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Abstract

The automated processing of Arabic dialects is
challenging due to the lack of spelling standards
and the scarcity of annotated data and resources
in general. Segmentation of words into their con-
stituent tokens is an important processing step for
natural language processing. In this paper, we
show how a segmenter can be trained on only 350
annotated tweets using neural networks without
any normalization or reliance on lexical features
or linguistic resources. We deal with segmenta-
tion as a sequence labeling problem at the charac-
ter level. We show experimentally that our model
can rival state-of-the-art methods that heavily de-
pend on additional resources.

1 Introduction

The Arabic language has various dialects and vari-
ants that exist in a continuous spectrum. This vari-
ation is a result of multiple morpho-syntactic pro-
cesses of simplification and mutation, as well as
coinage and borrowing of new words in addition
to semantic shifts of standard lexical items. Fur-
thermore, there was a considerable effect of the
interweave between the standard Arabic language
that spread throughout the Middle East and North
Africa and the indigenous languages in different
countries as well as neighboring languages. With
the passage of time and the juxtaposition of cul-
tures, dialects and variants of Arabic evolved and
diverged. Among the varieties of Arabic is so-
called Modern Standard Arabic (MSA) which is

the lingua franca of the Arab world, and is typi-
cally used in written and formal communications.
On the other hand, Arabic dialects, such as Egyp-
tian, Moroccan and Levantine, are usually spoken
and used in informal communications.

The advent of the social networks and the spread
of smart phones, yielded the need for dialect-
aware smart systems and motivated the research
in Dialectal Arabic such as dialectal Arabic iden-
tification for both text (Eldesouki et al., 2016)
and speech (Khurana et al., 2016), morphological
analysis (Habash et al., 2013) and machine trans-
lation (Sennrich et al., 2016; Sajjad et al., 2013).

Due to the rich morphology in Arabic and its
dialects, word segmentation is one of the most im-
portant processing steps. Word segmentation is
considered an integral part for many higher Arabic
NLP tasks such as part-of-speech tagging, parsing
and machine translation. For example, the Egyp-
tian word ��AîD.�JºÓð “wmktbhA$” meaning: “and
he didn’t write it”) includes four clitics surround-
ing the the verb (stem) “ktb”, and is rendered after
segmentation as “w+m+ktb+hA+$”. The clitics in
this word are the coordinate conjunction “w”, the
negation prefix “m”, the object pronoun “hA”, and
the post negative suffix “$”.

In this paper, we present a dialectal Egyp-
tian segmentater that utilizes Bidirectional Long-
Short-Term-Memory (BiLSTM) that is trained on
limited dialectal data. The approach was moti-
vated by the scarcity of dialectal tools and re-
sources. The main contribution of this paper is that
we build a segmenter of dialectal Egyptian using
limited data without the need for specialized lexi-
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cal resources or deep linguistic knowledge that ri-
vals state-of-the-art tools.

Challenges of Dialectal Arabic

Dialectal Arabic (DA) shares many challenges
with MSA, as DA inherits the same nature of being
a Semitic language with complex templatic deriva-
tional morphology. As in MSA, most of the nouns
and verbs in Arabic dialects are typically derived
from a determined set of roots by applying tem-
plates to the roots to generate stems. Such tem-
plates may carry information that indicate mor-
phological features of words such POS tag, gen-
der, and number. Further, stems may accept pre-
fixes and/or suffixes to form words which turn
DA into highly inflected language. Prefixes in-
clude coordinating conjunctions, determiner, par-
ticles, and prepositions, and suffixes include at-
tached pronouns and gender and number markers.
This results in a large number of words (or surface
forms) and in turn a high-level of sparseness and
increased number of unseen words during testing.

In addition to the shared challenges, DA has its
own peculiarities, which can be summarized as
follows:

• Lack of standard orthography. Many of the
words in DA do not follow a standard ortho-
graphic system (Habash et al., 2012).

• Many words do not overlap with MSA as re-
sult of language borrowing from other lan-
guages (Ibrahim, 2006), such as éJ
 	̄ A¿ kAfiyh

“cafe” and ñ�KA�K tAtuw “tattoo”, or coinage,

such as the negative particles ��Ó mi$ “not”

and ��CK. balA$ “do not”. Code switching is
also very common in Arabic dialects (Samih
et al., 2016).

• Merging multiple words together by concate-
nating and dropping letters such as the word

��AêÊj. J
J.Ó mbyjlhA$ (he did not go to her),
which is a concatenation of “mA byjy lhA$”.

• Some affixes are altered in form from their
MSA counterparts, such as the feminine sec-
ond person pronoun ¼ k→ ú
» ky and the sec-

ond person plural pronoun Õç�' tm→ ñ�K tw.

• Some morphological patterns that do not ex-
ist in MSA, such as the passive pattern Aito-
faEal, such as Qå�º�K@ Aitokasar “it broke”.

• Introduction of new particles, such is the pro-
gressive H. b meaning ‘is doing’ and the post

negative suffix �� $, which behaves like the
French “ne-pas” negation construct.

• Letter substitution and consonant mutation.
For example, in dialectal Egyptian, the inter-
dental sound of the letter �H v is often sub-

stituted by either �H t or � s as in Q�
�J» kvyr

“much”→ Q�
�J» ktyr and the glottal stop is re-

duced to a glide, such as 	Q
KAg. jA}iz “possible”

→ 	QK
Ag. jAyiz. Such features is deeply stud-
ied in phonology under lenition, softening of
a consonant, or fortition, hardening of a con-
sonant.

• Vowel elongation, such as Ég. @P rAjil “man”

from Ég. P rajul, and vowel shortening, such

as AÖß
X dayomA “always” from AÖß
@X dAyomA.

• The use of masculine plural or singular noun
forms instead dual and feminine plural, drop-
ping some articles and preposition in some
syntactic constructs, and using only one form
of noun and verb suffixes such as 	áK
 yn in-

stead of 	àð wn and @ð wA instead of 	àð wn
respectively.

• In addition, there are the regular dis-
course features in informal texts, such as
the use of emoticons and character repe-
tition for emphasis, e.g. úÍððððððñ«X@
AdEwwwwwwwliy “pray for me”.

2 Related Work

Work on dialectal Arabic is fairly new compared
to MSA. A number of research projects were de-
voted to dialect identification (Biadsy et al., 2009;
Zbib et al., 2012; Zaidan and Callison-Burch,
2014). There are five major dialects including
Egyptian, Gulf, Iraqi, Levantine and Maghribi.
Few resources for these dialects are available such
as the CALLHOME Egyptian Arabic Transcripts
(LDC97T19), which was made available for re-
search as early as 1997. Newly developed re-
sources include the corpus developed by Bouamor
et al. (2014), which contains 2,000 parallel sen-
tences in multiple dialects and MSA as well as En-
glish translation.
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For segmentation, Yao and Huang (2016) success-
fully used a bi-directional LSTM model for seg-
menting Chinese text. In this paper, we build
on their work and extend it in two ways, namely
combining bi-LSTM with CRF and applying on
Arabic, which is an alphabetic language. Mo-
hamed et al. (2012) built a segmenter based on
memory-based learning. The segmenter has been
trained on a small corpus of Egyptian Arabic com-
prising 320 comments containing 20,022 words
from www.masrawy.com that were segmented
and annotated by two native speakers. They re-
ported a 91.90% accuracy on the task of segmen-
tation. MADA-ARZ (Habash et al., 2013) is an
Egyptian Arabic extension of the Morphological
Analysis and Disambiguation of Arabic (MADA).
They trained and evaluated their system on both
Penn Arabic Treebank (PATB) (parts 1-3) and the
Egyptian Arabic Treebank (parts 1-5) (Maamouri
et al., 2014) and they reported 97.5% accuracy.
MARAMIRA1 (Pasha et al., 2014) is a new ver-
sion of MADA and includes as well the function-
ality of MADA-ARZ which will be used in this
paper for comparison. Monroe et al. (2014) used
a single dialect-independent model for segment-
ing all Arabic dialects including MSA. They argue
that their segmenter is better than other segmenters
that use sophisticated linguistic analysis. They
evaluated their model on three corpora, namely
parts 1-3 of the Penn Arabic Treebank (PATB),
Broadcast News Arabic Treebank (BN), and parts
1-8 of the BOLT Phase 1 Egyptian Arabic Tree-
bank (ARZ) reporting an F1 score of 95.13%.

3 Arabic Segmentation Model

In this section, we will provide a brief description
of LSTM, and introduce the different components
of our Arabic segmentation model. For all our
work, we used the Keras toolkit (Chollet, 2015).
The architecture of our model, shown in Figure 2
is similar to Ma and Hovy (2016), Huang et al.
(2015), and Collobert et al. (2011)

3.1 Long Short-term Memory

A recurrent neural network (RNN) belongs to a
family of neural networks suited for modeling se-
quential data. Given an input sequence x =
(x1, ..., xn), an RNN computes the output vector
yt of each word xt by iterating the following equa-
tions from t = 1 to n:

1MADAMIRA release 20160516 2.1

ht = f(Wxhxt +Whhht−1 + bh)
yt = Whyht + by

where ht is the hidden states vector, W de-
notes weight matrix, b denotes bias vector and
f is the activation function of the hidden layer.
Theoretically RNN can learn long distance de-
pendencies, still in practice they fail due the van-
ishing/exploding gradient (Bengio et al., 1994).
To solve this problem, Hochreiter and Schmidhu-
ber (1997) introduced the long short-term mem-
ory RNN (LSTM). The idea consists in augment-
ing the RNN with memory cells to overcome diffi-
culties with training and efficiently cope with long
distance dependencies. The output of the LSTM
hidden layer ht given input xt is computed via
the following intermediate calculations: (Graves,
2013):

it = σ(Wxixt +Whiht−1 +Wcict−1 + bi)
ft = σ(Wxfxt +Whfht−1 +Wcfct−1 + bf )
ct = ftct−1 + it tanh(Wxcxt +Whcht−1 + bc)
ot = σ(Wxoxt +Whoht−1 +Wcoct + bo)
ht = ot tanh(ct)

where σ is the logistic sigmoid function, and i,
f , o and c are respectively the input gate, forget
gate, output gate and cell activation vectors. More
interpretation about this architecture can be found
in (Lipton et al., 2015). Figure 1 illustrates a sin-
gle LSTM memory cell (Graves and Schmidhuber,
2005)

Figure 1: A Long Short-Term Memory Cell.

3.2 Bi-directional LSTM
Bi-LSTM networks (Schuster and Paliwal, 1997)
are extensions to the single LSTM networks. They
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are capable of learning long-term dependencies
and maintain contextual features from the past
states and future states. As shown in Figure 2, they
comprise two separate hidden layers that feed for-
wards to the same output layer. A BiLSTM cal-
culates the forward hidden sequence

−→
h , the back-

ward hidden sequence
←−
h and the output sequence

y by iterating over the following equations:
−→
ht = σ(W

x
−→
h
xt +W−→

h
−→
h

−→
h t−1 + b−→

h
)

←−
ht = σ(W

x
←−
h
xt +W←−

h
←−
h

←−
h t−1 + b←−

h
)

yt = W−→
hy

−→
ht +W←−

hy

←−
ht + by

More interpretations about these formulas are
found in Graves et al. (2013a).

3.3 Conditional Random Fields (CRF)
Over the last recent years, BiLSTMs have
achieved many ground-breaking results in many
NLP tasks because of their ability to cope with
long distance dependencies and exploit contextual
features from the past and future states. Still when
they are used for some specific sequence classifi-
cation tasks, (such as segmentation and named en-
tity detection), where there is a strict dependence
between the output labels, they fail to generalize
perfectly. During the training phase of the BiL-
STM networks, the resulting probability distribu-
tion of each time step is independent from each
other. To overcome the independence assumptions
imposed by the BiLSTM and exploit these kind
of labeling constraints in our Arabic segmentation
system, we model label sequence logic jointly us-
ing Conditional Random Fields (CRF) (Lafferty
et al., 2001). CRF, a sequence labeling algorithm,
predicts labels for a whole sequence rather than
for the parts in isolation as shown in Equation 1.
Here, s1 to sm represent the labels of tokens x1 to
xm respectively, where m is the number of tokens
in a given sequence. After we have this probabil-
ity value for every possible combination of labels,
the actual sequence of labels for this set of tokens
will be the one with the highest probability.

p(s1...sm|x1...xm) (1)

p(~s|~x; ~w) =
exp(~w.~Φ(~x,~s))∑

~s′εSm exp(~w.~Φ(~x,~s′))
(2)

Equation 2 shows the formula for calculating the
probability value from Equation 1. Here, S is the

set of labels. In our case S ={B, M, E, S, WB},
whereB is the beginning of a token,M is the mid-
dle of a token, E is the end of a token, S is a single
character token, and WB is the word boundary. ~w
is the weight vector for weighting the feature vec-
tor ~Φ. Training and decoding are performed by the
Viterbi algorithm.

Note that replacing the softmax with CRF at the
output layer in neural networks has proved to be
very fruitful in many sequence labeling tasks (Ma
and Hovy, 2016; Huang et al., 2015; Lample et al.,
2016; Samih et al., 2016)

3.4 Pre-trained characters embeddings

A very important element of the recent success of
many NLP applications, is the use of character-
level representations in deep neural networks.
This has shown to be effective for numerous NLP
tasks (Collobert et al., 2011; dos Santos et al.,
2015) as it can capture word morphology and re-
duce out-of-vocabulary. This approach has also
been especially useful for handling languages with
rich morphology and large character sets (Kim et
al., 2016). We use pre-trained character embed-
dings to initialize our look-up table. Characters
with no pre-trained embeddings are randomly ini-
tialized with uniformly sampled embeddings. To
use these embeddings in our model, we simply re-
place the one hot encoding character representa-
tion with its corresponding 200-dimensional vec-
tor. Table 1 shows the statistics of data we used to
train our character embeddings.

Genre Tokens
Facebook posts 8,241,244
Tweets 2,813,016
News comments 95,241,480
MSA news texts 276,965,735
total 383,261,475

Table 1: character embeddings training data statis-
tics

3.5 BiLSTM-CRF for Arabic Segmentation

In our model we consider Arabic segmentation as
character-based sequence classification problem.
Each character is labeled as one of the five la-
bels B,M,E, S,WB that designate the segmen-
tation decision boundary. B,M,E,WB represent
Beginning, Middle, End of a multi-character seg-
ment, Single character segment, and Word Bound-
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Figure 2: Architecture of our proposed neural net-
work Arabic segmentation model applied to an ex-
ample word. Here the model takes the word qlbh,
“his heart” as its current input and predicts its cor-
rect segmentation. The first layer performs a look
up of the characters embedding and stacks them to
build a matrix. This latter is then used as the input
to the Bi-directional LSTM. On the last layer, an
affine transformation function followed by a CRF
computes the probability distribution over all la-
bels

ary respectively.
The architecture of our segmentation model,

shown in Figure 2, is straightforward. It comprises
the following three layers:

• Input layer: it contains character embeddings.

• Hidden layer: BiLSTM maps character repre-
sentations to hidden sequences.

• Output layer: CRF computes the probability
distribution over all labels.

At the input layer a look-up table is initialized
by pre-trained embeddings mapping each charac-
ter in the input to d-dimensional vector. At the
hidden layer, the output from the character embed-
dings is used as the input to the BiLSTM layer to
obtain fixed-dimensional representations for each
character. At the output layer, a CRF is applied
over the hidden representation of the BiLSTM to
obtain the probability distribution over all the la-
bels. Training is performed using stochastic gradi-
ent (SGD) descent with momentum 0.9 and batch

size 50, optimizing the cross entropy objective
function.

3.6 Regularization

Dropout Due to the relatively small size the
training data set and development data set, over-
fitting poses a considerable challenge for our Di-
alectal Arabic segmentation system. To make sure
that our model learns significant representations,
we resort to dropout (Hinton et al., 2012) to miti-
gate overfitting. The basic idea of dropout consists
in randomly omitting a certain percentage of the
neurons in each hidden layer for each presentation
of the samples during training. This encourages
each neuron to depend less on other neurons to
learn the right segmentation decision boundaries.
We apply dropout masks to the character embed-
ding layer before inputting to the BiLSTM and to
its output vector. In our experiments we find that
dropout with a rate fixed at 0.5 decreases overfit-
ting and improves the overall performance of our
system.

Early Stopping We also employ early stopping
(Caruana et al., 2000; Graves et al., 2013b) to mit-
igate overfitting by monitoring the model’s perfor-
mance on development set.

4 Dataset

We used the dataset described in (Darwish et al.,
2014). The data was used in a dialect identifica-
tion task to distinguish between dialectal Egyptian
and MSA. It contains 350 tweets with more than
8,000 words including 3,000 unique words writ-
ten in Egyptian dialect. The tweets have much di-
alectal content covering most of dialectal Egyptian
phonological, morphological, and syntactic phe-
nomena. It also includes Twitter-specific aspects
of the text, such as #hashtags, @mentions, emoti-
cons and URLs.

We manually annotated each word in this corpus
to provide: CODA-compliant writing (Habash et
al., 2012), segmentation, stem, lemma, and POS,
also the corresponding MSA word, MSA segmen-
tation, and MSA POS. We make the dataset2 avail-
able to researchers to reproduce the results and
help in other tasks such as CODA’fication of di-
alectal text, dialectal POS tagging and dialect to
MSA conversion. Table 2 shows an annotation ex-

2Dataset is available at http://alt.qcri.org/
resources/da_resources
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ample of the word ½Ëñ�®J
K. “byqwlk” (he is saying
to you).

Field Annotation
Orig. word ½Ëñ�®J
K. “byqwlk”

CODA ½Ë Èñ�®J
K. “byqwl lk”

Segmentation ¼+È Èñ�®K
+H. “b+yqwl l+k”

POS PROG_PART+V PREP+PRON
Stem È Èñ�®K
 “yqwl l”

lemma È ÈA�̄ “qAl l”

MSA ½Ë Èñ�®K
 “yqwl lk”

MSA Segm. ¼+È Èñ�®K
“yqwl l+k”

MSA POS V PREP+PRON

Table 2: Annotation Example

For the purpose of this paper, we skip
CODA’fication, and conduct segmentation on the
original words to increase the robustness of the
system. Therefore, the segmentation of the exam-
ple in Table 2 is given as½+Ë+ñ�®J
+K. b+yqw+l+k.
We need also to note that, by design, the perfective
prefixes are not separated from verbs in the current
work.

5 Experiments and Results

We split the data described in section 4 into 75
sentences for testing, 75 for development and the
remaining 200 for training.

The concept We followed in LSTM sequence
labeling is that segmentation is one-to-one map-
ping at the character level where each character
is annotated as either beginning a segment (B),
continues a previous segment (M), ends a segment
(E), or is a segment by itself (S). After the labeling
is complete we merge the characters and labels
together, for example @ñËñ�®J
K. byqwlwA is labeled
as “SBMMEBE”, which means that the word is
segmented as b+yqwl+wA. We compar results of
our two LSTM models (BiLSTM and BiLSTM-
CRF) with Farasa (Abdelali et al., 2016), an open
source segementer for MSA3, and MADAMIRA
for Egyptian dialect. Table 3 shows accuracy for
Farasa, MADAMIRA, and both of our models.

The results show that for this small test-
set BiLSTM-CRF (92.65%) performs better than

3Available for download from:
http://alt.qcri.org/tools/farasa/

System Accuracy
Farasa (Baseline4) 88.34 %
MADAMIRA 92.47 %
BiLSTM 86.27 %
BiLSTM-CRF 92.65 %

Table 3: F1 and accuracy results on the test
data. We consider Farasa our baseline. This table
compares between Farasa, BiLSTM models with
MADAMIRA

MADAMIRA (92.47%) by only 0.18% which is
not statistically significant. The advantage of our
system is that, unlike MADAMIRA which relies
on a hand-crafted lexicon, our system generalizes
well on unseen data. To illustrate this point, the
test set has 1,449 words, and 586 of them (40%)
are not seen in the training set. This shows how
well the system is robust with OOV words.

6 Analysis

MADAMIRA error analysis:
When analyzing the errors (109 errors) in

MADAMIRA, we found that they are most likely
due to lexical coverage or the performance of mor-
phological processing and variability.

• OOV words: e.g. �ËQK
@ñË@ AlwAyrls “the

wireless”, h. A�J ��AêË @ AlHA$tAj “the hashtag”.

• Spelling variation: e.g. ù¢ 	ªË@ AlgTY “the

cover”, úÎë


B l>hly “to Ahly”.

• Morphological inflection (imperative): e.g.
ø
 Y �� $dy “pull”, @ñ�̄ñ 	̄ fwqwA “wake up”.

• Segmentation ambiguity: e.g. éJ
Ë lyh meaning

“why” or “to him”, A 	JË AÓ mAlnA meaning “our
money” or “what we have”.

• Combinations not known to MADAMIRA:
e.g. ��AëñÊ 	®�®�JÓ mtqflwhA$ “don’t close it”,

@ñºÊ 	®�ð


@ >wSflkwA “I describe to you”.

• Different annotation convention: e.g. 	àA ��«
E$An “because” and èXPAî 	DË @ AlnhArdh “to-
day” are one token in our gold data but ana-
lyzed as two tokens in MADAMIRA.
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BiLSTIM Error analysis:
The errors in this system (199 errors) are

broadly classified into three categories:

• Confusing prefixes and suffixes with stem’s
constituent letters: e.g. é 	®J
¢Ë lTyfh “nice”,

ù
 ÖÏA« EAlmy “international”.

• Not identifying segments: e.g. H. PAK
 yArb “O

my Lord”, ú
×@Y�̄ qd Amy “in front of me”.

• The majority of errors (108 instances) are bad
sequences coming from invalid label com-
bination, like having an E or M without a
preceding B, or M without a following E. It
seems that this label sequence logic is not yet
fully absorbed by the system, maybe due to
the small amount of training data.

BiLSTIM-CRF Error analysis:
This model successfully avoids the invalid

sequence combinations found in BiLSTM. As
pointed out by (Lample et al., 2016), BiL-
STM makes independent classification decisions
which does not work well when there are inter-
dependence across labels (e.g., E or M must be
preceded by B, and M must be followed by E).
Segmentation is one such task, where indepen-
dence assumption is wrong, and this is why CRF
works better than the softmax in modeling tagging
decisions jointly, correctly capturing the sequence
logic.

The number of errors in BiLSTIM-CRF is re-
duced to 101 and the number of label sequences
not found in the gold standard is reduced to just
14, yet with all of them obeying the valid sequence
rules. The remaining errors are different from the
errors generated by BiLSTM, but they are simi-
lar in that the mistokenization happens due to the
system’s inability to decide whether a substring
(which out of context can be a valid token) is an in-
dependent token or part of a word, e.g. Q�
	m�'. bikhir

“is well’, ú
æ
��AÓ mA$iy “OK”.

7 Conclusion

Using BiLSTM-CRF, we show that we can build
an effective segmenter using limited dialectal
Egyptian Arabic labeled data without relying
on lexicons, morphological analyzer or linguis-
tic knowledge. The CRF optimizer for LSTM
successfully captures label sequence logic and

avoids invalid label combinations. The results ob-
tained are comparable to a state-of-the-art system,
namely MADAMIRA, or even better. Admittedly,
the small test set used in this work might not al-
low us to generalize the claim, and we plan to
run more expansive tests. Nonetheless, given that
there are no standard dataset available for this task,
objective comparison of different systems remains
elusive. A number of improvements can possi-
bly enhance the accuracy of our system further,
including exploiting large resources available for
MSA. Despite the differences dialects and MSA,
there is significant lexical overlap between MSA
and dialects. This is demonstrated by the accuracy
of Farasa which was built to handle MSA exclu-
sively, yet achieving 88.34% accuracy on the di-
alectal data. Thus, combining MSA and dialectal
data in training or performing domain adaptation
stands to enhance segmentation. Additionally, we
plan to carry these achievements further to explore
other dialects.
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