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Abstract

We describe the ATILF-LLF system built
for the MWE 2017 Shared Task on au-
tomatic identification of verbal multiword
expressions. We participated in the closed
track only, for all the 18 available lan-
guages. Our system is a robust greedy
transition-based system, in which MWE
are identified through a MERGE transi-
tion. The system was meant to accom-
modate the variety of linguistic resources
provided for each language, in terms of
accompanying morphological and syntac-
tic information. Using per-MWE Fscore,
the system was ranked first1 for all but two
languages (Hungarian and Romanian).

1 Introduction

Verbal multi-word expressions (hereafter
VMMEs) tend to exhibit more morphological
and syntactic variation than other MWEs, if only
because in general the verb is inflected, and it can
receive adverbial modifiers. Furthermore some
VMWEs, in particular light verb constructions
(one of the VMWE categories provided in the
shared task), allow for the full range of syntactic
variation (extraction, coordination etc...). This
renders the VMWE identification task even more
challenging than general MWE identification, in
which fully frozen and contiguous expressions
help increasing the overall performance.

The data sets are quite heterogeneous, both in
terms of the number of annotated VMWEs and
of accompanying resources (for the closed track).2

12 systems participated for one language only (French),
and 5 systems participated for more than one language.

2Some of the data sets contain the tokenized sentences
plus VMWEs only (BG, ES, HE, LT), some are accompanied
with morphological information such as lemmas and POS

So our first priority when setting up the architec-
ture was to build a generic system applicable to all
the 18 languages, with limited language-specific
tuning. We thus chose to participate in the closed
track only, relying exclusively on training data, ac-
companying CoNLL-U file when available, and
basic feature engineering. We developed a one-
pass greedy transition-based system, which we be-
lieve can handle discontinuities elegantly. We in-
tegrated more or less informed feature templates,
depending on their availability in the data.

We describe our system in section 2, the exper-
imental setup in section 3, the results in section 4
and the related works in section 5. We conclude in
section 6 and give perspectives for future work.

2 System description

The identification system we used is a simpli-
fied and partial implementation of the system pro-
posed in Constant and Nivre (2016), which is in
itself a mild extension of an arc-standard depen-
dency parser (Nivre, 2004). Constant and Nivre
(2016) proposed a parsing algorithm that jointly
predicts a syntactic dependency tree and a forest
of lexical units including MWEs. In particular, in
line with Nivre (2014), this system integrates spe-
cial parsing mechanisms to deal with lexical anal-
ysis. Given that the shared task focuses on the lex-
ical task only and that datasets do not always pro-
vide syntactic annotations, we have modified the
structure of the original system by removing syn-
tax prediction, in order to use the same system for
all 18 languages.

A transition-based system consists in applying
a sequence of actions (namely transitions) to
incrementally build the expected output struc-
ture in a bottom-up manner. Each transition is

(CS, MT, RO, SL), and for the third group (the 10 remaining
languages) full dependency parses are provided. See (Savary
et al., 2017) for more information on the data sets.
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Transition Configuration
([ ], [1, 2, 3, 4, 5, 6], [ ])

Shift ⇒ ([1], [2, 3, 4, 5, 6], [ ])
Complete ⇒ ([ ], [2, 3, 4, 5, 6], [1])
Shift ⇒ ([2], [3, 4, 5, 6], [1])
Shift ⇒ ([2, 3], [4, 5, 6], [1])
Complete ⇒ ([2], [4, 5, 6], [1, 3])
Shift ⇒ ([2, 4], [5, 6], [1, 3])
Complete ⇒ ([2], [5, 6], [1, 3, 4])
Shift ⇒ ([2, 5], [6], [1, 3, 4])
Shift ⇒ ([2, 5, 6], [ ], [1, 3, 4])
Merge ⇒ ([2, (5, 6)], [ ], [1, 3, 4])
Merge ⇒ ([(2, (5, 6))], [ ], [1, 3, 4])
Complete ⇒ ([ ], [ ], [1, 3, 4, (2, (5, 6))])

Figure 1: Transition sequence for tagging He1

took2 this3 argument4 into5 account6.

usually predicted by a classifier given the current
state of the parser (namely configuration). A
configuration in our system consists of a triplet
c = (σ, β, L), where σ is a stack containing units
under processing, β is a buffer containing the
remaining input tokens, and L is a set of processed
lexical units. The processed units correspond
either to tokens or to VMWEs. When correspond-
ing to a single token, a lexical unit is composed
of one node only, whereas a unit representing a
(multi-token) VMWE is represented as a binary
lexical tree over the input tokens. Every unit is
associated with a set of linguistic attributes (when
available in the working dataset): its actual form,
lemma, part-of-speech (POS) tag, syntactic head
and label. The initial configuration for a sentence
x = x1, ..., xn, i.e. a sequence of n tokens, is
represented by cs as: cs(x) = ([], [x1, . . . , xn], ∅)
and the set of terminal configurations Ct contains
any configuration of the form c = ([], [], L). At
the end of the analysis, the identified VMWEs are
simply extracted from L.

The transitions of this system are limited to the
following: (a) the Shift transition takes the first
element in the buffer and pushes it onto the stack;
(b) the Merge transition removes the two top ele-
ments of the stack, combines them as a single el-
ement, and adds it to the stack;3 (c) the Complete
transition moves the upper element of the stack
to L, whether the element is a single token or an
identified VMWE and finally (d) the Complete-
MWT transition, only valid for multiword tokens

3The newly created element is assigned linguistic at-
tributes using basic concatenation rules that would deserve
to be improved in future experiments: e.g., the lemma is the
concatenation of the lemmas of the two initial elements.

(MWT), acts as Complete, but also marks the ele-
ment moved to L as VMWE.4

Training such a system means enabling it to
classify a configuration into the next transition to
apply. This requires an oracle that determines
what is an optimal transition sequence given an
input sentence and the gold VMWEs. We created
a static oracle using a greedy algorithm that per-
forms Complete as soon as possible (i.e. when a
non VMWE token or a gold VMWE is on top of
the stack) and Merge as late as possible (i.e. when
the right-most component of the VMWE is on top
of the stack) (see Figure 1). Note that an oracle se-
quence is exactly composed of 2n transitions: ev-
ery single token requires one Shift and one Com-
plete, and each multi-token VMWE of length m
requiresm Shifts,m−1 Merges and a single Com-
plete.

The proposed system has some limitations with
respect to the shared task annotation scheme.
First, for now, our system does not handle embed-
ded VMWEs (only the longest VMWE is consid-
ered in the oracle, and the transition system can-
not predict embeddings). This feature could be
straightforwardly activated as VMWEs are repre-
sented with lexical trees. Note also that the sys-
tem cannot handle overlapping MWEs like take1,2

a bath1 then a shower2, since it requires a graph
representation (not a tree).

3 Experimental setup

For replication purposes, we now describe
how the system has been implemented (Subsec-
tion 3.1), which feature templates have been used
(Subsection 3.2) and how they have been tuned
(Subsection 3.3). Simple descriptions of the sys-
tem settings are provided in Table 1. We thereafter
use symbol Bi to indicate the ith element in the
buffer. S0 and S1 stand for the top and the second
top elements of the stack. For every unit X in the
stack or the buffer, we denote Xw its word form,
Xl its lemma and Xp its POS tag. The concatena-
tion of two elements X and Y is noted XY .

3.1 Implementation

For a given language, and a given train/dev split,
we train three SVM classifiers (one vs all, one vs

4We had to add this transition to cope with MWTs, which
are present in some data sets (esp. German). Currently this
transition is not predicted by a classifier like the other ones.
It is activated under certain hard conditions (cf. Subsection
3.1)

128



one and error-correcting output codes) and we se-
lect the majority vote one.5

Note that some configurations only allow for a
unique transition type, and thus do not require
transition prediction. A configuration with a one
token stack and empty buffer requires the applica-
tion of a Complete, as last transition of the tran-
sition sequence. Similarly, a configuration with
empty stack and non-empty buffer must lead to a
Shift transition.
During the feature tuning phase, for a few lan-
guages we added a number of hard-coded pro-
cedures aiming at enforcing specific transitions
in given contexts. These procedures all use a
VMWE dictionary extracted from the training set
(hereafter the VMWE dictionary). For German
and Hungarian, we noticed a high percentage of
VMWEs with one token only.6 We added the
Complete-MWT transition for these languages,
which we systematically apply when the head of
the stack S0 is a token appearing as MWT in the
VMWE dictionary (cf. setting Q in Table 1). For
other languages with long and discontinuous ex-
pressions, we used other hard-coded procedures
that experimentally proved to be beneficial (setting
P in Table 1). We systematically apply a Complete
transition when S1lB0l or S1lB1l forms a VMWE
existing in the VMWE dictionary. Moreover, an
obligatory Shift is applied when the concatena-
tion of successive elements in the stack and the
buffer belongs to the VMWE dictionary. In par-
ticular, we test S1lS0lB0l, S0lB0l, S0lB0lB1l and
S0lB0lB1lB2l.

3.2 Feature Templates

A key point in a classical transition-based sys-
tem is feature engineering, where feature template
design and tuning could play a very important role
in increasing the accuracy of system results.

Basic Linguistic Features
First of all, depending on their availability

in the working dataset and on the activation of
related settings (cf. G and J in Table 1), we
extracted linguistic attributes in order to generate
features such as S0l, S0p and S0w where p, l and

5The whole system was developed using Python 2.7, with
2,200 lines of code, using the open-source Scikit-learn 0.19
libraries for the SVMs. The code is available on Github:
https://goo.gl/EDFyiM

6These correspond mainly to cases of verb-particle
(tagged VPC in the data sets) in which the particle is not sep-
arated from the verb.

Code F Setting description
B + use of transition history (length 1)
C + use of transition history (length 2)
D + use of transition history (length 3)
E + use of B1

F + use of bigrams (S1S0, S0B0, S1B0,S0B1)
G + use of lemma
H + use of syntax dependencies
I + use of trigrams S1S0B0

J + use of POS tag
K + use of distance between S0 and S1

L + use of training corpus VMWE lexicon
M + use of distance between S0 and B0

N + use of (S0B2) bigram
O + use of stack length
P - enabling dictionary-based forced transitions
Q - enabling Complete-MWT transition

Table 1: System setting code descriptions. The ’F’
column indicates whether the setting is a feature-
related setting (’+’) used by the classifiers or
whether (’-’) it is a hard-coded implementation en-
hancement.

w stand for the lemma, the part of speech, and the
word form respectively. The same features are
extracted for unigrams S1, B0 and B1 (when used)
(cf. E in Table 1).

When enabled, the bigrams features for the
pair XY of elements are XpYp, XlYl, XwYw,
XpYl and XlYp. The trigram-based features are
extracted in the same way.
Basically, the involved bigrams are S1S0, S0B0,
S1B0 and S0B1 (cf. setting F in Table 1), but we
also added the S0B2 bigram for a few languages
(cf. N in Table 1). For trigrams, we only used the
features of the S1S0B0 triple (cf. I in Table 1).

Finally, because the datasets for some languages
do not provide the basic linguistic attributes such
as lemmas and POS tags, we tried to bridge the gap
by extracting unigram ”morphological” attributes
when POS tag and lemma extraction settings were
disabled (cf. G and J in Table 1). The features
of S0 for such languages would be S0w, S0r, S0s
where r and s stand for the last two and three let-
ters of S0w respectively.

Syntax-based Features

After integrating classical linguistic attributes,
we investigated using more linguistically sophis-
ticated features. First of all, syntactic structure
is known to help MWE identification (Fazly et
al., 2009; Seretan, 2011; Nagy T. and Vincze,
2014). We therefore inform the system with the
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provided syntactic dependencies when available:
for each token Bn that both appears in the buffer
and is a syntactic dependent of S0 with label
l, we capture the existence of the dependency
using the features RightDep(S0, Bn) = True
and RightDepLabel(S0, Bn) = l. We also use
the opposite features IsGovernedBy(S0, Bn) =
True and IsGovernedByLabel(S0, G) = l
when S0’s syntactic governor G appears in the
buffer. Other syntax-based features aim at mod-
eling the direction and label of a syntactic relation
between the two top elements of the stack (fea-
ture syntacticRelation(S0, S1) = ±l is used for
S0 governing/governed by S1).7 All these syntac-
tic features (cf. H in Table1) try to capture syn-
tactic regularities between the tokens composing a
VMWE.

History-based Features
We found that other traditional transition-based

system features were sometimes useful like (local)
transition history of the system. We thus added
features to represent the sequence of previous tran-
sitions (of length one, two or three, cf. settings B,
C and D in Table 1).

Distance-based Features
Distance between sentence components is also

known to help transition-based dependency pars-
ing (Zhang and Nivre, 2011). We thus added the
distance between S0 and B0 and the distance be-
tween S0 and S1 (cf. settings K and M in Table
1).

Dictionary-based Features
We also added features based on the VMWE

dictionary automatically extracted from the train-
ing set. Such features inform the system when one
of the focused elements (Si, Bj) is a component
of a VMWE present in the dictionary (cf. L in
Table 1).

Stack-length Features
Using the length of the stack as an additional

feature (cf. O in Table 1) has also proven benefi-
cial during our feature tuning.

7For the shared task, we used gold syntactic features for
the languages accompanied with gold dependency compan-
ion files, as authorized in the closed track. Performance when
using predicted syntax will be evaluated in future work.

Finally, it is worthwhile to note that system set-
tings (cf. Table 1) interact when used to generate
the precise set of features. For instance if lemma
extraction is disabled (code G) while bigram ex-
traction is enabled (code F), the produced features
for e.g. the S1S0 bigram would not include the
following features: S1lS0l, S1pS0l and S1lS0p.

3.3 Feature Tuning

We first divided the data sets into 3 groups,
based on the availability of CoNLL-U files: (a) for
BG, HE and LT only the VMWEs on tokenized
sentences are available; (b) CS, ES, FA, MT and
RO are accompanied by CoNLL-U files but with-
out syntactic dependency annotations, and (c) the
other languages are accompanied by a fully anno-
tated CoNLL-U file. In the first tuning period, we
tested the various configurations using three pilot
languages (BG, CS, FR) representing one group
each. In the latest days of the experiments, the set
of languages tested was enlarged to all of them and
systematic tuning was performed for every lan-
guage.

4 Results

Table 2 summarizes the results of the system
performance over all the languages proposed by
the shared task. Each row of the table displays its
per-MWE and per-token F-scores for a given lan-
guage (identified by its ISO 639-1 code) for test
dataset, on top of a 5-fold cross-validation (CV)
per-MWE F-score on training dataset. The system
settings are represented as a sequence of codes de-
scribed in Table 1.

We can observe that results are very heteroge-
neous. For instance, five languages (CS, FA, FR,
PL, RO) are above 0.70 per-MWE F-score in the
case of cross-validation, while seven languages
(DE, HE, HU, IT, LT, MT, SV) are below 0.30. In
general, we can see an approximative linear cor-
relation between the number of training VMWEs
and the performance. This suggests that the size of
training datasets is not large enough as systems’
performance does not converge. We note though
that some languages like CS and TR reach rela-
tively low scores given the size of training data,
which shows the high complexity of this task for
these languages.

When comparing to the other shared task sys-
tems, we can observe that our system is the only
one that handled all 18 languages, showing the
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Corpus Shared Task CV
#VMWE MWE-based token-based MWE

Train Test F Rank delta F Rank delta F System setting
BG 1933 473 0,613 1/2 26,59 0,662 1/2 6,99 0,57 B C F I L M
CS 12852 1684 0,717 1/4 7,49 0,736 1/4 0,79 0,71 B C D E F G J K L M O
DE 2447 500 0,411 1/5 0,57 0,411 2/5 -4,36 0,28 F H I K L N P Q
EL 1518 500 0,401 1/5 8,19 0,469 1/5 3,74 0,56 E F G H J K L N
ES 748 500 0,574 1/5 13,06 0,584 1/5 9,22 0,63 B C D E F G H I J K L M
FA 2707 500 0,867 1/2 6,56 0,902 1/2 4,84 0,88 E F G J K M
FR 4462 500 0,577 1/6 6,86 0,603 2/6 -1,24 0,71 E F G H J K L M N
HE 1282 500 0,334 1/2 0,313 1/2 0,17 B C D E F L N P
HU 2999 500 0,699 2/5 -4,14 0,675 3/5 -3,34 0,24 B C D E F G H I J L Q
IT 1954 500 0,399 1/4 16,81 0,436 1/4 8,67 0,27 C F G H J K P
LT 402 100 0,284 1/2 0,253 1/2 0,086 B C D E F I K L M N O P
MT 772 500 0,144 1/4 8,03 0,163 1/4 7,42 0,081 B C D F G J K L O P
PL 3149 500 0,691 1/4 1,14 0,706 2/4 -2,18 0,7 D F G H J L
PT 3447 500 0,673 1/4 9,19 0,71 1/4 0,76 0,65 B C D E F G H I J K L M N O Q
RO 4040 500 0,753 3/4 -2,44 0,791 3/4 -4,46 0,86 B C D E F G I J K M N
SL 1787 500 0,432 1/4 6,14 0,466 1/4 0,93 0,48 D F G J L P
SV 56 236 0,304 1/4 0,04 0,307 2/4 -0,79 0,25 B C D E F G H I J K L M N O
TR 6169 501 0,554 1/4 3,64 0,553 1/4 2,43 0,58 B C D E F G H J M
AVG 0,524 0.541 0,484

Table 2: Detailed results of all experiments over all the languages. F columns provide F-score results
and delta columns display the difference in F-score (times 10−2) between our system and the best other
system of the shared task for the current evaluation/language configuration.

robustness of our approach. Moreover, evalua-
tion using per-MWE F-score (i.e. exact VMWE
matching) ranks our system first on all languages
but two (HU:2nd:, RO:3rd), displaying an aver-
age difference of 6.73 points with the best other
system in the current evaluation/language pair.
Concerning per-token scores (which allow partial
matchings), results are relatively lower: our sys-
tem is ranked first for 12 languages (out of 18),
with a positive average difference of 1.84 points
as compared with the best other system. Such
very enthusiastic results for per-MWE evaluations
seem to show that our system succeeds more in
considering a MWE as a whole. Further error
analysis is needed to explain this trait, and in par-
ticular to check the impact of the Merge transition,
which transforms sequences of elements into one.

5 Related Work

Previous approaches for VMWE identification
include the two-pass method of candidate extrac-
tion followed by binary classification (Fazly et al.,
2009; Nagy T. and Vincze, 2014).

VMWE identification has also been performed
using sequence labeling approaches, with IOB-
scheme. For instance, Diab and Bhutada (2009)
apply a sequential SVM to identify verb-noun
idiomatic combinations in English. Such ap-
proaches were used for MWE identification in

general (including verbal expressions) ranging
from contiguous expressions (Blunsom and Bald-
win, 2006) to gappy ones (Schneider et al., 2014).

A joint syntactic analysis and VMWE identifi-
cation approach using off-the-shelf parsers is an-
other interesting alternative that has shown to help
VMWE identification such as light verb construc-
tions (Eryiğit et al., 2011; Vincze et al., 2013).

6 Conclusion and future work

This article presents a simple transition-based
system devoted to VMWE identification. In par-
ticular, it offers a simple mechanism to handle dis-
continuity since foreign elements are iteratively
discarded from the stack, which is a crucial point
for VMWEs. It also has the advantage of being
robust, accurate and efficient (linear time com-
plexity). As future work, we would like to apply
more sophisticated syntax-based features, as well
as more advanced machine-learning techniques
like neural networks and word embeddings. We
also believe that a dynamic oracle could help in-
crease results to better deal with cases where the
system is unsure.
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