
Proceedings of the 6th Workshop on Balto-Slavic Natural Language Processing, pages 97–101,
Valencia, Spain, 4 April 2017. c©2017 Association for Computational Linguistics

Comparison of String Similarity Measures for Obscenity Filtering

Ekaterina Chernyak
National Research University
Higher School of Economics

Moscow, Russia
echernyak@hse.ru

Abstract

In this paper we address the problem of
filtering obscene lexis in Russian texts.
We use string similarity measures to find
words similar or identical to words from
a stop list and establish both a test collec-
tion and a baseline for the task. Our exper-
iments show that a novel string similarity
measure based on the notion of an anno-
tated suffix tree outperforms some of the
other well known measures.

1 Introduction

String similarity measures are widely used in the
majority of Natural Language Processing tasks
(Gomaa and Fahmy, 2013), such as spelling cor-
rection (Angell et al., 1983), information re-
trieval (Schütze, 2008), text preprocessing for fur-
ther classification or clustering (Islam and Inkpen,
2008), duplicate detection (Elmagarmid et al.,
2007), etc. The performance and suitability of dif-
ferent string similarity measures has already been
demonstrated in an extensive amount of previous
work. Here, we study the suitability of different
similarity measures as a tool to detect and filter
obscene lexis in Russian texts. The goal is to com-
pare the performance of different string similar-
ity measures in finding obscene words and their
derivatives. Since the Russian obscene language
follows the whole language tendencies, such as
highly inflectional morphology, the amount of ob-
scene words and their derivatives is enormous.
The words, generated by social network and social
media users, may contain not only explicitly ob-
scene words and/or their derivatives, but also their
combinations and paronyms. This makes out task
specially challenging.

Although the problem is quite different from a
single word query retrieval, because there is no

need to introduce neither document nor user rele-
vance, we nevertheless exploit IR metrics to eval-
uate the quality of results.

In this publication, we want to address the fol-
lowing research questions:

• the suitability of using string similarity mea-
sures for obscenity filtering in Russian texts,
and, if so,

• the choice of the string similarity measure for
the task.

2 Related Work

Obscenity and profanity filtering can be seen as a
part of developing content filters (such as parental
controls (Weir and Duta, 2012)), cyberbullying de-
tectors (Dadvar et al., 2013) and spam filters (Yoon
et al., 2010). Another application of obscenity fil-
tering is found in sentiment analysis, where ob-
scene words are treated as indicators of negative
(Ji et al., 2013) or sarcastic reviews (Bamman and
Smith, 2015). A more complex application of ob-
scenity filtering is identifying implicitly abusive
content (Weir and Duta, 2012). In this case not
only the usage of obscene language but also the
intentions of the author are crucial.

Unlike the current trends in Natural Language
Processing obscenity and profanity filtering does
not exploit machine learning, but is usually done
using rule-based approach. In almost all applica-
tion a stop list of words, that are considered ob-
scene is required. The task is than to find occur-
rence of stop word or their derivations.

3 Data and Annotation

The input data set is twofold. First, we used the
extensive list of the words, prohibited for url nam-
ing in Cyrillic .“рф” domain zone, further referred
as the stop list. This stop list was released by97

Russian Federal Service for Supervision of Con-
sumer Rights Protection and Human Welfare, re-
sponsible for naming in the .“рф” domain zone.
The stop list consists of slightly more than 4000
items, all of them being obscene words and their
derivatives. Second, we manually created the col-
lection of texts, rich in obscene lexis. To main-
tain style diversity, we collected texts from various
sources, starting from scientific works on Russian
obscenity etymology, poems of classical Russian
poets (Pushkin, Esenin, Mayakovsky) and post-
modern prose (Yu. Aleshkovsky, I. Guberman, V.
Sorokin) up to underground music lyrics (by bands
Leningrad, Krasnaya Plesen’) and social media
sources (Lurkmore, LJ, vk.com, etc).

Next, to minimize the amount of data to be an-
notated, we tokenized all the the text and removed
numbers and punctuation signs and created one
frequency dictionary for further annotation. We
annotated all unique words in a binary way: a
word is either an obscene word (1) or a normal
word (0). In total, there were 294916 tokens and
60868 unique words, of them 1261 were annotated
as obscene. As we were quite limited in human re-
courses, the frequency dictionary was split in sev-
eral annotation tasks in an non-overlapping way,
so that one word was considered only by a single
annotator.1 Hence no agreement measures can be
computed, although it might be an interesting di-
rection for future work, which will allow to study
whether there are any differences in the perception
of obscenity.

4 String Similarity Measures

Formally speaking, for every word t from the input
frequency dictionary we have to decide whether it
is obscene or not. To make this decision we look
for the most similar stop word s from the stop list,
i.e for s∗ = argmaxs∈stop listsim(s, t). If
sim(s∗, t) is higher than a predefined threshold,
we consider t obscene.

4.1 Coincidence

For each word in the frequency dictionary, we
check whether the word itself or the lemma of the
word of the stem of the word are present in the stop
list. To lemmatize words we used two of the avail-
able Russian lemmatizers, mystem (Segalovich,
2003), developed by Yandex, and pymoprhy2 (Ko-

1The annotated frequency dictionary is available at
https://github.com/echernyak/filter

robov, 2015), which is an open source project. We
also stemmed all the words and the stop words us-
ing Porter stemmer (Porter, 2001) and repeated the
same procedure for stems: for each word in the
frequency dictionary we checked, whether its stem
coincides with one of the stop word stems.

4.2 Jaccard Coefficient
Jaccard coefficient is a well-known set-theoretical
similarity measure. Given to sets, A and B, their
similarity sim is measured as |A∩B|

|A∪B| . To apply
Jaccard coefficient to the measure similarity be-
tween two strings, we need to split these string
in character n-grams, i.e., sequences of n conse-
quent letters. For example, the Jaccard coefficient
for the string “mining” and “dining” based on 3-
grams is equal to 3

5 and based on 4-grams – to 2
3 .

In our study we experiment with different values
of n from 3 to 6.

4.3 Annotated Suffix Tree
Annotated suffix tree (AST) is a data structure,
used to calculate and store all frequencies of all
fragments of an input string collection. First in-
troduced for spam filtering (Pampapathi et al.,
2006), it was effectively used in a variety of NLP
tasks, such as text summarization (Yakovlev and
Chernyak, 2016), fuzzy full text search (Frolov,
2016), etc. The AST is an extended version of
the suffix tree, which is used for a variety of NLP
tasks too (Ravichandran and Hovy, 2002; Zamir
and Etzioni, 1998).

To construct an AST for a single string, we need
first to split this string in suffixes si = s[i :]. Next
we take the first suffix s1 and create a chain of
nodes in an empty AST with frequencies equal to
unity. For all next suffixes we do the following:
we check, if there is a path in the AST, which coin-
cides with the beginning of the current suffix, i.e.,
so-called match. If there is such a match for the
current suffix in the AST, we increase the frequen-
cies of the matched nodes by unity and add the
not matched characters to end of the match, if any.
Same way can construct a generalized AST for the
collection of input strings. Fig. 1 shows and exam-
ple of a generalized AST for string “mining” and
“dining”.

We adopt a scoring procedure from (Pampap-
athi et al., 2006) and use it as a similarity measure.
Briefly, the scoring procedure computes average
frequency of the input string in the AST. Given
again a string s, we split it in the suffixes si. The98

Figure 1: The generalized AST for string “min-
ing” and “dining”.

first step of scoring is to match and score each suf-
fix individually:

score(match(si, AST)) =
∑

n∈match

f(n)
f(p(n))

|match|
where f(n) is the frequency of the node n and
f(p(n)) is its parent frequency. Next, we sum
up the individual scores and weight them by the
length of the string:

SC(s, AST) =
∑

si
(score(match(si,AST)))

|s| .
The final SC function may serve as string similar-
ity function.

For our task we construct one generalised AST
from the stop list and match and score each word
to this AST. Based on the achieved values we de-
cide, is the word obscene or not.

4.4 Edit Distance
Edit distance, also known as Levenshtein distance,
stands for the number operations needed to trans-
form a string s1 into a string s2, given that they
are generated from the common alphabet Σ. Usu-
ally the possible operations are limited to inser-
tion, deletion and substitution. For example, the
edit distance between strings “mining” and “din-
ing” is equal to 1, since only one substitution op-
eration is required to transform one string into an-
other.

5 Evaluation

Note, that for different similarity measures both
the range and the threshold differ. For example,

time complexity
word, lemma or stem
coincidence

O(n ∗ m) to check symbol-
wise coincidence with each
stop word

AST-based similarity
measure

O(m2) to check suffix-wise co-
incidence with an AST build for
the stop list

Jaccard similarity mea-
sure

O(n2 ∗m) to check all possible
pairs of a word a and stop word

edit distance O(n2 ∗m) to check all possible
pairs of a word a and stop word

Table 1: Time complexity of exploiting different
similarity measures.

the word, lemma or stem coincidence coincidence
results only in two values, namely, 0 and 1. Jac-
card and AST-based similarity measures range be-
tween [0, 1], while the edit distance has no upper
bound. Hence, the thresholds are defined in in var-
ious ways: the lemma or stem coincidence should
be equal to unity to consider the word obscene. We
tested Jaccard similarity measure with the thresh-
old equal to 0.8, the edit distance with threshold
equal to 5 and 8. For the AST-based similarity
measure the value of 0.2 has proven to be a more
or less meaningful threshold, since it is around 1/3
of the maximal observed similarity value (Pam-
papathi et al., 2006; Frolov, 2016; Yakovlev and
Chernyak, 2016).

After we get a set of candidate obscene words
using one of the similarity measures, we can eval-
uate it by such standard measures, as recall, preci-
sion, F -measure and accuracy.

Of these four measures we would consider re-
call the most important one, since a good filter
should have as few false negatives as possible and
the number of false positives is not that crucial in
our task.

The last but not least feature for comparison of
string similarity measure in task of obscenity fil-
tering is the time complexity of computing simi-
larity values. Since the obscenity filtering is likely
to be done online, the method used should be as
fast as possible. Let us list the time complexity
of exploiting different similarity measures using
the following O – notation and the following nota-
tions: let n be the number of stop words, m – the
maximal length of a stop word, m � n, see Ta-
ble 1.

6 Results and Discussion

Final results are presented in Table 2 below. If we
take precision into account, obviously the best re-99

sults are achieved by using word coincidence, fol-
lowed by lemma and stem coincidence. Altough
there is no drastic difference between using py-
morphy2 or mystem lemmatizers, the latter gives
better results than the former. Stemming works
slightly worse, than lemmatisation. The precision
of using Jaccard coefficient is almost comparable
to the one, achieved by word coincidence, with re-
call being slightly higher. The precision of AST-
based similarity measure and edit distance is sig-
nificantly lower than everything else.

If we consider recall now, the best results are
achieved by using edit distance, although the pre-
cision of this method is almost close, which does
make the results unreliable. The edit distance
is followed by AST-based similarity, which over-
comes the stem coincidence by almost 20%.

To evaluate the over-all performance we may
use accuracy or F-measure. From this point of
view, the highest results are achieved by using
stem or lemma coincidence, followed by AST-
based similarity and Jaccard coefficient.

Let us analyze errors (i.e. false positive and
false negative words). During our experiments we
noticed the following possible errors:

1. very short words, such as “уг” [abbreviation
for “depressing shit”] or “ссы” [“to piss”] re-
sult usually in false negatives for the AST-
based similarity;

2. long or event compound words, such as “гов-
нофотограф” [“bad photographer”], “ско-
пипиздить” [“to copy paste illegally”] are
tough for all measures and result in false neg-
atives. The only measure that is capable to
discover such words is the AST-based simi-
larity measure due to it suffix nature;

3. the AST-based similarity measure usually
considers verbs as obscene words, which in-
creases the number of false positives. For
example, all verbs, that end with “ать” [ver-
bal ending “at’́’] tend to be considered as ob-
scene;

4. the Jaccard coefficient suffers from
paronyms, such as “эксперименты”
[“experiments”] – “экскременты” [“excre-
ment”], which increase the number of false
positives;

5. the pure results of edit distance are caused by
the substitution of wrong symbols. For ex-

Pr R acc F2

word coincidence 0.7288 0.1363 0.9810 0.2297
lemma coincidence
pymorphy2 0.6492 0.2466 0.9815 0.3574
mystem3 0.6807 0.3195 0.9827 0.4349
stem coincidence 0.6113 0.4028 0.9822 0.4856
AST 0.1578 0.6201 0.9233 0.2516
Jaccard similarity measure, 0.8
3-grams 0.6799 0.1633 0.9810 0.2634
4-grams 0.7126 0.1475 0.9810 0.2430
5-grams 0.7168 0.1284 0.9808 0.2179
6-grams 0.6989 0.0975 0.9803 0.1711
edit distance
d < 8 0.0234 0.9127 0.8086 0.0456
d < 5 0.0209 0.9825 0.9629 0.0409

Table 2: Comparison of results.

ample, the word “манере” [“manner”] has
edit distance equal to 3 to the word “засере”
[“young punk”], although it is not obscene by
now means.

To cope with some of the errors, we might ex-
ploit additional POS filtering and preprocessing as
well as some compound splitting algorithms. Any-
way it remains an open question whether the edit
distance is applicable for the task at all.

7 Conclusions

In this project we establish both a text collection
and a baseline for both obscene filtering. We have
so far achieved quite moderate results, which nev-
ertheless allow us to make some preliminary con-
clusions and think of the future directions for im-
provement.

1. Straightforward similarity measures such as
word, lemma or stem coincidence do not
cope well with the problem of obscene fil-
tering, no matter what lemmatisation tool or
stemming algorithm is used;

2. If we consider recall as the main quality mea-
sure, the best results are achieved either AST-
based similarity measure or Jaccard coeffi-
cient on character n-grams;

3. The edit distance is of too general nature to
be applicable for the problem;

4. If the filtering should be conducted online,
the AST similarity measure is the best one in
terms of time complexity of calculations.

Our main future directions are, first of all, im-
provements based on conducted error analysis,100

and, secondly, developing a filter for obscene mul-
tiword expressions, such as послать на хуй” [“to
fuck off”] and euphemisms, such as послать на
три буквы” [“to fuck off”]. The filtering of
obscene multiword expressions might be seen as
a problem analogous to semantic role labelling,
where the obscene word is the main one and the
rest are its arguments. The filtering of euphemisms
looks much more complicated to us and may re-
quire using compositional semantics tools.

Acknowledgements

This work was supported by RFBR grants #16-01-
00583 and #16-29-12982 and was prepared within
the framework of the Basic Research Program at
the National Research University Higher School
of Economics (HSE) and supported within the
framework of a subsidy by the Russian Academic
Excellence Project “5-100”.

References
Richard C. Angell, George E. Freund, and Peter Wil-

lett. 1983. Automatic spelling correction using a
trigram similarity measure. Information Processing
& Management, 19(4):255–261.

David Bamman and Noah A. Smith. 2015. Contextual-
ized sarcasm detection on Twitter. In Ninth Interna-
tional AAAI Conference on Web and Social Media.

Maral Dadvar, Dolf Trieschnigg, Roeland Ordelman,
and Franciska de Jong. 2013. Improving cyberbul-
lying detection with user context. In European Con-
ference on Information Retrieval, pages 693–696.
Springer.

Ahmed K. Elmagarmid, Panagiotis G. Ipeirotis, and
Vassilios S. Verykios. 2007. Duplicate record de-
tection: A survey. IEEE Transactions on knowledge
and data engineering, 19(1).

Dmitry Frolov. 2016. Using annotated suffix trees
for fuzzy full text search. In Communications
in Computer and Information Science, Information
Retrieval, 10th Russian Summer School, RuSSIR.
Springer.

Wael H. Gomaa and Aly A. Fahmy. 2013. A survey of
text similarity approaches. International Journal of
Computer Applications, 68(13).

Aminul Islam and Diana Inkpen. 2008. Semantic text
similarity using corpus-based word similarity and
string similarity. ACM Transactions on Knowledge
Discovery from Data (TKDD), 2(2):10.

Xiang Ji, Soon Ae Chun, and James Geller. 2013.
Monitoring public health concerns using twitter sen-
timent classifications. In Healthcare Informatics

(ICHI), 2013 IEEE International Conference on,
pages 335–344. IEEE.

Mikhail Korobov. 2015. Morphological analyzer and
generator for Russian and Ukrainian languages. In
International Conference on Analysis of Images, So-
cial Networks and Texts, pages 320–332. Springer.

Rajesh Pampapathi, Boris Mirkin, and Mark Levene.
2006. A suffix tree approach to anti-spam email fil-
tering. Machine Learning, 65(1):309–338.

Martin F. Porter. 2001. Snowball: A language for
stemming algorithms.

Deepak Ravichandran and Eduard Hovy. 2002. Learn-
ing surface text patterns for a question answering
system. In Proceedings of the 40th annual meeting
on association for computational linguistics, pages
41–47. Association for Computational Linguistics.

Hinrich Schütze. 2008. Introduction to information
retrieval. In Proceedings of the international com-
munication of association for computing machinery
conference.

Ilya Segalovich. 2003. A fast morphological algorithm
with unknown word guessing induced by a dictio-
nary for a web search engine. In MLMTA, pages
273–280. Citeseer.

George R.S. Weir and Ana-Maria Duta. 2012. Strate-
gies for neutralising sexually explicit language. In
Cybercrime and Trustworthy Computing Workshop
(CTC), 2012 Third, pages 66–74. IEEE.

Maxim Yakovlev and Ekaterina Chernyak. 2016. Us-
ing annotated suffix tree suffix tree similarity simi-
larity measure for text summarisation. In Analysis of
Large and Complex Data, pages 103–112. Springer.

Taijin Yoon, Sun-Young Park, and Hwan-Gue Cho.
2010. A smart filtering system for newly coined pro-
fanities by using approximate string alignment. In
Computer and Information Technology (CIT), 2010
IEEE 10th International Conference on, pages 643–
650. IEEE.

Oren Zamir and Oren Etzioni. 1998. Web document
clustering: A feasibility demonstration. In Proceed-
ings of the 21st annual international ACM SIGIR
conference on Research and development in infor-
mation retrieval, pages 46–54. ACM.

101

