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Abstract

In this paper we investigate the cross-
domain performance of sentiment analysis
systems. For this purpose we train a con-
volutional neural network (CNN) on data
from different domains and evaluate its
performance on other domains. Further-
more, we evaluate the usefulness of com-
bining a large amount of different smaller
annotated corpora to a large corpus. Our
results show that more sophisticated ap-
proaches are required to train a system that
works equally well on various domains.

1 Introduction

Most work regarding sentiment analysis focuses
on training and testing a sentiment classifier on
data of the same domain. For example a new clas-
sifier is trained on tweets and tested on tweets.
However, in real-world scenarios the data might
originate from different sources and domains. Of-
ten it is the case that sentiment analysis is per-
formed on a domain for which there is no training
data available. Instead of investing large amounts
of money to create such a corpus it would make
more sense to use an existing classifier. How-
ever, it is not always clear how well the existing
classifier generalizes on the target domain. Al-
though, it is obvious that the performance will be
affected negatively, the magnitude is not known.
This missing information is often useful for as-
sessing the need of generating a new classifier for
a given domain which is very costly.

Thus, our work is driven by the question of how
useful sentiment classifiers are if we evaluate them
with datasets from unseen domains, and if a com-
bination of data from different domains might help
to overcome the recurring problem of having too
little data.

Furthermore, we assess the usefulness of large
weakly supervised corpora where the labels are in-
ferred from properties of the text, e.g. the smileys
in the text or the rating of a review. We answer the
question of how much gain one can expect from
leveraging such corpora.

Usually, cross-domain sentiment analysis has a
low performance due to the vocabulary mismatch
(Pan et al., 2010). Thus, we asses the impact
of word embeddings trained on large amounts of
data, thus guaranteeing a large coverage of the vo-
cabulary. We then asses how word embeddings
trained on different types of data (e.g. News,
Twitter) impact the performance of the system.
For this, we train a convolutional neural network
(CNN) based on (Deriu et al., 2016) on data from
different combinations of domains and evaluate its
performance on foreign domains.

Related Work Some research has been done al-
ready in the field of cross-domain sentiment clas-
sification. Most of the work in this area focuses
on the mismatch in the vocabularies of the differ-
ent domains.

(Pan et al., 2010) overcome the challenge
of vocabulary-mismatch by employing a spec-
tral feature alignment algorithm to map domain-
specific words to a unified representation which
can then be used in conjunction with the domain-
independent words to lower the mismatch between
the domains. (Blitzer et al., 2007) use struc-
tural correspondence learning to adapt the vocab-
ulary of the various domains. (Li et al., 2008)
experiment with ensembles of classifiers where
each classifier was trained on a specific domain
and then used in combination to boost the cross-
domain performance. (Bollegala et al., 2011)
use a semi-supervised algorithm, which lever-
ages supervised and unsupervised data, to create
a sentiment-sensitive thesaurus which is used to
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compute the relatedness of words from different
domains. (Bollegala et al., 2016) uses the afore-
mentioned sentiment-sensitive thesaurus to gener-
ate sentiment-sensitive word embeddings. (Glo-
rot et al., 2011) apply unsupervised cross-domain
sentiment classification, where they use spectral
embeddings to project words and documents into
a low dimensional embedding space. (Yu et al.,
2016) borrow ideas from SCL and combine it with
auxiliary binary predicition tasks to learn dense
sentence embeddings which incorporate sentiment
and can be used in a cross-domain context.

Contribution Our work presents an in-depth
analysis on the generalization power of the current
state-of-the-art in a cross-domain setting. This
work can be used to estimate and predict the ex-
pected drop in performance for a given sentiment
classifier.

2 Experimental Setup

2.1 Training

Model We use a state-of-the-art model based
on the CNN used by (Deriu et al., 2016). The
architecture is composed by two consecutive
convolutional- and pooling-layers followed by a
fully-connected and a softmax layer. Table 1 gives
an overview on the hyper-parameters used for the
CNN.

Hyper-Parameter Value
Number of convolutional Filters 200
Filter width (both layers) 6
Pooling Length (first layer) 4
Pooling Stride (first layer) 2
Activation relu

Table 1: Overview of the hyper-parameters chosen
for the CNN. Note that we define a layer as one
convolutional layer followed by one pooling-layer.
For the second pooling layer the length is chosen
over the whole feature.

3-Phase Learning We apply the 3-Phase learn-
ing procedure (see Figure 1) proposed by (Severyn
et al., 2015) where we first create word embed-
dings based on the skip-gram model (Mikolov et
al., 2013). For our purposes we create embeddings
with 52 dimensions as in (Deriu et al., 2016) . In
a second step we apply a distant-phase where we
pre-train the CNN on a large corpus of weakly su-

Figure 1: Overview of the 3-Phase training proce-
dure.

pervised data, where the sentiment labels are in-
ferred by properties of the texts. In this phase
the word embeddings are updated to incorporate
sentiment-specific information. The third and fi-
nal phase is the supervised phase, where we train
the CNN on a corpus of manually annotated texts.

Training For the distant-supervised and the su-
pervised phase we employ the AdaDelta optimizer
to train the CNN. The hyper-parameters are set to
the default values of ε = 1e−6, ρ = 0.95, and
the learning rate is set to lr = 1.0. Many of the
datasets are unbalanced (see Table 2) and, to miti-
gate this problem, we use class-weights during the
learning procedure. The following formula was
used to compute the class-weights for each dataset
D and each class i ∈ S:

ci =
|D|
|S| ∗ di

(1)

where di denotes the number of elements inD that
belong to class i. Thus, over-represented classes
will get a lower weight than under-represented
classes. The loss function is scaled with the class-
weight for the respective class when training the
model.

2.2 Data

For each of the aforementioned phases we exper-
iment with different corpora. We use 3 different
corpora for word embeddings, 2 corpora for the
distant-supervised phase where the sentiment is
inferred by the smiley in case of the tweets and
the user ratings in case of the product reviews, and
8 corpora for the supervised phase. A detailed
overview of the data is provided in Table 2.
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Phase Dataset Total Neutral Neg. Pos. Source

Word
Embeddings

Twitter 590M - - - Public Twitter-API1

News 90M - - - STATMT website2

Wikipedia 4.5M - - - Wikimedia3

Distant
Phase

Reviews 82M 7M 11M 64M (McAuley et al., 2015)
Twitter 100M - 20M 80M Public Twitter-API2

Supervised
Phase (Train)

DAI (Tweets) 3274 2191 447 636 (Narr et al., 2012)
SEval (Tweets) 8226 3958 1210 3058 (Nakov et al., 2016)
DIL (Reviews) 3420 1739 615 1066 (Ding et al., 2008)
HUL (Reviews) 3156 1822 438 896 (Hu et al., 2004)
TAC (Reviews) 2152 381 991 780 (Täckström et al., 2011)
MPQ (News) 8888 4934 2637 1317 (Wiebe et al., 2005)
JCR (Quotations) 1032 736 141 155 (Balahur et al., 2013)
SEM (Headlines) 1000 610 246 144 (Strapparava et al., 2007)

Supervised
Phase (Test)

DAI (Tweets) 819 556 101 162 (Narr et al., 2012)
SEval (Tweets) 3813 1640 601 1572 (Nakov et al., 2016)
DIL (Reviews) 855 441 144 270 (Ding et al., 2008)
HUL (Reviews) 789 421 197 171 (Hu et al., 2004)
TAC (Reviews) 537 65 329 143 (Täckström et al., 2011)
MPQ (News) 2223 1225 708 290 (Wiebe et al., 2005)
JCR (Quotations) 258 127 93 38 (Balahur et al., 2013)
SEM (Headlines) 250 154 66 30 (Strapparava et al., 2007)

Table 2: Data used for training the CNN model.
1 https://dev.twitter.com/rest/public
2 http://www.statmt.org/wmt14/training-monolingual-news-crawl
3 https://dumps.wikimedia.org/enwiki/latest/

Evaluation For the evaluation we use the
macro-averaged F1-score of positive and negative
classes F1 = (F1pos + F1neg) / 2, since it is also
used in SemEval (Nakov et al., 2016) as standard
measure of quality.

3 Experiments & Results

In the following we refer to the system trained on a
single target domain (TD) data as specialized TD
system, a system trained on one foreign domain
(FD) dataset and evaluated on the TD test set is
called a specialized FD system, a system trained
on a combinations of FD corpora is called a gen-
eralized FD system, and a system trained on all
data is called a generalized system.

3.1 Word Embeddings and Distant-Phase

We train the CNN with all possible combina-
tions of word-embeddings and distant-phases to
assess which combination works best for each do-
main. Additionally we include experiments where
we use randomly initialized word embeddings de-
noted as Random, as well as experiments where
the distant-phase is omitted, denoted as None. Ta-
bles 4, 5, and 6 give an overview of the results. In
the following we present the main findings.

The complexity among the domains varies.
The differences of the averaged scores over each
domain are very high. The average score of the
DAI-tweets is 66 points in F1 score, whereas the
average score of the JCR-quotations is only at 39.3
points. These differences could be caused by the
different sized of the corpora, variations in the
quality of the annotations or by the difficulty of
the domains itself.

Random word embeddings are not necessar-
ily bad. Generally it is assumed that using pre-
trained word embeddings would increase the per-
formance compared to using randomly initialized
values. Indeed, the average performance of the
random word embeddings (see Table 5.B) lies 3
point below the averages achieved by the News-
embeddings. Random word embeddings yield the
best score only for one domain out of eight. How-
ever a closer look at the averaged scores over the
combinations of word embeddings and distant-
phases (see Table 6) reveals that the combina-
tion of random word embeddings with a distant-
phase on reviews achieves an average score of
59.4, which is the second-highest average score.
Thus, a distant-phase can compensate the lack of
pre-trained word embeddings.
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Pretrained word embeddings are not necessar-
ily good. The same analysis as above reveals
a similar picture for the Wikipedia-embeddings.
The average score achieved using the Wikipedia-
embeddings lies 2 points below the average score
achieved by the News-embeddings. The av-
erage scores achieved by using the Wikipedia-
embeddings on each domain (see Table 5.B) is up
to 6 points worse than the best score for the partic-
ular domain. Thus, pre-trained word embeddings
do not imply an increase in score.

Vocabulary coverage is important. Table 3
shows for each domain the percentage of miss-
ing words in the corresponding word embedding.
Both the News and Twitter embeddings cover
most of the vocabulary. They are missing only
up to 3.87% of the vocabulary most of the dataset
are missing less than 1% of the vocabulary. On
the other hand the Wikipedia embeddings have a
much lower coverage, for all of the datasets be-
tween 15% and 30% of the vocabulary is not cov-
ered. As we have previously seen the Wikipedia-
embeddings perform worse than the embeddings
based on news and tweets. Thus, having an ade-
quate coverage of the vocabulary is important.

News Twitter Wikipedia
DAI 3.87% 3.70% 29.5%
DIL 0.98% 0.85% 21.3%
HUL 1.41% 0.85% 21.9%
JCR 0.31% 1.37% 14.5%
MPQ 0.56% 1.67% 16.9%
SEM 0.53% 1.48% 14.3%
SEval 2.38% 3.01% 26.5%
TAC 1.01% 1.26% 21.2%

Table 3: Overview of the percentage of missing
vocabulary in the word embeddings.

Distant-Phase as score-booster. Performing a
distant-phase yields the best scores for eight out
of nine domains, the exception being the MPQ-
reviews. The average scores achieved perform-
ing a distant-phase show the same picture (see
Table 5.C Avg.-column), where using the Re-
view-corpus performs 7 points above omitting the
distant-phase. Using tweets for the distant-phase
improves the score by 4 points on average. Thus,
a distant-phase boosts the performance of the sys-
tem. This is consistent with the results shown in
(Deriu et al., 2016). However we cannot give any

recommendation as to which corpus to use, even if
using reviews mostly performed better in our case.

None Reviews Twitter
Random 0.502 0.594 0.550
News 0.560 0.604 0.568
Twitter 0.539 0.594 0.585
Wikipedia 0.513 0.586 0.557

Table 6: Shows the average F1 score for each
combination of word embeddings, distant-phase
corpus.

3.2 Cross-Domain Experiments

We train the system on the data of one domain
called target domain (TD) and test it on the TD
as well as the foreign domains (FD). The system
is optimized for the TD by using the test set of
the TD to perform early-stopping. Furthermore
we trained the system on the union of all domains
and tested it on all the domains separately. For
optimization we used the TD test set for early-
stopping. For each domain we use the best com-
bination of word embeddings and distant-phase
from Section 3.1 as base model (see Table 7). In
Table 8 an overview of the results is given.

Word Emb. Dist. Phase
DAI Twitter Twitter
DIL Twitter Reviews
HUL Wikipedia Reviews
JCR Wikipedia Reviews
MPQ News None
SEM Twitter Twitter
SEval News Twitter
TAC Random Reviews

Table 7: Shows for each domain the best combina-
tion of word embeddings and distant phase.

The generalization power of a specialized sys-
tems is poor. As expected the best score is
achieved by training and testing on the same do-
main. However there is a large deterioration in
score when the system is tested on another domain
than it is trained on. The average score achieved
by a specialized FD system on the TD is far be-
low the scores achieved for a specialized TD sys-
tem. The differences range from 15 (JCR) up to
30 (DAI and DIL) points in F1 score.
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Embedding
Type

DAI
(T/ 3.2k)

MPQ
(N/ 8.8k)

DIL
(R/ 3.4k)

TAC
(R/ 2.1k)

SEM
(H/ 3.1k)

JCR
(Q/ 1k)

SEval
(T/ 8.2k)

HUL
(R/ 3.1k) Union

Random 0.599 0.469 0.509 0.577 0.436 0.263 0.598 0.513 0.550
News 0.631 0.581 0.485 0.644 0.527 0.405 0.673 0.480 0.615
Twitter 0.629 0.504 0.507 0.585 0.541 0.360 0.629 0.511 0.584
Wikipedia 0.553 0.529 0.455 0.570 0.506 0.375 0.613 0.451 0.567
Average 0.603 0.520 0.489 0.594 0.502 0.351 0.628 0.489 0.579

(a) No Distant Phase
Embedding

Type
DAI

(T/ 3.2k)
MPQ

(N/ 8.8k)
DIL

(R/ 3.4k)
TAC

(R/ 2.1k)
SEM

(H/ 3.1k)
JCR

(Q/ 1k)
SEval

(T/ 8.2k)
HUL

(R/ 3.1k) Union

Random 0.698 0.539 0.595 0.714 0.477 0.401 0.659 0.659 0.603
News 0.692 0.563 0.590 0.682 0.519 0.433 0.685 0.649 0.624
Twitter 0.701 0.540 0.603 0.694 0.472 0.383 0.683 0.657 0.611
Wikipedia 0.661 0.542 0.569 0.684 0.500 0.457 0.622 0.666 0.577
Average 0.688 0.546 0.589 0.694 0.492 0.418 0.662 0.658 0.604

(b) Review Distant Phase
Embedding

Type
DAI

(T/ 3.2k)
MPQ

(N/ 8.8k)
DIL

(R/ 3.4k)
TAC

(R/ 2.1k)
SEM

(H/ 3.1k)
JCR

(Q/ 1k)
SEval

(T/ 8.2k)
HUL

(R/ 3.1k) Union

Random 0.684 0.490 0.523 0.612 0.468 0.399 0.659 0.517 0.595
News 0.678 0.567 0.546 0.676 0.539 0.412 0.691 0.554 0.444
Twitter 0.734 0.518 0.543 0.652 0.554 0.412 0.685 0.553 0.610
Wikipedia 0.663 0.544 0.520 0.619 0.505 0.411 0.642 0.531 0.580
Average 0.690 0.530 0.533 0.640 0.517 0.409 0.669 0.539 0.558

(c) Twitter Distant Phase

Table 4: Shows the score for each combination of word embeddings, distant-phase corpus, and domain.
The last row shows the average score achieved on a particular dataset. The scores in bold denote the
best score achieved on the dataset. For each domain we denote the text-type as follows: T: Tweets, N:
News, R: Reviews, H: Headlines and Q: Quotations. Alongside with the text-type we also note the size
of the corpus.

DAI MPQ DIL TAC SEM JCR SEval HUL Union
Full Average 0.660 0.532 0.537 0.643 0.504 0.393 0.653 0.562 0.580

(a) Shows the average scores for each dataset over each combination of word embedding type and distant phase.
Embedding Type DAI MPQ DIL TAC SEM JCR SEval HUL Union Avg.
Random 0.660 0.499 0.542 0.635 0.460 0.354 0.639 0.563 0.583 0.548
News 0.667 0.570 0.540 0.668 0.528 0.417 0.683 0.561 0.561 0.577
Twitter 0.688 0.521 0.551 0.643 0.522 0.385 0.666 0.573 0.602 0.572
Wikipedia 0.626 0.538 0.515 0.625 0.504 0.414 0.626 0.549 0.575 0.552

(b) Shows the average scores achieved for each word embedding type on each dataset. The last column shows the average score
of the word embedding types.

Distant Phase Type DAI MPQ DIL TAC SEM JCR SEval HUL Union Avg.
None 0.603 0.520 0.489 0.594 0.502 0.351 0.628 0.489 0.579 0.528
Reviews 0.688 0.546 0.589 0.694 0.492 0.418 0.662 0.658 0.604 0.595
Twitter 0.690 0.530 0.533 0.640 0.517 0.409 0.669 0.539 0.558 0.565

(c) Shows the average scores achieved by each distant-phase on each data-set. The last column shows the average score achieved
by the distant phase.

Table 5: Gives an overview of the averaged scores. In Panel A the average score for each dataset is
shown. Panel B shows the average scores achieve by each embedding type. Panel C shows the average
scores for the distant supervised phases.
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PPPPPPPPPTrain
Test DAI

T
MPQ

N
DIL

R
TAC

R
SEM

H
JCR

Q
SEval

T
HUL

R
Union

DAI T 0.734 0.161 0.401 0.369 0.283 0.269 0.554 0.397 0.447
MPQ N 0.495 0.581 0.307 0.402 0.313 0.411 0.471 0.318 0.489
DIL R 0.381 0.210 0.603 0.478 0.135 0.227 0.365 0.602 0.350
TAC R 0.395 0.376 0.501 0.714 0.360 0.409 0.480 0.517 0.442
SEM H 0.360 0.148 0.188 0.247 0.554 0.054 0.250 0.181 0.227
JCR Q 0.450 0.319 0.402 0.461 0.254 0.457 0.402 0.452 0.384
SEval T 0.525 0.441 0.489 0.577 0.445 0.421 0.691 0.479 0.578
HUL R 0.404 0.252 0.567 0.535 0.176 0.312 0.392 0.666 0.373
Union 0.725 0.55 0.554 0.614 0.422 0.465 0.69 0.528 0.624
FD Avg. 0.43 0.272 0.408 0.438 0.281 0.301 0.416 0.421 0.411
Diff. 0.304 0.308 0.195 0.276 0.273 0.156 0.275 0.245 0.213

Table 8: Results obtained by training on a target domain (TD) and evaluation on all domains. The line
FD Avg. shows the average scores for each TD when trained on a foreign domain (FD). The line Diff.
shows the difference between the best score of TD and FD Avg.

A general system does not increase the systems
prediction power. The results achieved by train-
ing on the union of all data and optimizing for a
specific TD shows no increase in score on the TD.
Only on the JCR-quotations the score increased,
on the twitter datasets (DAI and SEval) the score
is similar to the score of the target specific system.
In all the other cases the systems trained on the
union of all data perform worse. In the case of the
HUL-reviews the drop is even by 14 points.

3.3 Ablation Experiments
To further assess the generalization performance
we ran ablation experiments as follows: We com-
bine all the training sets except for the target do-
main set, train the system on this combination of
data, and then evaluate the system on the target
domain.

The generalized FD system performs better
than a specialized FD system. Table 9 shows
the performance of the system trained on the com-
bination of FD data excluding the TD. The results
show that in most cases training on a mixture of
FD data achieves better scores on the TD data than
training using a single FD for training (see Table
8). As expected the general FD system is usu-
ally not able to achieve the score on the TD data
achieved by the specialized TD system. Table 9
shows the difference between the specialized TD
system and the generalized FD system. The dif-
ferences range from 3 points in the case the DIL-
reviews up to 17 points for the MPQ-news. Only
for the JCR-quotations the generalized FD system

performs better. Thus, it is best to have TD data,
although in some cases an acceptable score might
be achieved using a generalized FD system.

Ablation Sys.
without TD

Specific TD
System

Diff.

DAI 0.658 0.734 0.076
MPQ 0.404 0.581 0.177
DIL 0.573 0.603 0.030
TAC 0.558 0.714 0.156
SEM 0.426 0.554 0.128
JCR 0.485 0.457 -0.029
SEval 0.658 0.691 0.033
HUL 0.566 0.666 0.099

Table 9: Results of the ablation experiments. The
last column shows the difference between the spe-
cific TD system and the Ablation System trained
on a mix of FD data excluding data from the TD.

3.4 Augmentation Experiments
To further investigate the difference between a
specialized system and a general system we per-
formed experiments where we start with a special-
ized TD, specialized FD, or a general FD system
(referred to as base system) and gradually trans-
form it to a generalized system by adding data. Let
n be the number of texts used to train the base sys-
tem. Then we augment the training set by adding
n/2, n and 2n datapoints. The evaluation is al-
ways performed on the TD.
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Adding FD to a specialized TD system de-
creases the performance on the target domain.
For each of the 8 TDs we start with a specialized
TD system and gradually add a combination of FD
data (mixed FD augmentation) or data from a sin-
gle FD (single FD augmentation) and evaluate the
performance on TD. Figure 2 shows the scores av-
eraged over all experiments for each TD. The trend
shows that adding more data from one or more
FDs for training decreases the performance of the
system.

0 n/2 n 2n

0.598

0.576 0.578
0.575

0 n/2 n 2n0 n/2 n 2n

0.575

0.564
0.562

0.555

0 n/2 n 2n

Figure 2: Averaged F1 scores for the increasing
amount of FD (mixed set or single domain set) for
a TD data basis.

Adding TD to a FD system increases the score.
For each TD we start with a specialized FD system
(single FD base) or a generalized FD system (mix
FD base) and gradually add more data from the
TD. In both cases adding more data from the TD
increases the performance of the system when it is
evaluated on the TD (see Figure 3).

4 Conclusion

In this work we gave an overview of the deteriora-
tion of the quality when using a sentiment clas-
sifier on a domain it was not trained on. Our
in-depth analysis showed that having a large cor-
pus of weakly labelled data boosts the score by
7 points on average. We also showed that us-
ing pre-trained word embeddings helps to increase
the score by 3-4 points on average. This work
can be used as a basis when evaluating sentiment
classifiers that were trained on a domain different
from the target domain. Future work in this area
would include more indepth analysis of the inter-

0.514

0.561

0.582
0.592

0 n/2 n 2n0 n/2 n 2n

0.428

0.513

0.534

0.557

0 n/2 n 2n

Figure 3: Averaged F1 for increasing the amount
of TD data starting with either a base of mixed FD
data or single FD data.

play among different domains: for instance our
results show that a system trained on tweets per-
forms better on reviews than a system trained on
news. Here, a better understanding of these mech-
anisms is necessary to better assess the potential of
cross domain classification. Furthermore, one can
analyse the effect of the distant-phases and word
embeddings in the cross-domain setting. How
does the usage of different types of word embed-
dings and weakly labelled data impact the perfor-
mance in a cross-domain setting? Does the usage
of weakly-labelled data increase the performance
of a sentiment classifier on a foreign domain? We
are convinced that answering these questions will
help to develop sentiment analysis systems that
perform better on new, unknown domains.
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