similarity and the arithmetic mean5 of
all sense configurations.

3.1 Results

Model AN NN VO Average
word2vec 0.47 0.46 0.45 0.46
dep2vec 0.48 0.46 0.45 0.46
SENSEMBED:max 0.39 0.39 0.32 0.37
SENSEMBED:min 0.24 0.12 0.22 0.19
SENSEMBED:mean 0.46 0.35 0.37 0.39

Table 1
Results for the Mitchell and Laptata (2010) dataset.

Table 1 shows that the simple strategy of adding
high quality single-vector representations is very
competitive with the state-of-the-art for this task.
None of the strategies for selecting a sense config-
uration for the multi-sense representations could
compete with the single sense representations on
this task. One possible explanation is that the com-
monly adopted closest sense strategy is not effec-
tive for composition since the composition of in-
correct senses may lead to spuriously high similar-
ities (for two “implausible” sense configurations).

Table 2 lists a number of example phrase pairs
with low average human similarity scores in the
Mitchell and Lapata (2010) test set. The results
show the tendency of the closest sense strategy
with SENSEMBED (SE) to overestimate the sim-
ilarity of dissimilar phrase pairs. For a compari-
son we manually labelled the lexemes in the sam-
ple phrases with the appropriate BabelNet senses
prior to composition (SE*). Human (H) similar-
ity scores are normalised and averaged for an eas-
ier comparison, model estimates represent cosine
similarities.

4 Word Sense Discrimination

Word-sense discrimination can be seen as the first
stage of word-sense disambiguation, where the

5We also tried the geometric mean and the median but
these performed comparably with the arithmetic mean.

Phrase 1 Phrase 2 SE SE* H
buy land leave house 0.49 0.28 0.26
close eye stretch arm 0.40 0.31 0.25
wave hand leave company 0.42 0.08 0.20
drink water use test 0.29 0.04 0.18
european state present position 0.28 -0.03 0.19
high point particular case 0.41 0.10 0.21

Table 2
Tendency of SENSEMBED (SE) to overestimate the similarity
on phrase pairs with low average human similarity when the
closest sense strategy is used.

goal is to find whether two or more occurrences of
the same lexeme express identical senses, without
necessarily labelling the senses yet. It has received
relatively little attention despite its potential for
providing important insights into semantic com-
position, focusing in particular on to the ability
of compositional distributional semantic models to
appropriately contextualise a polysemous lexeme.

Work on word-sense discrimination has suf-
fered from the absence of a benchmark task as well
as a clear evaluation methodology. For example
Schütze (1998) evaluated his model on a dataset
consisting of 20 polysemous words (10 naturally
ambiguous lexemes and 10 artificially ambiguous
“pseudo-lexemes”) in terms of accuracy for coarse
grained sense distinctions, and an information re-
trieval task. Pantel and Lin (2002), and Van de
Cruys (2008) used automatically extracted words
from various newswire sources and evaluated the
output of their models in comparison to WordNet
and EuroWordNet, respectively. Purandare and
Pedersen (2004) used a subset of the words from
the SENSEVAL-2 task and evaluated their models
in terms of precision, recall and F1-score of how
well available sense tags match with clusters dis-
covered by their algorithms. Akkaya et al. (2012)
used the concatenation of the SENSEVAL-2 and
SENSEVAL-3 tasks and evaluated their models in
terms of cluster purity and accuracy. Finally,
Moen et al. (2013) used the semantic textual sim-
ilarity (STS) 2012 task, which is based on human
judgements of the similarity between two sen-
tences.

One contribution of our work is a novel word-
sense discrimination task, evaluated on a number
of robust baselines in order to facilitate future re-
search in that area. In particular, our task offers a
testbed for assessing the contextualisation ability
of compositional distributional semantic models.
The goal is, for a given polysemous lexeme in con-
text, to identify the sentence from a list of options
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that is expressing the same sense of that lexeme
as the given target sentence. These two sentences
— the target and the “correct answer” — can ex-
hibit any degree of semantic similarity as long as
they convey the same sense of the target lexeme.
Table 3 shows an example of the polysemous ad-
jective black in our task. The goal of any model
would be to determine that the expressed sense of
black in the sentence She was going to set him
free from all of the evil and black hatred he had
brought to the world is identical to the expressed
sense of black in the target sentence Or should they
rebut the Democrats’ black smear campaign with
the evidence at hand.

Our task assesses the ability of a model to dis-
criminate a particular sense in a sentential context
from any other senses and thus provides an excel-
lent testbed for evaluating multi-sense word vec-
tor models as well as compositional distributional
semantic models. By composing the representa-
tion of a target lexeme with its surrounding con-
text, it should be possible to determine its sense.
For example, composing black smear campaign
should lead to a compositional representation that
is closer to the composed representation of black
hatred than to black mood, black sense of humour
or black coffee. This essentially uses the similarity
of the compositional representation of a lexeme’s
context to determine its sense. Similar approaches
to word-sense disambiguation have already been
successfully used in past works (Akkaya et al.,
2012; Basile et al., 2014).

4.1 Task Construction

For the construction of our dataset we made use of
data from two english dictionaries (Oxford Dictio-
nary and Collins Dictionary), accessible via their
respective web APIs6, as well as examples from
the sense annotated corpus SemCor (Miller et al.,
1993). Our use of dictionary data is motivated by
a number of favourable properties which make it a
very suitable data source for our proposed task:

• The content is of very high-quality and cu-
rated by expert lexicographers.

• All example sentences are carefully crafted in
order to unambiguously illustrate the usage

6https://developer.
oxforddictionaries.com for the Oxford Dictionary,
https://www.collinsdictionary.com/api/ for
the Collins Dictionary. We use NLTK 3.2 to access SemCor.

of a particular sense for a given polysemous
lexeme.

• The granularity of the sense inventory reflects
common language use7.

• The example sentences are typically free of
any domain bias wherever possible.

• The data is easily accessible via a web API.

By using the data from curated resources we were
able to avoid a setup as a sentence similarity task
and any potentially noisy crowd-sourced human
similarity judgements.

We were furthermore able to collect data from
varying frequency bands, enabling an assessment
of the impact of frequency on any model. Fig-
ure 1 shows the number of target lexemes per fre-
quency band. While the majority of lexemes, with
reference to a cleaned October 2013 Wikipedia
dump8, is in the middle band, there is a consid-
erable amount of less frequent lexemes. The most
frequent target lexeme in our task is the verb be
with ≈1.8m occurrences in Wikipedia, and the
least frequent lexeme is the verb ruffle with only
57 occurrences. The average target lexeme fre-
quency is ≈95k for adjectives, and ≈45k−46k for
nouns and verbs9.

Figure 1: Binned frequency distribution of the polysemous
target lexemes in our task.

7The Oxford dictionary lists 5 different senses for the
noun “bank”, whereas WordNet 3.0 lists 10 synsets, for ex-
ample distinguishing “bank” as the concept for a financial
institution and “bank” as a reference to the building where
financial transactions take place.

8We removed any articles with fewer than 20 page views.
9The overall number of unique word types is smaller than

the number of examples in our task as there are a number of
lexemes that can occur with more than one part-of-speech.

82



Sense Definition Sentence
Target full of anger or hatred Or should they rebut the Democrats’ black smear campaign with

the evidence at hand?
Option 1 full of anger or hatred She was going to set him free from all of the evil and black hatred

he had brought to the world.
Option 2 (of a person’s state of mind) I’ve been in a black mood since September 2001, it’s hanging over

full of gloom or misery; very depressed me like a penumbra.
Option 3 (of humour) presenting tragic or harrowing Over the years I have come to believe that fate either hates me, or

situations in comic terms has one hell of a black sense of humour.
Option 4 (of coffee or tea) served without milk The young man was reading a paperback novel and sipping a

steaming mug of hot, black coffee.

Table 3: Example of the polysemous adjective black in our task. The goal for any model is to predict option 1 as expressing the
same sense of black as the target sentence.

4.2 Task Setup Details
We collected data for 3 different parts-of-speech:
adjectives, nouns and verbs. We furthermore cre-
ated task setups with varying numbers of senses
to distinguish (2-5 senses) for a given target lex-
eme. This is to evaluate how well a model is able
to discriminate different degrees of polysemy of
any lexeme. For any task setup evaluating for n
senses, we included all lexemes with > n senses
and randomly sampled n senses from its inventory.
For each lexeme, we furthermore ensured that it
had at least 2 example sentences per sense. For
the available senses of any given lexeme, we ran-
domly chose a sense as the target sense, and from
its list of example sentences randomly sampled 2
sentences, one as the target example and one as
the “correct answer” for the list of candidate sen-
tences. Finally we once again randomly sampled
the required number of other senses and example
sentences to complete the task setup. Using ran-
dom sampling of word senses and targets aims to
avoid a predominant sense bias.

For each part-of-speech we created a develop-
ment split for parameter tuning and a test split for
the final evaluation. Table 4 shows the number of
examples for each setup variant of our task. The
biggest category are polysemous nouns, represent-
ing roughly half of the data, followed by verbs
representing another third, and the smallest cate-
gory are adjectives taking up the remaining≈17%.
We measure performance in terms of accuracy of

2 senses 3 senses 4 senses 5 senses
Adjective 66/209 47/170 37/137 28/115
Noun 170/618 125/499 100/412 74/345
Verb 127/438 71/354 72/295 56/256
Total 363/1265 263/1023 209/844 164/716

Table 4: Number of examples per part-of-speech and number
of senses (#dev examples/#train examples).

correctly predicting which two sentences share the

same sense of a given target lexeme. Accuracy has
the advantage of being much easier to interpret —
in absolute terms as well as in the relative differ-
ence between models — in comparison to other
commonly used evaluation metrics such as clus-
ter purity measures or correlation metrics such as
Spearman ρ and Pearson r.

4.3 Experimental Setup

In this paper we compare the compositional mod-
els outlined earlier with two baselines, a random
baseline and a word-overlap baseline of the ex-
tracted contexts. For the single-vector represen-
tations, we composed the target lexeme with all of
the words in the context window and compared it
with the equivalent representation of each of the
options (lexeme plus context words). The option
with the highest cosine similarity was deemed to
be the selected sense. For SENSEMBED, we com-
posed all sense vectors of a target lexeme with the
given context and then used the closest sense strat-
egy (Iacobacci et al., 2015) on composed represen-
tations to choose the predicted sense10. The word-
overlap baseline is simply the number of words in
common between the context window for the tar-
get and each of the options.

We experimented with symmetric linear bag-
of-words contexts of size 1, 2 and 4 around the
target lexeme. We also experimented with de-
pendency contexts, where first-order dependency
contexts performed almost identical to using a 2-
word bag-of-words context window (results not
reported). We excluded stop words prior to ex-
tracting the context window in order to maximise
the number of content words. We break ties for
any of the methods — including the baselines —
by randomly picking one of the options with the

10We also tried an all-by-all senses composition, however
found this to be computationally not tractable.
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highest similarity to the composed representation
of the target lexeme with its context. Statistical
significance between the best performing model
and the word overlap baseline is computed by us-
ing a randomised pairwise permutation test (Efron
and Tibshirani, 1994).

4.4 Results

Table 5 shows the results for all context window
sizes across all parts-of-speech and number of
senses. All models substantially outperform the
random baseline for any number of senses. In-
terestingly the word overlap baseline is compet-
itive for all context window sizes. While it is
a very simple method, it has already been found
to be a strong baseline for paraphrase detection
and semantic textual similarity (Dinu and Thater,
2012). One possible explanation for its robust
performance on our task is an occurrence of the
one-sense-per-collocation hypothesis (Yarowsky,
1993). The performance of all other models
is roughly in the same ballpark for all parts-of-
speech and number of senses, suggesting that they
form robust baselines for future models. While
the results are relatively mixed for adjectives,
word2vec appears to be the strongest model for
polysemous nouns and verbs.

The perhaps most interesting observation in Ta-
ble 5 is that word2vec and dep2vec are per-
forming as well or better than SENSEMBED de-
spite the fact that the former conflate the senses of
a polysemous lexeme in a single vector represen-
tation. Figure 2 shows the average performance of
all models across parts-of-speech per number of
senses and for all context window sizes.

SENSEMBED and Babelfy

One possible explanation for SENSEMBED not
outperforming the other methods despite its
cleaner encoding of different word senses in the
above experiments is that at train time, it had ac-
cess to sense labels from Babelfy. At test time
on our task however, it did not have any sense
labels available. We therefore sense tagged the
5-sense noun subtask with Babelfy and re-ran
SENSEMBED. As Table 6 shows, access to sense
labels at test time did not give a substantive perfor-
mance boost, representing further support for our
hypothesis that composition in single-sense vector
models might be sufficient to recover sense spe-
cific information.

Frequency Range

We chose the 2-sense noun subtask to estimate the
degree sensitivity of target lexeme frequency on
our task we merged the [1, 1k) and [1k, 10k), and
[50k, 100k) and [100k,∞) frequency bands from
Figure 1, and sampled an equal number of target
words from each band. Table 7 reports the results
for this experiment. All methods outperform the
random and word overlap baseline and appear to
be working better for less frequent lexemes. One
possible explanation for this behaviour is that less
frequent lexemes have fewer senses and poten-
tially less subtle sense differences than more fre-
quent lexemes, which would make them easier to
discriminate by distributional semantic methods.

5 Discussion

Our results suggest that pointwise addition in a
single-sense vector model such as word2vec is
able to discriminate the sense of a polysemous
lexeme in context in a surprisingly effective way
and represents a strong baseline for future work.
Distributional composition can therefore be inter-
preted as a process of contextualising the mean-
ing of a lexeme. This way, composition does not
only act as a way to represent the meaning of a
phrase as a whole, but also as a local discrimina-
tor for any lexemes in the phrase. For example
the composed representation of dry clothes should
only keep contexts that dry shares with clothes
while suppressing contexts it shares with weather
or wine. Hence, one would expect the same to hap-
pen with a polysemous lexeme such as bank in the
context of river and account, respectively.

Recent work by Arora et al. (2016) has shown
that the different senses of a polysemous lexeme
reside in a linear substructure within a single vec-
tor and are recoverable by sparse coding. There is
furthermore evidence that additive composition in
low-dimensional word embeddings approximates
an intersection of the contexts of two distributional
word vectors (Tian et al., 2015). It therefore seems
plausible that an intersective composition function
should be able to recover sense specific informa-
tion.

To qualitatively analyse this hypothesis we
used the word2vec and SENSEMBED vectors
to compose a small number of example phrases
by pointwise addition and calculated their top 5
nearest neighbours in terms of cosine similarity.
For SENSEMBED we manually sense tagged the
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Symmetric context window of size 1
Adjective Noun Verb

Senses 2 3 4 5 2 3 4 5 2 3 4 5
Random 0.53 0.32 0.25 0.14 0.47 0.32 0.23 0.19 0.47 0.31 0.23 0.18
Word Overlap 0.63 0.46 0.47 0.40 0.55 0.40 0.37 0.34 0.54 0.44 0.38 0.29

word2vec 0.70 0.56 0.61† 0.54† 0.66‡ 0.52‡ 0.50‡ 0.44‡ 0.63‡ 0.56‡ 0.52‡ 0.43‡

dep2vec 0.65 0.64‡ 0.57 0.57‡ 0.64‡ 0.50‡ 0.49‡ 0.48‡ 0.63‡ 0.55‡ 0.50‡ 0.43‡

SENSEMBED 0.67 0.54 0.56 0.56† 0.64‡ 0.49‡ 0.50‡ 0.43‡ 0.62† 0.53‡ 0.49‡ 0.38†

Symmetric context window of size 2
Adjective Noun Verb

Senses 2 3 4 5 2 3 4 5 2 3 4 5
Random 0.53 0.32 0.25 0.14 0.47 0.32 0.23 0.19 0.47 0.31 0.23 0.18
Word Overlap 0.66 0.51 0.55 0.43 0.59 0.47 0.43 0.41 0.58 0.51 0.45 0.36

word2vec 0.70 0.64† 0.58 0.55 0.71‡ 0.63‡ 0.59‡ 0.54‡ 0.68‡ 0.64‡ 0.58‡ 0.49‡

dep2vec 0.71 0.65‡ 0.58 0.57‡ 0.70‡ 0.57‡ 0.55‡ 0.55‡ 0.66† 0.64‡ 0.54† 0.46†

SENSEMBED 0.72‡ 0.62 0.61 0.52 0.69‡ 0.56† 0.57‡ 0.51† 0.67‡ 0.65† 0.57 0.45

Symmetric context window of size 4
Adjective Noun Verb

Senses 2 3 4 5 2 3 4 5 2 3 4 5
Random 0.53 0.32 0.25 0.14 0.47 0.32 0.23 0.19 0.47 0.31 0.23 0.18
Word Overlap 0.67 0.55 0.58 0.51 0.62 0.50 0.49 0.45 0.59 0.55 0.50 0.40

word2vec 0.71 0.65† 0.65 0.57 0.73‡ 0.61‡ 0.62‡ 0.57‡ 0.71‡ 0.62† 0.57 0.53‡

dep2vec 0.72 0.66† 0.60 0.54 0.71‡ 0.55 0.56† 0.53† 0.67 0.62 0.54 0.50
SENSEMBED 0.75 0.59 0.62 0.55 0.69‡ 0.57† 0.58‡ 0.53† 0.68‡ 0.62† 0.55 0.47

Table 5
Performance overview for all parts-of-speech and number of senses, ‡ statistically significant at the p < 0.01 level in com-
parison to the Word Overlap baseline; † statistically significant at the p < 0.05 level in comparison to the Word Overlap
baseline.

Figure 2: Average performance across parts-of-speech per number of senses and context window.

Noun - 5 Senses
Context Window Size 1 2 4
word2vec 0.44 0.54 0.57
dep2vec 0.48 0.55 0.53
SENSEMBED 0.43 0.51 0.53
SENSEMBED & Babelfy 0.45 0.49 0.54

Table 6
Results on the 5-sense noun subtask with SENSEMBED hav-
ing access to Babelfy sense labels at test time.

phrases with the appropriate BabelNet sense la-
bels prior to composition. We omitted the Babel-
Net sense labels in the neighbour list for brevity,

Noun - 2 Senses, context window size = 2
Frequency Band < 10k 10k – 50k ≥ 50k
Random 0.51 0.51 0.51
Word Overlap 0.66 0.60 0.56
word2vec 0.81 0.64 0.66
dep2vec 0.77 0.67 0.66
SENSEMBED 0.74 0.68 0.60

Table 7
Results on a subsample of the 2-sense noun subtask across
frequency bands.

however they were consistent with the intended
sense in all cases. Table 8 supports the view of
composition as a way of contextualising the mean-
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ing of a lexeme. In all cases in our example the
word2vec neighbours reflect the intended sense
of the polysemous lexeme, providing evidence for
the linear substructure of word senses in a single
vector as discovered by Arora et al. (2016), and
suggesting that distributional composition is able
to recover sense specific information from a poly-
semous lexeme. The very fine-grained sense-level
vector space of SENSEMBED is giving rise to a
very focused neighbourhood, however there does
not seem to be any advantage over word2vec
from a qualitative point of view when using simple
additive composition.

6 Related Work

The perhaps most popular tasks for evaluating the
ability of a model to capture or encode the differ-
ent senses of a polysemous lexeme in a given con-
text are the english lexical substitution task (Mc-
Carthy and Navigli, 2007) and the Microsoft sen-
tence completion challenge (Zweig and Burges,
2011). Both tasks require any model to fill an ap-
propriate word into a pre-defined slot in a given
sentential context. The sentence completion chal-
lenge provides a list of candidate words while the
english lexical substitution task does not. How-
ever, neither task focuses on polysemy and the en-
glish lexical substitution task conflates the prob-
lems of discriminating word senses and finding
meaning preserving substitutes.

Dictionary definitions have previously been
used to evaluate compositional distributional se-
mantic models where the goal is to match a dictio-
nary entry with its corresponding definition (Kart-
saklis et al., 2012; Polajnar and Clark, 2014).
These datasets are commonly set up as retrieval
tasks, but generally do not test the ability of a
model to disambiguate a polysemous word in con-
text, or discriminate multiple definitions of the
same word.

Our task also provides a novel evaluation
for compositional distributional semantic models,
where the predominant strategy is to estimate the
similarity of two short phrases (Bernardi et al.,
2013; Grefenstette and Sadrzadeh, 2011; Kart-
saklis and Sadrzadeh, 2014; Mitchell and Lap-
ata, 2008; Mitchell and Lapata, 2010) or sen-
tences (Agirre et al., 2016; Huang et al., 2012;
Marelli et al., 2014) in comparison to human pro-
vided gold-standard judgements. One problem
with these similarity tasks is that the similarity

or relatedness of two sentences is very difficult
to judge — especially on a fine-grained scale —
even for humans. This frequently results in a rel-
atively high variance of judgements and low inter-
annotator agreement (Batchkarov et al., 2016).
The short phrase datasets typically have a fixed
structure that only test a very small fraction of the
possible grammatical constructions in which a lex-
eme can occur, and furthermore provide very little
context. The use of full sentences remedies the
lack of context and grammatical variation, how-
ever can still contain a significant level of noise
due to the automatic construction of the dataset or
the variance in human ratings. In contrast, our
task is not set up as a sentence similarity task
and therefore avoids the use of human similarity
judgements.

Our task is similar to word-sense induction
(WSI), however we only focus on discriminating
the sense of a polysemous lexeme in context rather
than inducing a set of senses from raw data and
appropriately tagging subsequent occurrences of
polysemous instances with the inferred inventory.
Separating the sense discrimination task from the
problem of sense induction has the advantage of
making our task applicable to evaluating composi-
tional distributional semantic models in order to
test their ability to appropriately contextualise a
polysemous lexeme. Due to not requiring any
models to perform an extra step for sense induc-
tion, our task is easier to evaluate as no matching
between sense clusters identified by a model and
some gold standard sense classes needs to be per-
formed, as typically proposed in the WSI litera-
ture (Agirre and Soroa, 2007; Manandhar et al.,
2010).

Most closely related to our task are the Stan-
ford Contextual Word Similarity (SCWS) dataset
by Huang et al. (2012) and the Usage Similar-
ity (USim) task by Erk et al. (2009). The goal
in both tasks is to estimate the similarity of two
polysemous words in context in comparison to
human provided gold standard judgements. In
the SCWS dataset typically two different lexemes
are considered whereas in USim and our task the
same lexemes with different contexts are com-
pared. Instead of relying on crowd-sourced hu-
man gold-standard similarity judgements, which
can be prone to a considerable amount of noise11,

11For example the average standard deviation of human
ratings in the SCWS dataset is ≈3 on a 10-point scale, and
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Phrase word2vec neighbours SENSEMBED neighbours
river bank bank, river, creek, lake, rivers bank, river, stream, creek, river basin
bank account account, bank, accounts, banks, citibank bank, banks, the bank, pko bank polski, handlowy
dry weather weather, dry, wet weather, wet, unreasonably warm dry, weather, humid, cold, cool
dry clothes dry, clothes, clothing, rinse thoroughly, wet dry, clothes, warm, cold, wet
capital city capital, city, cities, downtown, town city, capital, the capital city, town, provincial capital
capital asset capital, asset, assets, investment, worth capital, asset, investment, assets, investor
power plant plant, power, plants, coalfired, megawatt power, plant, near-limitless, pulse-power, power of the wind
garden plant plant, garden, plants, gardens, vegetable garden plant, garden, plants, oakville assembly, solanaceous
window bar bar, window, windows, doorway, door window, bar, windows, glass window, wall
sandwich bar bar, sandwich, restaurant, burger, diner sandwich, bar, restaurant, hot dog, cake
gasoline tank gasoline, tank, fuel, gallon, tanks gasoline, tank, fuel, petrol, kerosene
armored tank armored, tank, tanks, M1A1 Abrams, armored vehicle armored, armoured, tank, tanks, light tank
desert rock rock, desert, rocks, desolate expanse, arid desert desert rock, the desert, deserts, badlands
rock band rock, band, rockers, bands, indie rock band, rock, group, the band, rock group

Table 8
Nearest neighbours of composed phrases for word2vec and SENSEMBED. Distributional composition in word2vec is able
to recover sense specific information remarkably well. Some neighbours are phrases because they have been encoded as a
single token in the original vector space.

we leverage the high-quality content of available
english dictionaries. Furthermore, our task is not
formulated as estimating the similarity between
two lexemes in context, but identifying the sen-
tences that use the same sense of a given polyse-
mous lexeme.

7 Conclusion

While elementary multi-sense representations of
words might capture a more fine grained semantic
picture of a polysemous word, that advantage does
not appear to transfer to distributional composi-
tion in a straightforward way. Our experiments
on a popular phrase similarity benchmark and our
novel word-sense discrimination task have demon-
strated that semantic composition does not appear
to benefit from a fine grained sense inventory, but
that the ability to contextualise a polysemous lex-
eme in single-sense vector models is sufficient for
superior performance. We furthermore have pro-
vided qualitative and quantitative evidence that an
intersective composition function such as point-
wise addition for neural word embeddings is able
to discriminate the meaning of a word in context,
and is able to recover sense specific information
remarkably well.

Lastly, our experiments have uncovered an im-
portant question for multi-sense vector models,
namely how to exploit the fine-grained sense
level representations for distributional composi-
tion. Our novel word-sense discrimination task
provides an excellent testbed for compositional
distributional semantic models, both following
a single-sense or multi-sense vector modelling

can be up to 4–5 in some cases.

paradigm, due to its focus on assessing the abil-
ity of a model to appropriately contextualise the
meaning of a word. Our task furthermore pro-
vides another evaluation option away from intrin-
sic evaluations which are based on often noisy hu-
man similarity judgements, while also not being
embedded in a downstream task.

In future work we aim to extend our eval-
uation to more complex compositional distribu-
tional semantic models such as the lexical func-
tion model (Paperno et al., 2014) or the Anchored
Packed Dependency Tree framework (Weir et al.,
2016). We furthermore want to investigate how
far the sense-discriminating ability of composition
can be leveraged for other tasks.
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Abstract

In this paper, we introduce a method of
identifying the components (i.e. dimen-
sions) of word embeddings that strongly
signifies properties of a word. By eluci-
dating such properties hidden in word em-
beddings, we could make word embed-
dings more interpretable, and also could
perform property-based meaning compar-
ison. With the capability, we can answer
questions like “To what degree a given
word has the property cuteness?” or “In
what perspective two words are similar?”.
We verify our method by examining how
the strength of property-signifying compo-
nents correlates with the degree of proto-
typicality of a target word.

1 Introduction

Modeling the meaning of words has long been
studied and served as a basis for almost every kind
of NLP tasks. Most recent word modeling tech-
niques are based on neural networks, and the word
representations produced by such techniques are
called word embeddings, which are usually low-
dimensional, dense vectors of continuous-valued
components. Although word embeddings have
been proved for their usefulness in many tasks, the
question of what are represented in them is under-
studied.

Recent studies report empirical evidence that in-
dicates word embeddings may reflect some prop-
erty information of a target word (Erk, 2016; Levy
et al., 2015). Learning the properties of a word
would be helpful because many NLP tasks can be
related to “finding words that possess similar prop-
erties”, which include finding synonyms, named
entity recognition (NER). Without a method for
explicating what properties are contained in em-

beddings, however, researchers have mostly fo-
cused on improving the performance in well-
known semantic benchmark tasks (e.g. SimLex-
999) as a way to find better embeddings.

Performing well in such benchmark tasks is
valuable but provides little help in understanding
the inside of the black box. For instance, it is not
possible to answer to questions like “To what de-
gree a given word has the property cuteness?”.

One way to solve this problem is to elucidate
properties that are encoded in word embeddings
and associate them with task performances. With
the capability, we can not only enhance our un-
derstanding of word embeddings but also make it
easier to make comparisons among heterogeneous
word embedding models in more coherent ways.
Our immediate goal in this paper is to show the
feasibility of explicating properties contained in
word embeddings.

Our research can be seen as an attempt to in-
crease the interpretability of word embeddings. It
is in line with an attempt to provide a human-
understandable explanation for complex machine
learning models, with which we can gain enough
confidence to use them in decision-making pro-
cesses.

There has been a line of work devoted to identi-
fying components that are important for perform-
ing various NLP tasks such as sentiment analysis
or NER (Faruqui et al., 2015; Fyshe et al., 2015;
Herbelot and Vecchi, 2015; Karpathy et al., 2016;
Li et al., 2016a; Li et al., 2016b; Rothe et al.,
2016). Those works are analogous to ours in that
they try to inspect the role of the components in
word embedding. However, they just attempt to
identify key features for specific tasks rather than
elucidating properties. In contrast, our question is
“what comprises word embeddings?” not “what
components are important for performing well in
a specific task?”
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2 Feasibility Study

2.1 Background
Word embeddings can be seen as representing
concepts of a word. As such, we attempt to design
an property-related experiment around manipula-
tion of concepts. In particular, we bring in the cat-
egory theory (Murphy, 2004) where the notion of
category is defined to be “grouping concepts that
share similar properties”. In other words, prop-
erties have a direct bearing on concepts and their
categories, according to the theory.

On the other hand, researchers have argued that
some concepts are more typical (or central) than
others in a category (Rosch, 1973; Rosch, 1975).
For instance, apple is more typical than olive in
the fruit category. The typicality is a graded phe-
nomenon, and may rise due to the strength of ‘es-
sential’ properties that make a concept a specific
category.

The key ideas from the above are 1) concepts
of the same category share similar properties and
2) some concepts that have strong essential prop-
erties are considered more typical in specific cate-
gory, and they guided our experiment design.

2.2 Design
The goal of this study is to show the feasibil-
ity of sifting property information from word em-
beddings. We assume that a concept’s property
information is captured and distributed over one
or more components (dimensions) of embeddings
during the learning process. Since the concepts
that belong to the same category are likely to share
similar properties, there should be some salient
components that are shared among them. We call
such components as SIG-PROPS (for significant
properties) of a specific category.

In this feasibility study, we hypothesize that the
strength of SIG-PROPS is strongly correlated with
the degree of concept’s typicality. This is based
on the theory introduced in Section 2.1, that the
typicality phenomenon rises due to the strength
of essential properties a target concept possesses.
So the concept that has (higher/lower) SIG-PROPS

values than others should be (more typical/less
typical) than other concepts.

2.3 Datasets
For our experiment dealing with typicality of con-
cepts, we needed both (pre-trained) word embed-
dings and a dataset that encodes typicality scores

of concepts to a set of categories. Below we de-
scribe two datasets we used in our experiment:
HyperLex and Non-Negative Sparse Embedding
(NNSE).

2.3.1 Dataset: Non-Negative Sparse
Embedding (NNSE)

One desirable quality we wanted from the word
embeddings to be used in our experiment is that
there should be clear contrast between informa-
tive and non-informative components. In ordinary
dense word embeddings, usually every component
is filled with a non-zero value.

The Non-Negative Sparse Embedding (NNSE)
(Murphy et al., 2012) fulfills the condition in
the sense that insignificant components are set to
zero. The NNSE component values falling be-
tween 0 and 1 (non-negative) are generated by ap-
plying the non-negative sparse coding algorithm
(Hoyer, 2002) to ordinary word embeddings (e.g.
word2vec).

2.3.2 Dataset: HyperLex
HyperLex is a dataset and evaluation resource
that quantifies the extent of the semantic category
membership (Vulić et al., 2016). A total of 2,616
concept pairs are included in the dataset, and the
strength of category membership is given by na-
tive English speakers and recorded in graded man-
ner. This graded category membership can be in-
terpreted as a ‘typicality score’ (1–10). Some sam-
ples are shown in Table 1.

Concept Category Score
basketball activity 10

spy agent 8
handbag bowl 0

Table 1: A HyperLex sample. The score is the
answer to the question “To what degree is concept
a type of category?”

3 Experiment

3.1 Preparation

We first prepared pre-trained NNSE embeddings.
The authors released pre-trained model on their
website1. We used the model trained with depen-
dency context (‘Dependency model’ on the web-
site), because as reported in (Levy and Goldberg,
2014), models trained on dependency context tend

1http://www.cs.cmu.edu/ bmurphy/NNSE/
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to prefer functional similarity (hogwarts — sun-
nydale) rather than topical similarity (hogwarts —
dumbledore)2. The embeddings are more sparse
than ordinary embeddings and have 300 compo-
nents.

Next we fetched HyperLex dataset at the au-
thor’s website3. To make the settings suitable to
our experiment goal, we selected categories with
the following criteria:

1. The categories and instances must be con-
crete nouns (e.g. food). This is because
people are more coherent in producing the
properties of concrete nouns (Murphy, 2004).
So the embeddings of concrete nouns should
contain more clear property information than
other types of words.

2. The categories must contain enough number
of instances (not 1 or 2). This is to gain reli-
able result.

3. Some categories are sub-category of another
selected category while others are not related.
This is to see the discriminative and overlap-
ping effect of identified SIG-PROPS between
categories. Related categories should share a
set of strong SIG-PROPS, while unrelated cat-
egories shouldn’t.

As a result, we selected five categories: food,
fruit (sub-category of food), animal, bird (sub-
category of animal), and instrument. We fetched
the concepts that belong to the categories and then
filtered out those that aren’t contained in the pre-
trained NNSE embeddings. The final size of each
category is shown in Table 2.

Category # of Concepts
food 54
fruit 9

animal 46
bird 16

instrument 14

Table 2: The size of selected categories

In the next section, we explain how we identi-
fied SIG-PROPS of each category.

2We thought “sharing similar function” is more compati-
ble with the notion of sharing similar properties. The topical
similarity is less indicative of having properties in common.

3http://people.ds.cam.ac.uk/iv250/hyperlex.html

3.2 Identification of SIG-PROPS

The goal of this step is to find SIG-PROPS that
might represent each category. Simply put, SIG-
PROPS are the components that have on average
high value compared to other components of the
concepts in the same category. We identified SIG-
PROPS by 1) calculating an average value of each
component across the concepts with the same cat-
egory, then 2) choosing those components whose
average value is above h. We empirically set h to
0.2.

Category SIG-PROPS
Comp. ID Avg.

instrument c88 0.806
c258 0.769

animal c154 0.587
c265 0.221

bird c154 0.550
c265 0.213

food c207 0.298
c233 0.269

fruit

c229 0.492
c27 0.369
c156 0.349
c44 0.264
c233 0.206

Table 3: SIG-PROPS of each category. The strings
in “Comp. ID” column are the component IDs
(c1–c300). “Avg.” column indicates the average
value of the component across all the concepts un-
der that category.

Table 3 shows the identified SIG-PROPS. The
number of SIG-PROPS is different across cate-
gories. Interestingly, there is component overlap
between taxonomically similar categories (‘c154’
and ‘c265’ between animal–bird, ‘c233’ between
food–fruit), while there is none between unrelated
categories (instrument–animal–food).

This initial observation is encouraging for our
feasibility study in that indeed SIG-PROPS can
play a role of distinguishing or associating cate-
gories. We argue that the identified SIG-PROPS

strongly characterize each category, showing that
we can associate vector components with proper-
ties.

3.3 Correlation between SIG-PROPS and
concepts typicality scores

In this section, we check how the strength of SIG-
PROPS correlates with the typicality scores. Note
that the range of SIG-PROPS values differ from cat-
egory to category — those for instrument are es-
pecially high, which might indicate they are highly
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representative.
Our assumption is that if the identified SIG-

PROPS truly represent the essential quality of a cat-
egory, the strength of SIG-PROPS should be pro-
portional to concepts’ typicality scores (equation
1).

Strength(SIG-PROPS)
∝ Typicality(Concept)

(1)

We observe this phenomenon by calculating
Pearson correlation between the strength of SIG-
PROPS and typicality scores. For instance, suppose
we calculate the correlation between ‘c88’ (88th
component) of instrument concepts and their typ-
icality score. We inspect the instrument concepts
one by one, collect their ‘c88’ values (x) and typ-
icality scores (y), and then measure the tendency
of changes in the two variables.

The result is shown in Table 4–8 where the col-
umn ‘Rank’ shows the rank of the component’s
correlation score (compared to other components).
For instance, in Table 4 ‘c88’ has the highest cor-
relation with the concept’s typicality score.

SIG-PROPS Correlation Corr. rank
c88 0.926 1st
c258 0.918 2nd

Table 4: Corr(SIG-PROPS, typicality): instrument

SIG-PROPS Correlation Corr. rank
c154 0.549 1st
c265 0.265 2nd

Table 5: Corr(SIG-PROPS, typicality): animal

SIG-PROPS Correlation Corr. rank
c154 0.783 1st
c265 0.563 2nd

Table 6: Corr(SIG-PROPS, typicality): bird

SIG-PROPS Correlation Corr. rank
c233 0.255 1st
c120 0.224 2nd
c207 0.216 4th
c192 0.030 104th

Table 7: Corr(SIG-PROPS, typicality): food

SIG-PROPS Correlation Corr. rank
c229 0.743 1st
c233 0.540 4th
c27 0.516 5th
c44 0.474 7th

c156 -0.663 85th

Table 8: Corr(SIG-PROPS, typicality): fruit

As the results show, there is clear tendency SIG-
PROPS having high correlation with the typicality
scores. Most of the SIG-PROPS showed meaning-
ful correlation (> 0.5) with the typicality score or
placed at the top in the component–typicality cor-
relation ranking. The result strongly indicates that
even when we apply the simple method of iden-
tifying SIG-PROPS and regarding them as proper-
ties, they serve as strong indicators for the con-
cept’s typicality.

4 Conclusion and Future Work

Although limited in scale, our work showed the
feasibility of discovering properties from word
embeddings. Not only SIG-PROPS can be used to
increase the interpretability of word embeddings,
but also enable us more elaborate, property-based
meaning comparison.

Our next step would be checking the applica-
bility to general NLP tasks (e.g. NER, synonym
identification). Also, applying our method to word
embeddings that have more granular components
(e.g. 2,500) might be helpful for identifying SIG-
PROPS in more granular level.
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Ivan Vulić, Daniela Gerz, Douwe Kiela, Felix Hill, and
Anna Korhonen. 2016. HyperLex: A Large-Scale
Evaluation of Graded Lexical Entailment. Arxiv.

95



Proceedings of the 1st Workshop on Sense, Concept and Entity Representations and their Applications, pages 96–101,
Valencia, Spain, April 4 2017. c©2017 Association for Computational Linguistics

TTCSE: a Vectorial Resource
for Computing Conceptual Similarity

Enrico Mensa
University of Turin, Italy

Dipartimento di Informatica
mensa@di.unito.it

Daniele P. Radicioni
University of Turin, Italy

Dipartimento di Informatica
radicion@di.unito.it

Antonio Lieto
University of Turin, Italy

ICAR-CNR, Palermo, Italy
lieto@di.unito.it

Abstract

In this paper we introduce the TTCSE , a
linguistic resource that relies on BabelNet,
NASARI and ConceptNet, that has now
been used to compute the conceptual sim-
ilarity between concept pairs. The con-
ceptual representation herein provides uni-
form access to concepts based on Babel-
Net synset IDs, and consists of a vector-
based semantic representation which is
compliant with the Conceptual Spaces, a
geometric framework for common-sense
knowledge representation and reasoning.
The TTCSE has been evaluated in a pre-
liminary experimentation on a conceptual
similarity task.

1 Introduction

The development of robust and wide-coverage re-
sources to use in different sorts of application
(such as text mining, categorization, etc.) has
known in the last few years a tremendous growth.
In this paper we focus on computing conceptual
similarity between pairs of concepts, based on a
resource that extends and generalizes an attempt
carried out in (Lieto et al., 2016a). In particular,
the TTCSE—so named after Text to Conceptual
Spaces-Extended— has been acquired by inte-
grating two different sorts of linguistic resources,
such as the encyclopedic knowledge available
in BabelNet (Navigli and Ponzetto, 2012) and
NASARI (Camacho-Collados et al., 2015), and
the common-sense grasped by ConceptNet (Speer
and Havasi, 2012). The resulting representation
enjoys the interesting property of being anchored
to both resources, thereby providing a uniform
conceptual access grounded on the sense identi-
fiers provided by BabelNet.

Conceptual Spaces (CSs) can be thought of as

a particular class of vector representations where
knowledge is represented as a set of limited though
cognitively relevant quality dimensions; in this
representation a geometrical structure is associ-
ated to each quality dimension, mostly based on
cognitive accounts. In this setting, concepts cor-
respond to convex regions, and regions with dif-
ferent geometrical properties correspond to dif-
ferent sorts of concepts (Gärdenfors, 2014). The
geometrical features of CSs have a direct appeal
for common-sense representation and common-
sense reasoning, since prototypes (the most rele-
vant representatives of a category from a cogni-
tive point of view, see (Rosch, 1975)) correspond
to the geometrical centre of a convex region, the
centroid. Also exemplars-based representations
can be mapped onto points in a multidimensional
space, and their similarity can be computed as
the distance intervening between each two points,
based on some suitable metrics such as Euclidean
or Manhattan distance. etc..

The CS framework has been recently used to
extend and complement the representational and
inferential power allowed by formal ontologies
—and in general symbolic representation—, that
are not suited for representing defeasible, proto-
typical knowledge, and for dealing with the cor-
responding typicality-based conceptual reasoning
(Lieto et al., 2017). Also, wide-coverage seman-
tic resources such as DBPedia and ConceptNet, in
fact, in different cases fail to represent the sort of
common-sense information based on prototypical
and default information which is usually required
to perform forms of plausible reasoning.1 In this

1Although DBPedia contains information on many sorts
of entities, due to its explicit encyclopedic commitment,
common-sense information is dispersed among textual de-
scriptions (e.g., in the abstracts) rather than being available in
a well-structured formal way. For instance, the fork entity can
be categorized as an object, whilst there is no structured infor-
mation about its typical usage. On the other hand, Concept-
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paper we explore whether and to what extent a
linguistic resource describing concepts by means
of qualitative and synthetic vectorial representa-
tion is suited to assess the conceptual similarity
between pairs of concepts.

2 Vector representations with the TTCSE

The TTCSE has been designed to build resources
encoded as general conceptual representations.
We presently illustrate how the resource is built,
deferring to Section 3 the description of the con-
trol strategy designed to use it in the computation
of conceptual similarity.

The TTCSE takes in input a concept c referred
through a BabelNet synset ID, and produces as
output a vector representation ~c where the in-
put concept is described along some semantic di-
mensions. In turn, filling each such dimension
amounts to finding a set of appropriate concepts:
features act like vector space dimensions, and they
are based on ConceptNet relationships.2 The di-
mensions are filled with BabelNet synset IDs, so
that finally each concept c residing in the linguis-
tic resource can be defined as

~c =
⋃
d∈D
{〈IDd, {c1, · · · , ck}〉} (1)

where IDd is the identifier of the d-th dimension,
and {c1, · · · , ck} is the set of values chosen for d.

The control strategy implemented by the TTCSE

includes two main steps, semantic extraction
(composed by the extraction and concept identi-
fication phases) and the vector injection.

Net is more suited to structurally represent common-sense
information related to typicality. However, in ConceptNet
the coverage of this type of knowledge component is some-
times not satisfactory. For similar remarks on such resources,
claiming for the need of new resources more suited to repre-
sent common-sense information, please also refer to (Basile
et al., 2016).

2The full list of the employed properties, which
were selected from the most salient properties in Con-
ceptNet, includes: INSTANCEOF, RELATEDTO, ISA,
ATLOCATION, DBPEDIA/GENRE, SYNONYM, DERIVED-
FROM, CAUSES, USEDFOR, MOTIVATEDBYGOAL, HAS-
SUBEVENT, ANTONYM, CAPABLEOF, DESIRES, CAUS-
ESDESIRE, PARTOF, HASPROPERTY, HASPREREQUI-
SITE, MADEOF, COMPOUNDDERIVEDFROM, HASFIRST-
SUBEVENT, DBPEDIA/FIELD, DBPEDIA/KNOWNFOR, DB-
PEDIA/INFLUENCEDBY, DEFINEDAS, HASA, MEMBEROF,
RECEIVESACTION, SIMILARTO, DBPEDIA/INFLUENCED,
SYMBOLOF, HASCONTEXT, NOTDESIRES, OBSTRUCT-
EDBY, HASLASTSUBEVENT, NOTUSEDFOR, NOTCA-
PABLEOF, DESIREOF, NOTHASPROPERTY, CREATEDBY,
ATTRIBUTE, ENTAILS, LOCATIONOFACTION, LOCATED-
NEAR.

Extraction The TTCSE takes in input c and
builds a bag-of-concepts C including the concepts
associated to c through one or more ConceptNet
relationships. All ConceptNet nodes related to
the input concept c are collected: namely, we
take the corresponding ConceptNet node for each
term in the WordNet (Miller, 1995) synset of c,
sc ∈ WN-sync. For each such term we extract
all terms t linked through d, one of the aforemen-
tioned ConceptNet relationships: that is, we col-
lect the terms sc d→ t and store them in the set T .
Each sc can be considered as a different lexical-
ization for the same concept c, so that all t can be
grouped in T , that finally contains all terms asso-
ciated in any way to c.

Since ConceptNet does not provide any direct
anchoring mechanism to associate its terms to
meaning identifiers, it is necessary to determine
which of the terms t ∈ T are relevant for the
concept c. In other words, when we access the
ConceptNet page for a certain term, we find not
only the association regarding that term with the
sense conveyed by c, but also all the associations
regarding it in any other meaning. To select only
(and possibly all) the associations that concern the
sense individuated through the previous phase, we
introduce the notion of relevance. To give an in-
tuition of this process, the terms found in Con-
ceptNet are considered as relevant (and thus re-
tained) either if they exhibit a heavy weight in the
NASARI vector corresponding to the considered
concept, or if they share at least some terms with
the NASARI vector (further details on a similar
approach can be found in (Lieto et al., 2016a)).

Concept identification Once the set of relevant
terms has been extracted, we need to lift them to
the corresponding concept(s), which will be used
as value for the features. We stress, in fact, that
dimension fillers are concepts rather than terms
(please refer to Eq. 1). In the concept identifica-
tion step, we exploit NASARI in order to provide
each term t ∈ T with a BabelNet synset ID, thus
finally converting it into the bag-of-concepts C.

Given a ti ∈ T , we distinguish two main cases.
If ti is contained in one or more synsets inside the
NASARI vector of c, we obtain ci (the concept un-
derlying ti) by directly assigning to ti the identi-
fier of the heaviest weighted synset that contains
it.3 Otherwise, if ti is not included in any of the

3NASARI unified vectors are composed by a head con-
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synsets in the NASARI vector associated to c, we
need to choose a vector among all possible ones:
we first select a list of candidate vectors (that is,
those containing ti in their vector head), and then
choose the best one by retaining the vector where
c’s ID has highest weight.

For example, given in input the concept bank
intended as a financial institution, we inspect the
edges of the ConceptNet node ‘bank’ and its syn-
onyms. Then, thanks to the relevance notion we
get rid of associations such as ‘bank ISA flight
maneuver’ since the term ‘flight maneuver’ is not
present in the vector associated to the concept
bank. Conversely, we accept sentences such as
‘bank HASA branch’ (i.e., ‘branch’ is added to T ).
Finally, ‘branch’ goes through the concept identi-
fication phase, resulting in a concept ci and then it
is added to C.

Vector injection The bag-of-concepts C is then
scanned, and each value is injected in the template
for ~c. Each value {c1, . . . , cn ∈ C} is still pro-
vided with the relationship that linked it to c in
ConceptNet, so this value is employed to fill the
corresponding feature in ~c. For example, if ck is
extracted from the ConceptNet relation USEDFOR

(i.e., c USEDFOR→ ck), the value ck will be added to
the set of entities that are used for c.

2.1 Building the TTCSE resource

In order to build the set of vectors in the TTCSE

resource, the system took in input 16, 782 con-
cepts. Such concepts have been preliminarily
computed (Lieto et al., 2016b) by starting from the
10K most frequent nouns present in the Corpus of
Contemporary American English (COCA).4 Then,
for each input concept the TTCSE scans some 3M
ConceptNet nodes to retrieve the terms that appear
into the WordNet synset of the input. This step
allows to browse over 11M associations avail-
able in ConceptNet, and to extract on average 155
ConceptNet nodes for each input concept. Sub-
sequently, the TTCSE exploits the 2.8M NASARI
vectors to decide whether each of the extracted
nodes is relevant or not w.r.t. the input concept,
and then it tries to associate a NASARI vector to
each of them (concept identification step). On av-

cept (represented by its ID in the first position) and a body,
that is a list of synsets related to the head concept. Each
synset ID is followed by a number that grasps the strength
of its correlation with the head concept.

4http://corpus.byu.edu/full-text/.

erage, 14.90 concepts are used to fill each vector.5

3 Computing Conceptual Similariy

One main assumption underlying our approach is
that two concepts are similar insofar as they share
some values on the same dimension, such as when
they are both used for the same ends, they share
components, etc.. Consequently, our metrics does
not employ WordNet taxonomy and distances be-
tween pairs of nodes, such as in (Wu and Palmer,
1994; Leacock et al., 1998; Schwartz and Gomez,
2008), nor it depends on information content ac-
counts either, such as in (Resnik, 1998a; Jiang and
Conrath, 1997).

The representation available to the TTCSE is en-
tirely filled with conceptual identifiers, so to assess
the similarity between two such values we check
whether both the concept vector ~ci and the vec-
tor ~cj share the same (concept) value for the same
dimension d ∈ D, and our similarity along each
dimension basically depends on this simple intu-
ition:

sim(~ci,~cj) =
1
|D| ·

∑
d∈D

|di ∩ dj |.

The score computed by the TTCSE system can
be justified based on the dimensions actually
filled: this explanation can be built automatically,
since the similarity between ~ci and ~cj is a func-
tion of the sum of the number of shared elements
in each dimension, so that one can argue that
a given score x is due to the fact that along a
given dimension d both concepts share some val-
ues (e.g., sim(table, chair) = x because each one
is a (ISA) ‘furniture’, both are USEDFOR ‘eating’,
‘studying’ and ‘working’; both can be found AT-
LOCATION ‘home’, ‘office’; and each one HASA
‘leg’).

Ultimately, the TTCSE collects information
along the 44 dimensions listed in footnote 2, so
that we are in principle able to assess in how far
similar they are along each and every dimension.
However, our approach is presently limited by
the actual average filling factor, and by the noise
that can be possibly collected by an automatic
procedure built on top of the BabelNet knowledge
base. Since we need to deal with noisy and incom-
plete information, some adjustments to the above
formula have been necessary in order to handle

5The final resource is available for download at the URL
http://ttcs.di.unito.it.
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—intra dimension— the possibly unbalanced
number of concepts that characterize the different
dimensions; and to prevent —inter dimensions—
the computation from being biased by more richly
defined concepts (i.e., those with more dimensions
filled). The computation of the conceptual simi-
larity score is thus based on the following formula:

sim(~ci,~cj) =
1
|D∗| ·

∑
d∈D

|di ∩ dj |
β (αa+ (1− α) b) + |di ∩ dj |

where |di ∩ dj | counts the number of concepts
that are used as fillers for the dimension d in
the concept ~ci and ~cj , respectively; and a and b
are computed as a = min(|di − dj |, |dj − di|),
b = max(|di − dj |, |dj − di|); and |D∗| counts the
dimensions filled with at least one concept in both
vectors.

This formula is known as the Symmetrical Tver-
sky’s Ratio Model (Jimenez et al., 2013), which
is a symmetrical reformulation for the Tversky’s
ratio model (Tversky, 1977). It enjoys the fol-
lowing properties: i) it allows grasping the num-
ber of common traits between the two vectors (at
the numerator); ii) it allows tuning the balance be-
tween cardinality differences (through the param-
eter α), and between |di∩dj | and |di−dj |, |dj−di|
(through the parameter β). Interestingly, by set-
ting α = .5 and β = 1 the formula equals the
popular Dice’s coefficient. The parameters α and
β were set to .8 and .2 for the experimentation.

4 Evaluation

In the experimentation we addressed the concep-
tual similarity task at the sense level, that is the
TTCSE system has been fed with sense pairs. We
considered three datasets,6 namely the RG, MC
and WS-Sim datasets, first designed in (Ruben-
stein and Goodenough, 1965; Miller and Charles,
1991) and (Agirre et al., 2009), respectively. His-
torically, while the first two (RG and MC) datasets
were originally conceived for similarity measures,
the WS-Sim dataset was developed as a subset
of a former dataset built by (Finkelstein et al.,
2001) created to test similarity by including pairs
of words related through specific relationships,
such as synonymy, hyponymy, and unrelated. All
senses were mapped onto WordNet 3.0.

The similarity scores computed by the TTCSE

system have been assessed through Pearsons r

6Publicly available at the URL http://www.seas.
upenn.edu/˜hansens/conceptSim/.

ρ r

RG 0.78 0.85
MC 0.77 0.80
WS-Sim 0.64 0.54

Table 1: Spearman (ρ) and Pearson (r) correla-
tions obtained over the three datasets.

and Spearmans ρ correlations, that are largely
adopted for the conceptual similarity task (for a
recent compendium of the approaches please refer
to (Pilehvar and Navigli, 2015)). The former mea-
sure captures the linear correlation of two vari-
ables as their covariance divided by the product
of their standard deviations, thus basically allow-
ing to grasp differences in their values, whilst the
Spearman correlation is computed as the Pearson
correlation between the rank values of the consid-
ered variables, so it is reputed to be best suited to
assess results in a similarity ranking setting where
relative scores are relevant (Schwartz and Gomez,
2011; Pilehvar and Navigli, 2015).

Table 1 shows the results obtained by the system
in a preliminary experimentation.

Provided that the present task of sense-level
similarity is slightly different from word-level
similarity (about this distinction, please refer
to (Pilehvar and Navigli, 2015)), and our results
can be thus hardly compared to those in litera-
ture, the reported figures are still far from the
state of the art, where the Spearman correlation ρ
reaches 0.92 for the RG dataset (Pilehvar and Nav-
igli, 2015), 0.92 for the MC dataset (Agirre et al.,
2009), and 0.81 for the WS-Sim dataset (Halawi
et al., 2012; Tau Yih and Qazvinian, 2012).7

However, we remark that the TTCSE employs
vectors of a very limited size w.r.t. the standard
vector-based resources used in the current mod-
els of distributional semantics (as mentioned, each
vector is defined, on average, through 14.90 con-
cepts). Moreover, due to the explicit grounding
provided by connecting the NASARI feature val-
ues to the corresponding properties in ConceptNet,
the TTCSE can be used to provide the scores re-
turned as output with an explanation, based on the
shared concepts along some given dimension. At
the best of our knowledge, this is a unique fea-
ture, that cannot be easily reached by methods

7Rich references to state-of-the-art results and works ex-
perimenting on the mentioned datasets can be found on the
ACL Wiki, at the URL https://goo.gl/NQlb6g.
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based on Latent Semantic Analysis (such as those
pioneered by (Deerwester et al., 1990)) and can
be only partly approached by techniques exploit-
ing taxonomic structures (Resnik, 1998b; Baner-
jee and Pedersen, 2003). Conversely, few and rel-
evant traits are present in the final linguistic re-
source, which is thus synthetic and more cogni-
tively plausible (Gärdenfors, 2014).

In some cases —27 concept pairs out of the
overall 190 pairs— the system was not able to re-
trieve an ID for one of the concepts in the pair:
such pairs were excluded from the computation of
the final accuracy. Missing concepts may be lack-
ing in (at least one of) the resources upon which
the TTCSE is built: including further resources
may thus be helpful to overcome this limitation.
Also, difficulties stemmed from insufficient infor-
mation for the concepts at stake: this phenomenon
was observed, e.g., when both concepts have been
found, but no common dimension has been filled.
This sort of difficulty shows that the coverage of
the resource still needs to be enhanced by improv-
ing the extraction phase, so to add further concepts
per dimension, and to fill more dimensions.

5 Conclusions

In this paper we have introduced a novel resource,
the TTCSE , which is compatible with the Con-
ceptual Spaces framework and aims at putting to-
gether encyclopedic and common-sense knowl-
edge. The resource has been employed to compute
the conceptual similarity between concept pairs.
Thanks to its representational features it allows
implementing a simple though effective heuristics
to assess similarity: that is, concepts are similar
insofar as they share some values along the same
dimension. However, further heuristics will be in-
vestigated in the next future, as well.

A preliminary experimentation has been run,
employing three different datasets. Provided that
we consider the obtained results as encouraging,
the experimentation clearly points out that there is
room for improvement along two main axes: di-
mensions must be filled with further information,
and also the quality of the extracted information
should be improved. Both aspects will be the ob-
ject of our future efforts.
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Softcardinality-core: Improving text overlap with
distributional measures for semantic textual simi-
larity. In Second Joint Conference on Lexical and
Computational Semantics, volume 1, pages 194–
201.

Claudia Leacock, George A Miller, and Martin
Chodorow. 1998. Using corpus statistics and word-
net relations for sense identification. Computational
Linguistics, 24(1):147–165.

100



Antonio Lieto, Enrico Mensa, and Daniele P. Radi-
cioni. 2016a. A Resource-Driven Approach for An-
choring Linguistic Resources to Conceptual Spaces.
In Procs of the XV International Conference of the
Italian Association for Artificial Intelligence, vol-
ume 10037 of LNAI, pages 435–449. Springer.

Antonio Lieto, Enrico Mensa, and Daniele P. Radi-
cioni. 2016b. Taming sense sparsity: a common-
sense approach. In Proceedings of Third Italian
Conference on Computational Linguistics (CLiC-it
2016) & Fifth Evaluation Campaign of Natural Lan-
guage Processing and Speech Tools for Italian.

Antonio Lieto, Daniele P. Radicioni, and Valentina
Rho. 2017. Dual PECCS: A Cognitive System
for Conceptual Representation and Categorization.
Journal of Experimental & Theoretical Artificial In-
telligence, 29(2):433–452.

George A. Miller and Walter G. Charles. 1991. Con-
textual correlates of semantic similarity. Language
and cognitive processes, 6(1):1–28.

George A. Miller. 1995. Wordnet: a lexical
database for english. Communications of the ACM,
38(11):39–41.

Roberto Navigli and Simone Paolo Ponzetto. 2012.
BabelNet: The automatic construction, evaluation
and application of a wide-coverage multilingual se-
mantic network. Artificial Intelligence, 193:217–
250.

Mohammad Taher Pilehvar and Roberto Navigli. 2015.
From senses to texts: An all-in-one graph-based ap-
proach for measuring semantic similarity. Artif. In-
tell., 228:95–128.

Philip Resnik. 1998a. Semantic similarity in a taxon-
omy: An information-based measure and its appli-
cation to problems of ambiguity in natural language.
Journal of Artificial Intelligence Research, 11(1).

Philip Resnik. 1998b. Semantic similarity in a taxon-
omy: An information-based measure and its appli-
cation to problems of ambiguity in natural language.
Journal of Artificial Intelligence Research, 11(1).

Eleanor Rosch. 1975. Cognitive Representations of
Semantic Categories. Journal of experimental psy-
chology: General, 104(3):192–233.

Herbert Rubenstein and John B. Goodenough. 1965.
Contextual correlates of synonymy. Communica-
tions of the ACM, 8(10):627–633.

Hansen A. Schwartz and Fernando Gomez. 2008. Ac-
quiring knowledge from the web to be used as selec-
tors for noun sense disambiguation. In Procs of the
Twelfth Conference on Computational Natural Lan-
guage Learning, pages 105–112. ACL.

Hansen A Schwartz and Fernando Gomez. 2011. Eval-
uating semantic metrics on tasks of concept simi-
larity. In Proc. Int. Florida Artif. Intell. Res. Soc.
Conf.(FLAIRS), page 324.

Robert Speer and Catherine Havasi. 2012. Represent-
ing General Relational Knowledge in ConceptNet 5.
In LREC, pages 3679–3686.

Wen Tau Yih and Vahed Qazvinian. 2012. Measuring
word relatedness using heterogeneous vector space
models. In HLT-NAACL, pages 616–620. The Asso-
ciation for Computational Linguistics.

Amos Tversky. 1977. Features of similarity. Psycho-
logical review, 84(4):327.

Zhibiao Wu and Martha Palmer. 1994. Verbs seman-
tics and lexical selection. In Proceedings of the 32nd
annual meeting on Association for Computational
Linguistics, pages 133–138. ACL.

101



Proceedings of the 1st Workshop on Sense, Concept and Entity Representations and their Applications, pages 102–109,
Valencia, Spain, April 4 2017. c©2017 Association for Computational Linguistics

Measuring the Italian-English lexical gap for action verbs and its impact
on translation

Lorenzo Gregori
University of Florence

lorenzo.gregori@unifi.it

Alessandro Panunzi
University of Florence

alessandro.panunzi@unifi.it

Abstract

This paper describes a method to measure
the lexical gap of action verbs in Italian
and English by using the IMAGACT on-
tology of action. The fine-grained cate-
gorization of action concepts of the data
source allowed to have wide overview of
the relation between concepts in the two
languages. The calculated lexical gap for
both English and Italian is about 30% of
the action concepts, much higher than pre-
vious results. Beyond this general num-
bers a deeper analysis has been performed
in order to evaluate the impact that lexi-
cal gaps can have on translation. In partic-
ular a distinction has been made between
the cases in which the presence of a lexi-
cal gap affects translation correctness and
completeness at a semantic level. The re-
sults highlight a high percentage of con-
cepts that can be considered hard to trans-
late (about 18% from English to Italian
and 20% from Italian to English) and con-
firms that action verbs are a critical lexical
class for translation tasks.

1 Introduction

Lexical gap is a well known phenomenon in lin-
guistics and its identification allows to discover
some relevant features related to the semantic
categorization operated by languages. A lexical
gap corresponds to a lack of lexicalization of a
certain concept in a given language. This phe-
nomenon traditionally emerged from the analysis
of a single language by means of the detection of
empty spaces in a lexical matrix (see the semi-
nal works by Leher (1974) and Lyons (1977); see
also Kjellmer (2003)). Anyway, lexical gap be-
comes a major issue when comparing two or more

languages, as in translation tasks (Ivir, 1977). In
this latter case, a lexical gap can be defined as the
absence of direct lexeme in one language while
comparing two languages during translation (Cvi-
likaitė, 2006). The presence of lexical gaps be-
tween two languages is more than a theoretical
problem, having a strong impact in several related
fields: lexicographers need to deal with lexical
gaps in the compilation of bilingual dictionaries
(Gouws, 2002); in knowledge representation the
creation of multilanguage linguistic resources re-
quire a strategy to cope with the lack of concepts
(Jansseen, 2004); the lexical transfer process is af-
fected by the presence of lexical gaps in automatic
translation system, reducing their accuracy (San-
tos, 1990).

Even if in literature it’s possible to find many
examples of gaps, it’s hard to estimate them. This
is due to the fact that most of the gaps are re-
lated to small semantic differences that are hard to
identify: available linguistic resources usually rep-
resent a coarse-grained semantics, so while they
are useful to discriminate the prominent senses of
words, they can’t capture small semantic shifts. In
addition to it, a multilanguage resource is required
for this purpose, but these resources are normally
built up through a mapping between two or more
monolingual resources and this cause an approx-
imation in concept definitions: similar concepts
tend to be grouped together in a unitary concept
that represent the core-meaning and lose their se-
mantic specificities.

2 IMAGACT

Verbs are a critical lexical class for disambiguation
and translation tasks: they are much more polyse-
mous than nouns and, moreover, their ambiguity
is hard to resolve (Fellbaum et al., 2001). In par-
ticular the representation of word senses as sepa-
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rate entities is tricky, since their boundaries are of-
ten vague causing the senses to be under-specified
and overlapping. From this point of view the sub-
class of general verbs represent a crucial point, be-
cause these verbs are characterized by both high
frequency in the use of language and high ambi-
guity.

IMAGACT1 is a visual ontology of action that
provides a video-based translation and disam-
biguation framework for general verbs. The re-
source is built on an ontology containing a fine-
grained categorization of action concepts, each
represented by one or more video prototypes as
recorded scenes and 3D animations.

IMAGACT currently contains 1,010 scenes
which encompass the action concepts most com-
monly referred to in everyday language usage.
Data are derived from the manual annotation of
verb occurrences in spontaneous spoken corpora
(Moneglia et al., 2012); the dataset has been com-
piled by selecting action verbs with the highest
frequency in the corpora and comprises 522 Ital-
ian and 554 English lemmas. Although the set
of retrieved actions is necessarily incomplete, this
methodology ensures to have a significant picture
of the main action types performed in everyday
life2.

The links between verbs and video scenes are
based on the co-referentiality of different verbs
with respect to the action expressed by a scene
(i.e. different verbs can describe the same ac-
tion, visualized in the scene). The visual represen-
tations convey the action information in a cross-
linguistic environment and IMAGACT may thus
be exploited to discover how the actions are lexi-
calized in different languages.

In addition to it IMAGACT contains a semantic
classification of each lemma, that is divided into
Types: each verb Type identifies an action con-
cept and contains one ore more scenes, that work
as prototypes of that concept. Type classification
is manually performed in Italian and English in
parallel, through a corpus-based annotation pro-
cedure by native language annotators (Moneglia
et al., 2012); this allowed to have a discrimina-
tion of verb Types based only on the annotator
competence, without any attempt to fit the data
into predefined semantic models. Validation re-
sults (Gagliardi, 2014) highlight a good rate of

1http://www.imagact.it
2see Moneglia et al. (2012) and Moneglia (2014b) for

details about corpora annotation numbers and methodology.

Type discrimination agreement: a Cohen k of 0,82
for 2 expert annotators and a Fleiss k of 0.73 for 4
non-expert ones3.

For these features IMAGACT ontology is a re-
liable data source to measure the lexical gap be-
tween Italian and English: in fact verb Types are
defined independently, but linked together through
the scenes. The comparison of Types in different
language through their action prototypes allows to
identify the action concepts that are shared be-
tween the two languages and the ones that don’t
match with any concept in the other language; in
this case we have a lexical gap.

3 Type relations

In this frame we can perform a set-based compar-
ison, considering a Type as just a set of scenes.
A Type is a lexicalized concept, so a partition of
the meaning, but semantic features are not repre-
sented in the ontology and, in fact, they are un-
known: data are derived from the ability of com-
petent speaker in performing a categorization of
similar items with respect to a lemma, without any
attempt to formalize semes. So if we look at the
database we can say that Types are merely sets of
scenes.

Comparing a Type (T1) of a verb in source lan-
guage (V1) with a Type (T2) of a verb in target lan-
guage (V2) we can have 5 possible configurations:

1. T1 ≡ T2: two Types are equivalent if they
contain the same set of scenes;

2. T1 ∩ T2 = ∅: two Types are disjoint if they
don’t share any scene;

3. T1 ⊂ T2: T1 is a subset of T2 if any scene of
T1 is also a scene of T2 and the 2 Types are
not equivalent;

4. T1 ⊃ T2: T1 is a superset of T2 if any scene
of T2 is also a scene of T1 and the 2 Types are
not equivalent;

5. T1∩T2 6= ∅∧T1 * T2∧T1 + T2: two Types
are partially overlapping if they share some
scenes and each Type have some scenes not
belonging to the other one.

3Inter-annotator agreement (ITA) measured on WordNet
by expert annotators on comparable verb sets (score for fine-
grained sense inventories): ITA = 72% on SemEval-2007
dataset (Pradhan et al., 2007); ITA = 71% on SensEval-2
dataset (Palmer et al., 2007).
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Figure 1: Two Equivalent Types belonging to the
Italian verb toccare and to the English verb touch.

It’s important to discuss these cases separately,
because each one of them highlights a different
semantic relation between verbs and has different
implications for translation.

When two Types are equivalents (case 1) the 2
languages share the action concept the Types rep-
resent: we could say that there is an interlinguistic
concept. This case is not problematic for transla-
tion: each occurrence of the verb V1 that belongs
to Type T1 can be translated with V2; moreover
we can apply V1 to translate any occurrence of V2

belonging to T2.
For example one Type of the English verb to

touch and one Type of the Italian verb toccare
are equivalent. They share 3 video scenes: Mary
touches the doll, Mary touches the table and John
touches Mary (see Fig. 1). Each scene is con-
nected to a different set of verbs (i.e. to brush, to
graze, to caress), representing a specific semantic
concept, but they are kept together by a more gen-
eral concept both in Italian and in English. So in
any of these actions the verb to touch can be safely
translated in Italian with toccare and vice versa.

If two Types are disjoint (case 2) the Types re-
fer to unrelated semantic concepts and we can as-
sume that translation between an occurrence of V1

belonging to T2 can not be translated with V2.
In cases 3 and 4 the Types are hierarchically re-

lated and we can assume the existence of a seman-
tic relation that links a general Type with a spe-
cific one. Although we can not induce the type
of this relation that could be hyponym, entailment,
troponym and so on. In this configuration we can
see that translation is safe from specific to general,
but not vice versa: in case 3 any occurrence of V1

belonging to T1 can be translated with V2, while
in case 4 V2 can not be safely applied, because it

Figure 2: Two Hierarchically related Types be-
longing to the Italian verb accoltellare and to the
English verb stab.

encodes only a sub-part of the concept represented
by T1.

For example Type 1 of the English verb to stab
and Type 1 of the Italian verb accoltellare cate-
gorize action where a sharp object pierces a body,
but while stab can be applied to describe actions
independently on their aim and the tool used, ac-
coltellare is applicable only when the agent vol-
untarily injures someone and the action is accom-
plished with a knife. In this case the Italian Type
is more specific than the English one, so transla-
tion is safe from Italian to English (stab can be
used to translate any occurrence of accoltellare-
Type 1), but not vice versa: stab-Type 1 can not be
always translated with accoltellare, because a part
of its variation is covered by other Italian verbs
like trafiggere, penetrare or attraversare.

Finally a partial overlap between Types (case
5) doesn’t allow to induce any semantic relation
between Types: in these cases we have differ-
ent concepts that can refer the same action. Nor-
mally these happen when the action is interpreted
from two different points of view and categorized
within unrelated lexical concepts. In this case
we have a translation relation between V1 and
V2 without having any semantic relation between
their Types.

For example the Italian verb abbassare, that is
frequently translated with lower in English, can
also be translated with position when applied to
some (but not every) actions belonging to Type 1,
categorizing actions involving the body; moreover
we have the same translation relation from En-
glish to Italian where sometimes (but not always)
position-Type 2 can be translated with abbassare.
Here there are two Types that represent semanti-
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Figure 3: Two partially overlapping Types belong-
ing to the Italian verb abbassare and to the English
verb position.

cally independent concepts, but that can both be
applied to describe some actions, like Mary posi-
tions herself lower and other similar ones.

This happens rarely in Italian - English (14
Types on our dataset) and in any of these cases
there are other translation verbs as possible alter-
natives. Despite this, Type overlaps identification
is very relevant, because it allows to discover un-
expected translation candidates (i.e. target verbs
that have a translation relation but not a seman-
tic relation with the source verb) that can not be
extracted from a lexico-semantic resource. In ad-
dition to it Type overlaps identification is crucial
if the target verb is the only one translation pos-
sibility and this can happen, especially between
two languages that are very far: some evidences
for example have been discovered in Italian and
Chinese (Pan, 2016) through a deep comparison
of Italian Types with Chinese verbs that refer to
the same scenes. This work allowed to identify
some positive occurrences of this interesting phe-
nomenon, but can not be exploited for its numeric
quantification: indeed an exhaustive analysis that
involves the relation between action concepts can
be made only between Italian and English, since
IMAGACT contains the verb Type discrimination
in these two languages only.

4 Lexical gap identification

4.1 Dataset building

In order to measure the lexical gaps in Italian and
English we created a working dataset by select-
ing the set of Types that have a full mapping in
the two languages. We need to consider that IMA-
GACT annotation process has been carried out in

several steps: firstly verbs were annotated through
a corpus-based procedure and Types were created
and validated by mother tongue speakers on the
basis of their linguistic competence; then for each
concept a scene was produced to provide a proto-
typical representation of it; after that a mapping
between Italian and English was performed by
linking the scenes to the Types of each language;
finally annotators were requested to recheck each
scene and add the missing verbs that are applica-
ble to it. This last revision enriched the scene with
more verbs that don’t belong to any Type.

We decided to exclude from the dataset all the
scenes (and the related Types) that contain untyped
verbs, considering that a partial typing does not
ensure the coherence of verb Type discrimination:
in fact it’s not possible to be sure that the creation
of Types for these new instances would preserve
the original Type distinction.

After this pruning we obtained a set of 1,000
Italian Types and 1,027 English Types, that refer
to 501 and 535 verbs respectively (see Table 1).

IT EN
Types 1,000 1,027
Verbs 501 535
Scenes 980 917

Table 1: Number of Types, verbs and scenes be-
longing to the dataset.

4.2 Methodology

According to our dataset, we can easily estimate
the lexical gap by measuring the number of Types
in source language that don’t have an equivalent
Type in target language. Namely for each concept
in source language we are going to verify if there is
a concept in target language that refer to the same
set of actions (represented by video prototypes);
if the match is not found we have a lexical gap in
target language.

As we can see in table 2, the action concepts that
are lexicalized in Italian and without a correspond-
ing match in English are 33,6% (English gap); on
the contrary the Italian gap for English concepts is
29,02%.

Before going ahead we need to do some con-
siderations about these numbers. First of all we
can see that these percentages are much higher
than the ones calculated by Bentivogli and Pi-
anta (2000), that found 7,4% of gaps for verbs in
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IT→ EN EN→ IT
Total Types 1,000 1,027
Equiv. Types 664 (66,4%) 729 (70,98%)
Lexical gaps 336 (33,6%) 298 (29,02%)

Table 2: Types in source language that have and
have not an equivalent Type in target language.

English-to-Italian comparison. This is a big shift,
but it’s not surprising if we consider the differ-
ences of the two experiments in terms of method-
ology and dataset:

• IMAGACT Type distinction is more fine-
grained in respect to WordNet synsets (Bar-
tolini et al., 2014);

• the experiment by Bentivogli and Pianta was
led on MultiWordNet, in which multilan-
guage Wordnets are created on the basis of
the Princeton Wordnet sense distinction (Pi-
anta et al., 2002); this methodology introduce
an approximation in the concepts definition;

• the 7,4% of Bentivogli and Pianta is a gen-
eral value on verbs, while our experiment is
focused on action verbs, which are a strongly
ambiguous lexical class (Moneglia, 2014a);

• the dictionary-based methodology proposed
by Bentivogli and Pianta is nearly opposite to
IMAGACT reference-based approach.

Beyond these general considerations a lemma-
by-lemma comparison with the experiment of
Bentivogli and Pianta (whose dataset is currently
not available) would better explain this numeric
difference.

5 Lexical gaps and translation problems

Besides a general measure of the gaps for action
concept it’s important to go a step beyond to ver-
ify in which cases the presence of a lexical gap
impacts the translation quality. In order to do this,
we divided the Types without an equivalent in tar-
get language in three categories:

• leaf Types: these Types in source language
represent concepts that are more specific than
other ones in target language; in this case the
only Type in target language that have a par-
tial match with the Type in source language
is a superset (case 3);

• root Types: these Types in source language
represent concepts that are more general than
other ones in target language: the only Type
in target language that have a partial match
with the Type in source language is a subset
(case 4);

• middle Types: these Types have a partial
match in target language both with a more
general Type and with a more specific one
(both cases 3 and 4).

As we mentioned before we did not find any
case in which a partial overlapping Type (case 5) is
the only one possible match in Italian and English
comparison; so these cases are counted within the
three categories above.

5.1 Root Types and uncertain translations

Starting from this classification we can see that
root Types are the critical ones in terms of trans-
lation: in fact we don’t have a unique lexicalized
concept in target language that is able to repre-
sent the concept in source language; instead we
have more than one Type (and multiple verbs) that
cover different subparts of the whole general con-
cept variation. In these cases we need to have extra
information about the action in order to translate it
properly. From a computational point of view we
can say that a word sense disambiguation of the
source verb is not enough to reach a correct trans-
lation verb.

The two sentences The cell phone lands on the
carpet and The pole vaulter lands on the mat, for
example, belong to the same action concept ac-
cording to the semantics of the verb to land4. In
Italian there is not a unique Type that collects these
two actions: it’s possible to use atterrare for the
athlete, but it is not allowed for the phone, for
which we need to make a semantic shift and use
the verb cadere (that is more similar to fall down).
Again cadere is not appropriate for the athlete, be-
cause it implies that the athlete stumbles and falls.

So this action concept that is lexicalized in En-
glish with to land does not have a unique trans-
lation verb in Italian, and extra informations are
required to translate it properly (if the theme is an
human being or an object, in this specific case).

Table 3 show the number of leaf, root and mid-
dle Types in Italian and English; we can see that

4unlike The butterfly lands on the flower or The airplane
lands that belong to different concepts of to land.
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IT→ EN EN→ IT
Lexical gaps 336 298
Leaf Types 217 (64.58%) 200 (67.58%)
Root Types 47 (13.99%) 43 (14.43%)
Middle Types 72 (21.43%) 55 (18.46%)

Table 3: Number of Leaf, Root and Middle Types
in Italian and English (percentages on the lexical
gaps).

root Types represent the 14% of the lexical gaps in
both the languages, corresponding to 4-5% of the
total Types.

5.2 General Types and lossy translations

Root Types are the most critical case for a transla-
tion task, because they affect the correctness; be-
sides there are also other kinds of lexical gaps that
impact on translation. In particular is useful to
estimate how semantically far is the best transla-
tion candidate in the cases in which we can apply
a more general Type to translate the concept in the
source language. In fact in both leaf and middle
Types we have a Type in target language that is
more general to the source one, so it is safely ap-
plicable to any occurrence belonging to the source
Type. This is not free from problems, because in
translation we use a more general verb, so we miss
some semes that are encoded in the source verb.
In fact in this case we still have a translation prob-
lem, which is not in finding a possible target verb,
but in adding more information in other lexical el-
ement of the sentence to fill the lack of semantic
information. In this case the gap does not affect
the correctness of the translation, but its complete-
ness.

For example the English verb to plonk does not
have a correspondence in Italian. In particular a
sentence like John plonks the books on the table
belongs to a Type of plonk that is a leaf Type (so
there is a possible translation verb in Italian), but
for which the nearest Italian Type is much wider,
belonging to the very general verb mettere. In this
case it’s possible to translate in Italian with John
mette i libri sul tavolo, but losing all the informa-
tion regarding the way the books are placed on the
table (mettere is more similar with to put); an ad-
dition of other lexical elements to the sentence is
required to fill this gap in Italian.

Conversely we can say that a small distance be-
tween the source and the target Type does not have

a negative effect on translation. Type 1 of the En-
glish verb to throw and Type 1 of the Italian verb
lanciare categorize a wide set of actions in which
an object is thrown by a person independently on
the presence of a destination or on the action aim
(John throws the bowling bowl, John throws the
rock in the field, John throws the paper in the box
etc.). However these two Types are not equivalent,
because the Italian one comprise also actions per-
formed in a limited space with a highly controlled
movement, like Marco lancia una monetina, that
require another verb in English like to toss (Marco
tosses a coin). In this case the small gap between
the Italian concept and English one does not affect
the translation: in fact we can say that lanciare can
be used to translate properly any action belonging
to throw - Type 1.

Given this consideration a measure of the se-
mantic distance with the translation verb is use-
ful to evaluate the loss: this can be easily done
from IMAGACT dataset by calculating the ratio
between the cardinality (i.e. the number of scenes)
of the source Type, T1, and the one of the nearest
target Type, T2 (the Type with the minimum cardi-
nality among the Types in target language that are
supersets of the source Type). This ratio estimates
the overlapping between the Types:

overlap =
|T1|
|T2|

Data are represented in Figure 4, reporting the
number of Types (Italian and English) for each
overlap values, where this values are divided in 10
ranges.

We considered semantically distant those Types
with overlap < 0.4 (sharing less than 2 scenes
over 5). These high distance Types (see Table 4)
are 150 for Italian (51.9% of leaf + middle Types
and 15% of the total Types) and 145 for English
(56.86% of leaf + middle Types and 14.12% of the
total Types).

Basically we see that not only root Types, but
also a relevant part of leaf and middle Types (more
than 50% both in Italian and English) represent a
critical point for translation.

IT→ EN EN→ IT
Leaf+Mid T. 289 255
Low dist. T. 139 (48.1%) 110 (43.14%)
High dist. T. 150 (51.9%) 145 (56.86%)

Table 4: Distance from the nearest general Type in
target language.
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Figure 4: Number of Italian and English Types for
each overlap range.

Within this numbers, that are quite homoge-
neous between the two languages, we can see that
in the overlap range from 0 to 0.2 there are much
more Italian Types than English ones (19% of leaf
+ middle Types against 9%); conversely English
Types are more distributed in the range from 0.3
to 0.4 (Figure 4). This means that in this area of
extreme distance between the source and the tar-
get concept, we have an higher semantic loss in
the translation from Italian to English.

Finally we can have have an overall value of
translation critical Types, by summing up the ones
belonging to high distance Types class and the root
Types. The verbs these Types belong to are the
verbs for which the selection of a good translation
candidate is problematic. Results are reported in
Tables 5 and 6 and confirm that lexical gaps in ac-
tion verbs have a strong impact on translation.

IT EN
Total Types 1,000 1,027
Root Types 47 (4.7%) 43 (4.2%)
High dist. T. 150 (15.0%) 145 (14.12%)
Critical Types 197 (19.7%) 188 (18.3%)

Table 5: Number of translation critical Types.

IT EN
Total Verbs 501 535
Verbs w/ r.T. 39 (7.78%) 38 (7.1%)
Verbs w/ h.d.T. 109 (21.76%) 125 (23.36%)
Critical Verbs 136 (27.15%) 154 (28.79%)

Table 6: Number of verbs with root Types and high
distance Types.

6 Conclusions

In this paper a methodology for measuring the lex-
ical gap of action verbs is described and applied to
Italian and English, by exploiting IMAGACT on-
tology. We measured 33.6% of English gap and
29.02% of Italian gap. Then this result have been
investigated, in order to discover when and why a
lexical gap can affect a translation task. The re-
sults show that 19.7% of Italian Types and 18.3%
of English ones represent action concept that are
critical from a translation perspective: these con-
cepts are lexicalized by 27.15% of the Italian verbs
and 28.79% of the English verbs that we consid-
ered in our analysis. In addition to it the distinction
between concepts that can not be correctly trans-
lated with a single lemma (root Types) and con-
cepts that can be translated with a sensible seman-
tic loss (high distance Types) is a relevant informa-
tion that can lead to a different translation strategy.

Finally we feel important to note that behind
these numeric values there are lists of verbs and
concepts and this information could be integrated
in Machine Translation and Computer Assisted
Translation Systems to improve their accuracy.
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Abstract

The role of word sense disambiguation in
lexical substitution has been questioned
due to the high performance of vector
space models which propose good sub-
stitutes without explicitly accounting for
sense. We show that a filtering mecha-
nism based on a sense inventory optimized
for substitutability can improve the results
of these models. Our sense inventory
is constructed using a clustering method
which generates paraphrase clusters that
are congruent with lexical substitution an-
notations in a development set. The re-
sults show that lexical substitution can still
benefit from senses which can improve the
output of vector space paraphrase ranking
models.

1 Introduction

Word sense has always been difficult to de-
fine and pin down (Kilgarriff, 1997; Erk et al.,
2013). Recent successes of embedding-based,
sense-agnostic models in various semantic tasks
cast further doubt on the usefulness of word sense.
Why bother to identify senses if even humans can-
not agree upon their nature and number, and if
simple word-embedding models yield good results
without using any explicit sense representation?

Word-based models are successful in various
semantic tasks even though they conflate multiple
word meanings into a single representation. Based
on the hypothesis that capturing polysemy could
further improve their performance, several works
have focused on creating sense-specific word em-
beddings. A common approach is to cluster the
contexts in which the words appear in a corpus
to induce senses, and relabel each word token
with the clustered sense before learning embed-

dings (Reisinger and Mooney, 2010; Huang et al.,
2012). Iacobacci et al. (2015) disambiguate the
words in a corpus using a state-of-the-art WSD
system and then produce continuous representa-
tions of word senses based on distributional infor-
mation obtained from the annotated corpus. Mov-
ing from word to sense embeddings generally im-
proves their performance in word and relational
similarity tasks but is not beneficial in all settings.
Li and Jurafsky (2015) show that although multi-
sense embeddings give improved performance in
tasks such as semantic similarity, semantic rela-
tion identification and part-of-speech tagging, they
fail to help in others, like sentiment analysis and
named entity extraction (Li and Jurafsky, 2015).

We show how a sense inventory optimized for
substitutability can improve the rankings provided
by two sense-agnostic, vector-based lexical sub-
stitution models. Lexical substitution requires
systems to predict substitutes for target word in-
stances that preserve their meaning in context
(McCarthy and Navigli, 2007). We consider a
sense inventory with high substitutability to be one
which groups synonyms or paraphrases that are
mutually-interchangeable in the same contexts. In
contrast, sense inventories with low substitutabil-
ity might group words linked by different types of
relations. We carry out experiments with a syntac-
tic vector-space model (Thater et al., 2011; Apid-
ianaki, 2016) and a word-embedding model for
lexical substitution (Melamud et al., 2015). In-
stead of using the senses to refine the vector rep-
resentations as in (Faruqui et al., 2015), we use
them to improve the lexical substitution rankings
proposed by the models as a post-processing step.
Our results show that senses can improve the per-
formance of vector-space models in lexical substi-
tution tasks.
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2 A sense inventory for substitution

2.1 Paraphrase substitutability

The candidate substitutes used by our rank-
ing models come from the Paraphrase Database
(PPDB) XXL package (Ganitkevitch et al.,
2013).1 Paraphrase relations in the PPDB are
defined between words and phrases which might
carry different senses. Cocos and Callison-Burch
(2016) used a spectral clustering algorithm to
cluster PPDB XXL into senses, but the clusters
contain noisy paraphrases and paraphrases linked
by different types of relations (e.g. hypernyms,
antonyms) which are not always substitutable. We
use a slightly modified version of their method to
cluster paraphrases where both the number of clus-
ters (senses) and their contents are optimized for
substitutability.

2.2 A measure of substitutability

We define a substitutability metric that quantifies
the extent to which a sense inventory aligns with
human-generated lexical substitution annotations.
We then cluster PPDB paraphrases using the sub-
stitutability metric to optimize the sense clusters
for substitutability.

Given a sense inventory C, we can define the
senses of a target word t as a set of sense clusters,
C(t) = {c1,c2, . . .ck}, where each cluster contains
words corresponding to a single sense of t. Intu-
itively, if a sense inventory corresponds with sub-
stitutability, then each sense cluster ci should have
two qualities: first, words within ci should be in-
terchangeable with t in the same set of contexts;
and second, ci should not be missing any words
that are interchangeable in those same contexts.
We therefore operationalize the definition of sub-
stitutability as follows.

We begin measuring substitutability with a lex-
ical substitution dataset, consisting of sentences
where content words have been manually anno-
tated with substitutes (see example in Table 1). We
then use normalized mutual information (NMI)
(Strehl and Ghosh, 2002) to quantify the level
of agreement between the automatically generated
sense clusters and human-suggested substitutes.
NMI is an information theoretic measure of clus-
ter quality. Given two clusterings U and V over

1PPDB paraphrases come into packages of different sizes
(going from S to XXXL): small packages contain high-
precision paraphrases while larger ones have high coverage.
All are available from paraphrase.org

Sentence Annotated Substitutes (Count)
In this world, one’s
word is a promise.

vow (1), utterance (1), tongue
(1), speech (1)

Silverplate: code word
for the historic mission
that would end World
War II.

phrase (3), term (2), ver-
biage(1), utterance (1), signal
(1), name (1), dictate (1), des-
ignation (1), decree (1)

I think she only heard
the last words of my
speech.

bit (3), verbiage (2), part
(2), vocabulary (1), terminol-
ogy (1), syllable (1), phrasing
(1), phrase (1), patter (1), ex-
pression (1), babble (1), anec-
dote (1)

Table 1: Example annotated sentences for the tar-
get word word.N from the CoInCo (Kremer et al.,
2014) lexical substitution dataset. Numbers after
each word indicate the number of annotators who
made that suggestion.

a set of items, it measures how much each clus-
tering reduces uncertainty about the other (Vinh
et al., 2009) in terms of their mutual information
I(U,V ) and entropies H(U),H(V ):

NMI(U,V ) =
I(U,V )√

H(U)H(V )

To calculate the NMI between a sense inventory
for target word t and its set of annotated substi-
tutes, we first define the substitutes as a clustering,
Bt = {b1,b2, . . .bn}, where bi denotes the set of
suggested substitutes for each of n sentences. Ta-
ble 1, for example, gives the clustered substitutes
for n = 3 sentences for target word t = word.N,
where b1 = {vow, utterance, tongue, speech}. We
then define the substitutability of the sense inven-
tory, Ct , with respect to the annotated substitutes,
Bt , as NMI(Ct ,Bt).2 Given many target words, we
can further aggregate the substitutability of sense
inventory C over the set of targets T in B into a
single substitutability score:

substitutabilityB(C) = ∑
t∈T

NMI(Ct ,Bt)
|T |

2.3 Optimizing for Substitutability
Having defined a substitutability score, we now
automatically generate word sense clusters from
the Paraphrase Database that maximize it. The
idea is to use the substitutability score to choose
the best number of senses for each target word
which will be the number of output clusters (k)
generated by our spectral clustering algorithm.

2In calculating NMI, we ignore words that do not appear
in both Ct and Bt .
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2.4 Spectral clustering method
2.4.1 Constructing the Affinity Matrix
The spectral clustering algorithm (Yu and Shi,
2003) takes as input an affinity matrix A ∈ Rn×n

encoding n items to be clustered, and an integer
k. It generates k non-overlapping clusters of the n
items. Each entry ai j in the affinity matrix denotes
a similarity measurement between items i and j.
Entries in A must be nonnegative and symmetric.
The affinity matrix can also be thought of as de-
scribing a graph, where the n rows and columns
correspond to nodes, and each entry ai j gives the
weight of an edge between nodes i and j. Because
the matrix must be symmetric, the graph is undi-
rected.

Given a target word t, we call its set of PPDB
paraphrases PP(t). Note that PP(t) excludes t it-
self. In our most basic clustering method, we clus-
ter paraphrases for target t as follows. Given the
length-n set of t’s paraphrases, PP(t), we construct
the n×n affinity matrix A where each shared-index
row and column corresponds to some word p ∈
PP(t). We set entries equal to the cosine similarity
between the applicable words’ embeddings, plus
one: ai j = cos(vi,v j)+1 (to enforce non-negative
similarities). For our implementation we use 300-
dimensional part-of-speech-specific word embed-
dings vi generated using the gensim word2vec
package (Mikolov et al., 2013b; Mikolov et al.,
2013a; Řehůřek and Sojka, 2010).3 In Figure 1a
we show a set of paraphrases, linked by PPDB
relations, and in Figure 1b we show the corre-
sponding basic affinity matrix, encoding the para-
phrases’ distributional similarity.

In order to aid further discussion, we point out
that the affinity matrix used for the basic cluster-
ing method encodes a fully-connected graph G =
{PP(t),EALL

PP } with paraphrases PP(t) as nodes,
and edges between every pair of words, EALL

PP =
PP(t)×PP(t). As for all variations on the cluster-
ing method, the matrix entries correspond to dis-
tributional similarity.

2.4.2 Masking
The affinity matrix in Figure 1b ignores the graph
structure inherent in PPDB, where edges connect
only words that are paraphrases of one another.
We experiment with enforcing the PPDB structure

3The word2vec parameters we use are a context win-
dow of size 3, learning rate alpha from 0.025 to 0.0001, min-
imum word count 100, sampling parameter 1e−4, 10 negative
samples per target word, and 5 training epochs.

in the affinity matrix through a technique we call
‘masking.’ By masking, we mean allowing pos-
itive values in the affinity matrix only where the
row and column correspond to paraphrases that
appear as pairs in PPDB (Figure 1a). All entries
corresponding to paraphrase pairs that are not con-
nected in the PPDB graph (Figure 1a) are forced to
0.

More concretely, in the masked affinity matrix,
we set each entry ai j for which i and j are not para-
phrases in PPDB to zero. The masked affinity ma-
trix encodes the graph G = {PP(t),EMASK

PP } with
edges connecting only pairs of words that are in
PPDB, EMASK

PP = {(pi, p j) | pi ∈ P(p j)}. Figure 1c
shows the masked affinity matrix corresponding to
the PPDB structure in Figure 1a.

2.4.3 Optimizing k
Because spectral clustering requires the number
of output clusters, k, to be specified as input, for
each target word we run the clustering algorithm
for a range of k between 1 and the minimum of (n,
20). We then choose the k that maximizes the NMI
of the resulting clusters with the human-annotated
substitutes for that target in the development data.

2.5 Method variations
In addition to using the substitutability score to
choose the best number of senses for each target
word, we also experiment with two variations on
the basic spectral clustering method to increase the
score further: filtering by a paraphrase confidence
score and co-clustering with WordNet (Fellbaum,
1998).

2.5.1 PPDB Score Thresholding
Each paraphrase pair in the PPDB is associated
with a set of scores indicating the strength of
the paraphrase relationship. The recently added
PPDB2.0 Score (Pavlick et al., 2015) was calcu-
lated using a supervised scoring model trained on
human judgments of paraphrase quality.4 Apidi-
anaki (2016) showed that the PPDB2.0 Score itself
is a good metric for ranking substitution candi-
dates in context, outperforming some vector space
models when the number of candidates is high.
With this in mind, we experimented with using a
PPDB2.0 Score threshold to discard noisy PPDB

4The human judgments were used to fit a regression to the
features available in PPDB 1.0 plus numerous new features
including cosine word embedding similarity, lexical overlap
features, WordNet features and distributional similarity fea-
tures.
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paraphrases PP(t) to be clus-
tered.
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(b) Unmasked affinity matrix for input to ba-
sic clustering algorithm, for paraphrases in
Fig 1a. This matrix encodes a fully-connected
graph G = {PP(t),EALL

PP }.
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(c) Masked affinity matrix for input to clus-
tering algorithm, enforcing the paraphrase
links from the graph in Fig 1a, G =
{PP(t),EMASK

PP }.

Figure 1: Unclustered PPDB graph and its corresponding affinity matrices, encoding distributional sim-
ilarity, for input to the basic (1b) and masked (1c) clustering algorithms. Masking zeros-out the values
of all cells corresponding to paraphrases not connected in the PPDB graph. Cell shading corresponds to
the distributional similarity score between words, with darker colors representing higher measurements.

XXL paraphrases prior to sense clustering. Our
objective was to begin the clustering process with
a clean set of paraphrases for each target word,
eliminating erroneous paraphrases that might pol-
lute the substitutable sense clusters. We imple-
mented PPDB score thresholds in a range from 0
to 2.5.

2.5.2 Co-Clustering with WordNet
PPDB is large and inherently noisy. WordNet
has smaller coverage but well-defined semantic
structure in the form of synsets and relations.
We sought a way to marry the high coverage of
PPDB with the clean structure of WordNet by co-
clustering the two resources, in hopes of creating
a sense inventory that is both highly-substitutable
and high-coverage.

The basic unit in WordNet is the synset, a set
of lemmas sharing the same meaning. WordNet
also connects synsets via relations, such as hyper-
nymy, hyponymy, entailment, and ‘similar-to’. We
denote as L(s) the set of lemmas associated with
synset s. We denote as R(s) the set of synsets
that are related to synset s with a hypernym, hy-
ponym, entailment, or similar-to relationship. Fi-
nally, we denote as S(t) the set of synsets to which
a word t belongs. We denote as S+(t) the set of t’s
synsets, plus all synsets to which they are related;
S+(t) = S(t)∪⋃

s′∈S(t) S(s′). In other words, S+(t)
includes all synsets to which t is connected by a

path of length at most 2 via one of the relations
encoded in R(s).

For co-clustering, we generate the affinity ma-
trix for a graph with m+n nodes corresponding to
the n words in PP(t) and the m synsets in S+(t),
and edges between every pair of nodes. Because
the edge weights are cosine similarity between
vector embeddings, we need a way to construct an
embedding for each synset in S+(t).5 We there-
fore generate compositional embeddings for each
synset s that are equal to the weighted average of
the embeddings for the lemmas l ∈ L(s), where the
weights are the PPDB2.0 scores between t and l:

vs =
∑l∈L(s) PPDB2.0Score(t, l)× vl

∑l∈L(s) PPDB2.0Score(t, l)

The unmasked affinity matrix used for input to
the co-clustering method, then, encodes the graph
G = {PP(t)∪ S+(t),EALL

PP ∪EALL
PS ∪EALL

SS }, where
EALL

PS contains edges between every paraphrase
and synset, and EALL

SS contains edges between ev-
ery pair of synsets.

We also define masked versions of the co-
clustering affinity matrix. In a masked affinity
matrix, positive entries are only allowed for en-
tries where the row and column correspond to enti-

5We don’t use the NASARI embeddings (Camacho-
Collados et al., 2015) because these are available only for
nouns.
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(a) Graph showing n = 7 PPDB
paraphrases PP(t) and m = 4
WordNet synsets S+(t) to be
clustered.
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(b) Unmasked affinity matrix for input to ba-
sic clustering algorithm, for paraphrases and
synsets in Fig 2a. This matrix encodes a fully-
connected graph G = {PP(t)∪S+(t),EALL

PP ∪
EALL

PS ∪EALL
SS }.

p1 p2 p3 p4 p5 p6 p7 s1 s2 s3 s4
p1
p2
p3
p4
p5
p6
p7

s1
s2
s3
s4

(c) Affinity matrix for input to cluster-
ing algorithm, enforcing the paraphrase-
paraphrase (EMASK

PP ) and paraphrase-synset
(EMASK

PS ) links from the graph in 2a, but al-
lowing all synset-synset links (EALL

PP ).

Figure 2: Paraphrase/synset graph for input to the co-clustering model, and its corresponding affinity
matrices for the basic (2b) and masked (2c) clustering algorithms. Cell shading corresponds to the
distributional similarity score between words/synsets.

ties (paraphrases or synsets) that are connected by
the underlying knowledge base (PPDB or Word-
Net). Just as we defined masking for paraphrase-
paraphrase links (EPP) to allow only positive val-
ues corresponding to paraphrase pairs found in
PPDB, here we separately define masking for
paraphrase-synset (EPS) and synset-synset (ESS)
based on WordNet synsets and relations. When
applying the clustering algorithm, it is possible to
elect to use the masked version for any or all of
EPP, EPS, and ESS. In our experiments we try all
combinations.

For the synset-synset links, we define the
masked version EMASK

SS as including only nonzero
edge weights where a hypernym, hyponym, en-
tailment or similar-to relationship connects two
synsets: EMASK

SS = {(su,sv) | su ∈ R(sv) or sv ∈
R(su)}. For the paraphrase-synset links, we define
the masked version EMASK

PS to include only nonzero
edge weights where the paraphrase is a lemma
in the synset, or is a paraphrase of a lemma in
the synset (excluding the target word): EMASK

PS =
{(pi,su) | pi ∈ L(su) or |(P(pi)− t)∩ L(su)|> 0}.
We need to exclude the target word when calcu-
lating the overlap because otherwise all words in
PP(t) would connect to all synsets in S(t). Figure
2 depicts the graph, unnmasked and masked affin-
ity matrices for the co-clustering method.

2.6 Clustering Experiments

2.6.1 Datasets

We run clustering experiments using targets and
human-generated substitution data drawn from
two lexical substitution datasets. The first is the
“Concepts in Context” (CoInCo) corpus (Kremer
et al., 2014), containing over 15K sentences cor-
responding to nearly 4K unique target words. We
divide the CoInCo dataset into development and
test sets by first finding all target words that have
at least 10 sentences. For each of the 327 result-
ing targets, we randomly divide the correspond-
ing sentences into 60% development instances and
40% test instances. The resulting development
and test sets have 4061 and 2091 sentences respec-
tively. We cluster the 327 target words in the re-
sulting subset of CoInCo, performing all optimiza-
tion using the development portion.

In order to evaluate how well our method gen-
eralizes to other data, we also create clusters for
target words drawn from the SemEval 2007 En-
glish Lexical Substitution shared task dataset (Mc-
Carthy and Navigli, 2007). The entire test por-
tion of the SemEval dataset contains 1700 an-
notated sentences for 170 target words. We fil-
ter this data to keep only sentences with one or
more human-annotated substitutes that overlap our
PPDB XXL paraphrase vocabulary. The result-
ing test set, which we use for evaluating SemEval
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targets, has 1178 sentences and 157 target words.
We cluster each of the 157 targets, using the Co-
InCo development data to optimize substitutabil-
ity for the 32 SemEval targets that also appear in
CoInCo. For the rest of the SemEval targets we
choose a number of senses equal to its WordNet
synset count.

2.6.2 Clustering Method Variations
We try all combinations of the following parame-
ters in our clustering model:

• Clustering method: We try the basic cluster-
ing – clustering Paraphrases Only – and the
WordNet Co-Clustering method.

• PPDB2.0 Score Threshold: We cluster para-
phrases of each target having a PPDB2.0
Score above a threshold, ranging from 0-3.0.

• Masking: When clustering paraphrases only,
we can either use the PP-PP mask or al-
low positive similarities between all words.
When co-clustering, we try all combina-
tions of the PP-PP, PP-SYN, and SYN-SYN
masks.

For each combination, we evaluate the NMI
substitutability of the resulting sense inventory
over our CoInCo and SemEval test instances. The
substitutability results are given in Tables 2 and 3.

3 Filtering Substitutes

3.1 A WSD oracle

We now question whether it is possible to improve
the rankings of current state-of-the-art lexical sub-
stitution systems by using the optimized sense in-
ventory as a filter. Our general approach is to take
a set of ranked substitutes generated by a vector-
based model. Then, we see whether filtering the
ranked substitutes to bring words belonging to the
correct sense of the target to the top of the rankings
would improve the overall ranking results.

Assuming that we have a WSD oracle that is
able to choose the most appropriate sense for a
target word in context, this corresponds to nomi-
nating substitutes from the applicable sense cluster
and elevating them in the list of ranked substitutes
output by the state-of-the-art lexical substitution
system. If sense filtering successfully improves
the quality of ranked substitutes, we can say that
the sense inventory captures substitutability well.

3.2 Ranking Models
Our approach requires a set of rankings produced
by a high-quality lexical substitution model to
start. We generate substitution rankings for each
target/sentence pair in the test sets using a syntac-
tic vector-space model (Thater et al., 2011; Apidi-
anaki, 2016) and a state-of-the-art model based on
word embeddings (Melamud et al., 2015).

The syntactic vector space model of Apidianaki
(2016) (Syn.VSM) demonstrated an ability to cor-
rectly choose appropriate PPDB paraphrases for a
target word in context. The vector features cor-
respond to syntactic dependency triples extracted
from the English Gigaword corpus 6 analyzed with
Stanford dependencies (Marneffe et al., 2006).
Syn.VSM produces a score for each (target, sen-
tence, substitute) tuple based on the cosine sim-
ilarity of the substitute’s basic vector representa-
tion with the target’s contextualized vector (Thater
et al., 2011). The contextualized vector is derived
from the basic meaning vector of the target word
by reinforcing its dimensions that are licensed by
the context of the specific instance under consider-
ation. More specifically, the contextualized vector
of a target is obtained through vector addition and
contains information about the target’s direct syn-
tactic dependents.

The second set of rankings comes from the Ad-
dCos model of Melamud et al. (2015). AddCos
quantifies the fit of substitute word s for target
word t in context C by measuring the semantic
similarity of the substitute to the target, and the
similarity of the substitute to the context:

AddCos(s, t,W ) =
|W |·cos(s, t) + ∑w∈W cos(s,w)

2 · |W |
(1)

The vectors s and t are word embeddings of the
substitute and target generated by the skip-gram
with negative sampling model (Mikolov et al.,
2013b; Mikolov et al., 2013a). The context W
is the set of words appearing within a fixed-width
window of the target t in a sentence (we use a win-
dow (cwin) of 1), and the embeddings c are con-
text embeddings generated by skip-gram. In our
implementation, we train 300-dimensional word
and context embeddings over the 4B words in the
Annotated Gigaword (AGiga) corpus (Napoles et
al., 2012) using the gensim word2vec package

6http://catalog.ldc.upenn.edu/
LDC2003T05
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(Mikolov et al., 2013b; Mikolov et al., 2013a;
Řehůřek and Sojka, 2010).7

3.3 Substitution metrics

Lexical substitution experiments are usually eval-
uated using generalized average precision (GAP)
(Kishida, 2005). GAP compares a set of predicted
rankings to a set of gold standard rankings. Scores
range from 0 to 1; a perfect ranking, in which all
high-scoring substitutes outrank low-scoring sub-
stitutes, has a score of 1. For each sentence in the
CoInCo and SemEval test sets, we consider the
PPDB paraphrases for the target word to be the
candidates, and we set the test set annotator fre-
quency to be the gold score. Words in PPDB that
were not suggested by annotators receive a gold
score of 0.001. Predicted scores are given by the
two ranking models, Syn.VSM and AddCos.

3.4 Filtering Method

Sense filtering is intended to boost the rank of sub-
stitutes that belong to the most appropriate sense
of the target given the context. We run this exper-
iment as a two-step process.

First, given a target and sentence, we obtain the
PPDB XXL paraphrases for the target word and
rank them using the Syn.VSM and the AddCos
models.8 We calculate the overall unfiltered GAP
score on the test set for each ranking model as the
average GAP over sentences.

Next, we evaluate the ability of a sense inven-
tory to improve the GAP score through filtering.
We implement sense filtering by adding a large
number (10000) to the ranking model’s score for
words belonging to a single sense. We assume
an oracle that finds the cluster which maximally
improves the GAP score using this sense filtering
method. If the sense inventory corresponds well
to substitutability, we should expect this filtering
to improve the ranking by downgrading proposed
substitutes that do not fall within the correct sense
cluster.

We calculate the maximum sense-restricted
GAP score for the inventories produced by each
variation on our clustering model, and compare

7The word2vec training parameters we use are a context
window of size 3, learning rate alpha from 0.025 to 0.0001,
minimum word count 100, sampling parameter 1e−4, 10 neg-
ative samples per target word, and 5 training epochs.

8For the SemEval test set, we rank PPDB XXL para-
phrases having a PPDB2.0 Score with the target of at least
2.54.

this to the unfiltered GAP score for each ranking
model.

3.5 Baselines
We compare the extent to which our optimized
sense inventories improve lexical substitution
rankings to the results of two baseline sense in-
ventories.

• WordNet+: a sense inventory formed from
WordNet 3.0. For each CoInCo target word
that appears in WordNet, we take its sense
clusters to be its synsets, plus lemmas be-
longing to hypernyms and hyponyms of each
synset.

• PPDBClus: a much larger, abeit noisier,
sense inventory obtained by automatically
clustering words in the PPDB XXL package.
To obtain this sense inventory we clustered
paraphrases for all targets in the CoInCo
dataset using the method outlined in Cocos
and Callison-Burch (2016), with PPDB2.0
Score serving as the similarity metric.

We assess the substitutability of these sense
baseline inventories with respect to the human-
annotated substitutes in the CoInCo and SemEval
datasets, and also use them for sense filtering.

Finally, we wish to estimate the impact of
the NMI-based optimization procedure (Section
2.4.3) on the quality of the senses used for fil-
tering. We compare the performance of the opti-
mized CoInCo sense inventory, where the number
of clusters, k, for a target word is defined through
NMI optimization (called ‘Choose-K: Optimize
NMI’), to an inventory induced from CoInCo
where k equals the number of synsets available
for the target word in WordNet (called ‘Choose-
K: #WN Synsets).

4 Results

We report substitutability, and the unfiltered and
best sense-filtered GAP scores achieved using the
paraphrase-only clustering method and the co-
clustering method in Tables 2 and 3.

The average unfiltered GAP scores for the
Syn.VSM rankings over the CoInCo and SemEval
test sets are 0.528 and 0.673 respectively.9 All

9The score reported by Apidianaki (2016) for the
Syn.VSM model with XXL PPDB paraphrases on CoInCo
was 0.56. The difference in scores is due to excluding from
our clustering experiments target words that did not have at
least 10 sentences in CoInCo.
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Syn.VSM AddCos (cwin=1)
substCoInCo Unfiltered GAP Oracle GAP Unfiltered GAP Oracle GAP

PPDBClus 0.254

0.528

0.661

0.533

0.656
WordNet 0.252 0.655 0.651

Choose-K: # WN Synsets (avg) 0.205 0.639 0.636
Choose-K: # WN Synsets (max, no co-clustering) 0.250* 0.695* 0.690*

Choose-K: # WN Synsets (max, co-clustering) 0.241** 0.690** 0.683**
Choose-K: Optimize NMI (avg) 0.282 0.668 0.662

Choose-K: Optimize NMI (max, no co-clustering) 0.331* 0.719 * 0.714 ***
Choose K: Optimize NMI (max, co-clustering) 0.314** 0.718 **** 0.710 **

Table 2: Substitutablity (NMI) of resulting sense inventories, and GAP scores of the unfiltered and best sense-filtered rankings
produced by the Syn.VSM and AddCos models, for the CoInCo annotated dataset. Configurations for the best-performing sense
inventories were: * Min PPDB Score 2.0, cluster PP’s only, use PP-PP mask; ** Min PPDB Score 2.0, co-clustering, use PP-PP
mask only; *** Min PPDB Score 1.5, cluster PP’s only, use PP-PP mask; **** Min PPDB Score 2.0, co-clustering, use PP-PP,
Syn-Syn masks only

Syn.VSM AddCos (cwin=1)
substSemEval Unfiltered GAP Oracle GAP Unfiltered GAP Oracle GAP

PPDBClus 0.357

0.673

0.855

0.410

0.634
WordNet 0.291 0.774 0.595

Average of all Clustered Sense Inventories 0.367 0.841 0.569
Max basic (no co-clustering) sense inventory 0.448* 0.917* 0.626*

Max co-clustered sense inventory 0.449** 0.906*** 0.612****

Table 3: Substitutablity (NMI) of resulting sense inventories, and GAP scores of the unfiltered and best sense-filtered rankings
produced by the Syn.VSM and AddCos models, for the SemEval07 annotated dataset. Configurations for the best-performing
sense inventories were: * Min PPDB Score 2.31, cluster PP’s only, use PP-PP mask; ** Min PPDB Score 2.54, co-clustering,
use PP-SYN mask only; *** Min PPDB Score 2.54, co-clustering, use PP-SYN mask only; **** Min PPDB Score 2.31,
co-clustering, use PP-SYN mask only.

baseline and cluster sense inventories are capable
of improving these GAP scores when we use the
best sense as a filter. Syntactic models generally
give very good results with small paraphrase sets
(Kremer et al., 2014) but their performance seems
to degrade when they need to deal with larger and
noisier substitute sets (Apidianaki, 2016). Our
results suggest that finding the most appropriate
sense of a target word in context can improve their
lexical substitution results.

The trend in results is similar for the AddCos
rankings. The average unfiltered GAP scores for
the AddCos rankings over the CoInCo and Se-
mEval test sets are 0.533 and 0.410 respectively.
The GAP scores of the unfiltered AddCos rankings
are much lower than after filtering with any base-
line or cluster sense inventory, showing that lexical
subsitutition rankings based on word-embeddings
can also be improved using senses.

To assess the impact of the NMI-based opti-
mization procedure on the results, we compare the
performance of two sense inventories on the Co-
InCo rankings: one where the number of clusters
(k) for a target word is defined through NMI op-
timization and another one, where k is equal to
the number of synsets available for the target word

in WordNet. We find that for both the Syn.VSM
and AddCos ranking models, filtering using the
sense inventory with the NMI-optimized k outper-
forms the results obtained when the inventory with
k equal to the number of synsets is used.

Furthermore, we find that the NMI substi-
tutability score is a generally good indicator of
how much improvement we see in GAP score due
to oracle sense filtering. We calculated the Pear-
son correlation of a sense inventory’s NMI with
its oracle GAP score to be 0.644 (calculated over
all target words in the CoInCo test set, including
GAP results for both the Syn.VSM and AddCos
ranking models). This suggests that NMI is a rea-
sonable measure of substitutability.

We find that for all methods, applying a PPDB-
Score Threshold prior to clustering is an effective
way of removing noisy, non-substitutable para-
phrases from the sense inventory. When we use
the resulting sense inventory for filtering, this ef-
fectively elevates only high-quality paraphrases in
the lexical substitution rankings. This supports the
finding of Apidianaki (2016), who showed that the
PPDB2.0 Score itself is an effective lexical substi-
tution ranking metric when large and noisy para-
phrase substitute sets are involved.
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Finally, we discover that co-clustering with
WordNet did not produce any significant improve-
ment in NMI or GAP score over clustering para-
phrases alone. This could suggest that the added
structure from WordNet did not improve over-
all substitutability of the resulting sense invento-
ries, or that our co-clustering method did not ef-
fectively incorporate useful structural information
from WordNet.

5 Conclusion

We have shown that despite the high performance
of word-based vector-space models, lexical sub-
stitution can still benefit from word senses. We
have defined a substitutability metric and proposed
a method for automatically creating sense invento-
ries optimized for substitutability. The number of
sense clusters in an optimized inventory and their
contents are aligned with lexical substitution an-
notations in a development set. Using the best
fitting cluster in each context as a filter over the
rankings produced by vector-space models boosts
good substitutes and improves the models’ scores
in a lexical substitution task.

For choosing the cluster that best fits a con-
text, we used an oracle experiment which finds
the maximum GAP score achievable by a sense by
boosting the ranking model’s score for words be-
longing to a single sense. The cluster that achieved
the highest GAP score in each case was selected.
The task of finding the most appropriate sense in
context still remains. But the improvement in lex-
ical substitution results shows that word sense in-
duction and disambiguation can still benefit state-
of-the-art word-based models for lexical substitu-
tion.

Our sense filtering mechanism can be applied to
the output of any vector-space substitution model
at a post-processing step. In future work, we in-
tend to experiment with models that account for
senses during embedding learning. The models of
Huang et al. (2012) and Li and Jurafsky (2015)
learn multi-prototype, or sense-specific, embed-
ding representations and are able to choose the
best-fitted ones for words in context. These mod-
els have up to now been tested in several NLP
tasks but have not yet been applied to lexical sub-
stitution. We will experiment with using the em-
beddings chosen by these models for specific word
instances for ranking candidate substitutes in con-
text. The comparison with the results presented in

this paper will show whether it is preferable to ac-
count for senses before or after actual lexical sub-
stitution.
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Abstract

This paper compares two approaches to
word sense disambiguation using word
embeddings trained on unambiguous syn-
onyms. The first one is an unsupervised
method based on computing log proba-
bility from sequences of word embedding
vectors, taking into account ambiguous
word senses and guessing correct sense
from context. The second method is super-
vised. We use a multilayer neural network
model to learn a context-sensitive transfor-
mation that maps an input vector of am-
biguous word into an output vector repre-
senting its sense. We evaluate both meth-
ods on corpora with manual annotations of
word senses from the Polish wordnet.

1 Introduction

Ambiguity is one of the fundamental features of
natural language, so every attempt to understand
NL utterances has to include a disambiguation
step. People usually do not even notice ambi-
guity because of the clarifying role of the con-
text. A word market is ambiguous, and it is
still such in the phrase the fish market while in
a longer phrase like the global fish market it is
unequivocal because of the word global, which
cannot be used to describe physical place. Thus,
distributional semantics methods seem to be a
natural way to solve the word sense discrimina-
tion/disambiguation task (WSD). One of the first
approaches to WSD was context-group sense dis-
crimination (Schütze, 1998) in which sense rep-
resentations were computed as groups of simi-
lar contexts. Since then, distributional semantic
methods were utilized in very many ways in su-
pervised, weekly supervised and unsupervised ap-
proaches.

Unsupervised WSD algorithms aim at resolv-
ing word ambiguity without the use of annotated
corpora. There are two popular categories of
knowledge-based algorithms. The first one orig-
inates from the Lesk (1986) algorithm, and ex-
ploit the number of common words in two sense
definitions (glosses) to select the proper meaning
in a context. Lesk algorithm relies on the set of
dictionary entries and the information about the
context in which the word occurs. In (Basile et
al., 2014) the concept of overlap is replaced by
similarity represented by a DSM model. The au-
thors compute the overlap between the gloss of
the meaning and the context as a similarity mea-
sure between their corresponding vector represen-
tations in a semantic space. A semantic space is
a co-occurrences matrix M build by analysing the
distribution of words in a large corpus, later re-
duced using Latent Semantic Analysis (Landauer
and Dumais, 1997). The second group of algo-
rithms comprises graph-based methods which use
structure of semantic nets in which different types
of word sense relations are represented and linked
(e.g. WordNet, BabelNet). They used various
graph-induced information, e.g. Page Rank algo-
rithm (Mihalcea et al., 2004).

In this paper we present a method of word sense
disambiguation, i.e. inferring an appropriate word
sense from those listed in Polish wordnet, using
word embeddings in both supervised and unsuper-
vised approaches. The main tested idea is to cal-
culate sense embeddings using unambiguous syn-
onyms (elements of the same synsets) for a par-
ticular word sense. In section 2 we shortly present
existing results for WSD for Polish as well as other
works related to word embeddings for other lan-
guages, while section 3 presents annotated data
we use for evaluation and supervised model train-
ing. Next sections describe the chosen method of
calculating word sense embeddings, our unsuper-
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vised and supervised WSD experiments and some
comments on the results.

2 Existing Work

2.1 Polish WSD

There was very little research done in WSD for
Polish. The first one from the few more vis-
ible attempts comprise a small supervised ex-
periment with WSD in which machine learn-
ing techniques and a set of a priori defined fea-
tures were used, (Kobyliński, 2012). Next, in
(Kobyliński and Kopeć, 2012), extended Lesk
knowledge-based approach and corpus-based sim-
ilarity functions were used to improve previous
results. These experiments were conducted on
the corpora annotated with the specially designed
set of senses. The first one contained general
texts with 106 polysemous words manually anno-
tated with 2.85 sense definitions per word on av-
erage. The second, smaller, WikiEcono corpus
(http://zil.ipipan.waw.pl/plWikiEcono) was anno-
tated by another set of senses for 52 polysemous
words. It contains 3.62 sense definitions per word
on average. The most recent work on WSD for
Polish (Kędzia et al., 2015) utilizes graph-based
approaches of (Mihalcea et al., 2004) and (Agirre
et al., 2014). This method uses both plWordnet
and SUMO ontology and was tested on KPWr data
set (Broda et al., 2012) annotated with plWord-
net senses — the same data set which we use in
our experiments. The highest precision of 0.58
was achieved for nouns. The results obtained by
different WSD approaches are very hard to com-
pare because of different set of senses and test
data used and big differences in results obtained
by the same system on different data. (Tripodi
and Pelillo, 2017) reports the results obtained by
the best systems for English at the level of 0.51-
0.85% depending on the approach (supervised or
unsupervised) and the data set. The only system
for Polish to which to some extend we can com-
pare our approach is (Kędzia et al., 2015).

2.2 WSD and Word Embeddings

The problem of WSD has been approached from
various perspectives in the context of word embed-
dings.

Popular approach is to generate multiple em-
beddings per word type, often using unsupervised
automatic methods. For example, (Reisinger and
Mooney, 2010; Huang et al., 2012) cluster con-

texts of each word to learn senses for each word,
then re-label them with clustered sense for learn-
ing embeddings. (Neelakantan et al., 2014) intro-
duce flexible number of senses: they extend sense
cluster list when a new sense is encountered by a
model.

(Iacobacci et al., 2015) use an existing WSD
algorithm to automatically generate large sense-
annotated corpora to train sense-level embeddings.
(Taghipou and Ng, 2015) prepare POS-specific
embeddings by applying a neural network with
trainable embedding layer. They use those embed-
dings to extend feature space of a supervised WSD
tool named IMS.

In (Bhingardive et al., 2015), the authors pro-
pose to exploit word embeddings in an unsuper-
vised method for most frequent sense detection
from the untagged corpora. Like in our work, the
paper explores creation of sense embeddings with
the use of WordNet. As the authors put it, sense
embeddings are obtained by taking the average of
word embeddings of each word in the sense-bag.
The sense-bag for each sense of a word is obtained
by extracting the context words from the WordNet
such as synset members (S), content words in the
gloss (G), content words in the example sentence
(E), synset members of the hypernymy-hyponymy
synsets (HS), and so on.

3 Word-Sense Annotated Treebank

The main obstacle in elaborating WSD method for
Polish is lack of semantically annotated resources
which can be applied for training and evaluation.
In our experiment we used an existing one which
use wordnet senses – semantic annotation (Ha-
jnicz, 2014) of Składnica (Woliński et al., 2011).
The set is a rather small but carefully prepared re-
source and contains constituency parse trees for
Polish sentences. The adapted version of Skład-
nica (0.5) contains 8241 manually validated trees.
Sentence tokens are annotated with fine-grained
semantic types represented by Polish wordnet
synsets from plWordnet 2.0 plWordnet, Piasecki et
al., 2009, http://plwordnet.pwr.wroc.pl/wordnet/).
The set contains lexical units of three open parts
of speech: adjectives, nouns and verbs. Therefore,
only tokens belonging to these POS are annotated
(as well as abbreviations and acronyms). Skład-
nica contains about 50K nouns, verbs and adjec-
tives for annotation, and 17410 of them belong-
ing to 2785 (34%) sentences has been already an-
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notated. For 2072 tokens (12%), the lexical unit
appropriate in the context has not been found in
plWordnet.

4 Obtaining Sense Embeddings

In this section we describe the method of obtaining
sense-level word embeddings. Unlike most of the
approaches described in Section 2.2, our method
is applied to manually sense-labeled corpora.

In Wordnet, words either occur in multiple
synsets (are therefore ambiguous and subject of
WSD), or in one synset (are unambiguous). Our
approach is to focus on synsets that contain both
ambiguous and unambiguous words. In Skad-
nica 2.0 (Polish WordNet) we found 28766 synsets
matching these criteria and therefore potentially
suitable for our experiments.

Let us consider a synset containing following
words: ‘blemish’, ‘deface’, ‘disfigure’. Word
‘blemish’ appears also in other synsets (is ambigu-
ous) while words ‘deface’ and ‘disfigure’ are spe-
cific for this synset and do not appear in any other
synset (are unambiguous).

We assume that embeddings specific to a sense
or synset can be approximated by unambiguous
part of the synset. While some researchers such
as (Bhingardive et al., 2015) take average em-
beddings of all synset-specific words, even us-
ing glosses and hyperonymy, we use unambiguous
words to generate word2vec embedding vector of
a sense.

During training, each occurrence of unambigu-
ous word in corpus is substituted for a synset
identifier. As in the provided example, each oc-
currence of ‘deface’ and ‘disfigure’ would be re-
placed by its sense identifier, the same for both
unambiguous words. We’ll later use these sense
vectors to distinguish between senses of ambigu-
ous ‘blemish’ given their contexts.

We train word2vec vectors using substitution
mechanism described above on a dump of all Pol-
ish language Wikipedia and 300-million subset of
the National Corpus of Polish (Przepiórkowski et
al., 2012). The embedding size is set to 100, all
other word2vec parameters have the default value
as in (Řehůřek and Sojka, 2010). The model is
based on lemmatized (base word forms) so only
the occurrences of forms with identical lemmas
are taken into account.

5 Unsupervised Word Sense Recognition

In this section we are proposing a simple unsuper-
vised approach to WSD. The key idea is to use
word embeddings in probabilistic interpretation
and application comparable to language model-
ing, however without building any additional mod-
els or parameter-rich systems. The method is de-
rived from (Taddy, 2015), where it was used with
a bayesian classifier and vector embedding inver-
sion to classify documents.

(Mikolov et al., 2013) describe two alterna-
tive methods of generating word embeddings: the
skip-gram, which represents conditional probabil-
ity for a word’s context (surrounding words) and
CBOW, which targets the conditional probability
for each word given its context. None of these
corresponds to a likelihood model, but as (Taddy,
2015) note they can be interpreted as components
in a composite likelihood approximation. Let w
= [w1. . . wT ] denote an ordered vector of words.
The skip-gram in (Mikolov et al., 2013) yields the
pairwise composite log likelihood:

logpV(w) =
T∑

j=1

T∑
i=1

1[1≤|k−j|≤b]logpV(wk|wj)

(1)
We use the above formula to compute probabil-

ity of a sentence. Unambiguous words are repre-
sented as their word2vec representations derived
directly from corpus. In case of ambiguous words,
we substitute them for each possible sense vector
(generated from unambiguous parts of synsets, as
has been previously described). Therefore, for an
ambiguous word to be disambiguated, we gener-
ate as many variants of a sentence as there are its
senses, and compute each variant’s likelihood us-
ing formula 1. Ambiguous words which occur in
the context are omitted (although we might also
replace them with an averaged vector representing
all their meanings). Finally, we select the most
probable variant.

Because the method involves no model train-
ing, we evaluate it directly over the whole data
set without dividing it into train and test sets for
cross-validation.

6 Supervised Word Sense Recognition

In the supervised approach, we train neural net-
work models to predict word senses. In our exper-
iment, neural network model acts as a regression
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function F transforming word embeddings pro-
vided at input into sense (synset identifiers) vec-
tors.

As the network architecture we selected LSTM
(Hochreiter and Schmidhuber, 1997). Neural net-
work model consists of one LSTM layer followed
by a dense (perceptron) layer at the output. We
train the network using mean standard error loss
function.

Input data consists of the sequences of five
word2vec embeddings: of two words that make
left and right symmetric contexts of each input
word to be disambiguated, and the word itself rep-
resented by the average vector of vectors repre-
senting all its senses. Ambiguous words for which
there are no embeddings are represented by zero
vectors (padded). Zero vectors are also added if
the context is too short. This data is used to train
LSTM model (Keras 1.0.1 https://keras.
io/) linked with the subsequent dense layer with
sigmoid activation function.

At the final step, we transform the output into
synsets rather than vectors. We select the most ap-
propriate sense from a set of possible sense inven-
tory, taking into account continuous output struc-
ture. In this step, neural network output layer
(which is a vector of the same size as input em-
beddings, but transformed) is compared with each
possible sense vector. To compare vectors, we use
cosine similarity measure, defined between any
two vectors.

We compute cosine similarity between neural
network output vector nnv and each sense from
possible sense inventory S, and select the sense
with the maximum cosine similarity towards nnv.

To test each neural network set-up we use 30-
fold cross-validation.

7 Results

In this section we put summary of the results
obtained on our test set, as well as two base-
line results. The corpus consisted of 2785 sen-
tences and 303 occurences of annotated ambigu-
ous words which could be disambiguated by our
algorithms, i.e. there were unambiguous equiva-
lents of its senses and there were appropiate word
embeddings for at least one of the other senses of
this word. There were 5571 occurences of words
which occurred only in one sense.

Table 1 presents precision of both tested meth-
ods computed over the Skladnica dataset. The

set contains 344 occurrences of ambiguous words
which were eligible for our method. For the unsu-
pervised approach we tested a window of 5 and 10
words around the analyzed word.

The ambiguous words from the sentence other
than the one being disambiguated at the moment
are either omitted or represented as a vector rep-
resenting all their occurrences. The uniq variant
omit all other ambiguous words from the sentence
while in the all variant we use not disambiguated
representation of these words.

Method Settings Precision

random baseline N/A 0.47

MFS baseline N/A 0.73

pagerank N/A 0.52

unsupervised

5 word, all 0.507
5 word, uniq 0.507
10 word, uniq 0.529
10 word, all 0.513

supervised

750 epochs 0.673
1000 epochs 0.680
2000 epochs 0.690
4000 epochs 0.667

Table 1: Precision of word-sense disambiguation
methods for Polish.

In the supervised approach the best results were
obtained for 2000 epochs but they did not differ
much from these obtained after 1000 epochs.
For comparison, we include two baseline values:

• random baseline select random sense from
uniform random probability distribution,

• MFS baseline use most frequent sense as
computed from the same corpus (There is no
other available sense frequency data for Pol-
ish, that could be obtained from manually an-
notated sources.)

The table also includes results computed using
pagerank WSD algorithm developed at the PWR
(Kędzia et al., 2015). These results were obtained
for all the ambiguous words occurring within the
sample, so cannot be directly compared to our re-
sults.

As the results indicate, unsupervised method
performs at the level of random sense selection.

123



Below there are two examples of the analyzed sen-
tences.

• lęk przed nicością łączy się z doświadczeniem
pustki ‘fear of nothingness combines with the
experience of emptiness’: in this sentence,
Polish ambiguous words ‘nothingness’ and
‘emptiness’ were resolved correctly while an
ambiguous words ‘experience’ does not have
unambiguous equivalents.

• na tym nie kończą się problemy ‘that does not
stop problems’: in this example ambiguous
word ‘problem’ was not resolved correctly,
but this case is difficult also for humans.

The low quality of the results might be the ef-
fect of a relatively short context available as the
analysed text is not continuous.

It might have also pointed out to the difficulty
of the test set. Senses in plWodnet are very numer-
ous and hard to differentiate even for human. But
the results of the supervised method falsify this as-
sumption.

Our supervised approach gave much better re-
sults although they are also not very good as the
amount of annotated data is rather small. In this
approach more epochs resulted in a slight model
over-fitting.

8 Conclusions

Our work introduced two methods of word sense
disambiguation based on word embeddings, su-
pervised and unsupervised. The first approach as-
sumes probabilistic interpretation of embeddings
and computes log probability from sequences of
word embedding vectors. In place of ambiguous
word we put embeddings specific for each possible
sense and evaluate the likelihood of thus obtained
sentences. Finally we select the most probable
sentence. The second supervised method is based
on a neural network trained to learn a context-
sensitive transformation that maps an input vector
of ambiguous word into an output vector repre-
senting its sense. We compared the performance
of both methods on corpora with manual anno-
tations of word senses from the Polish wordnet
(plWordnet). The results show the low quality of
the unsupervised method and suggest the superior-
ity of the supervised version in comparison to the
pagerank method on the set of words which were
eligible for our approach. Although the baseline

in which just the most frequent sense is chosen is
still a little better, this is probably due to a very
limited training set available for Polish.
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Paweł Kędzia, Maciej Piasecki, and Marlena Or-
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