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Abstract

This paper describes two supervised base-
line systems for the Story Cloze Test
Shared Task (Mostafazadeh et al., 2016a).
We first build a classifier using features
based on word embeddings and semantic
similarity computation. We further imple-
ment a neural LSTM system with differ-
ent encoding strategies that try to model
the relation between the story and the pro-
vided endings. Our experiments show
that a model using representation features
based on average word embedding vec-
tors over the given story words and the
candidate ending sentences words, joint
with similarity features between the story
and candidate ending representations per-
formed better than the neural models. Our
best model achieves an accuracy of 72.42,
ranking 3rd in the official evaluation.

1 Introduction

Understanding common sense stories is an easy
task for humans but represents a challenge for ma-
chines. A recent common sense story understan-
ding task is the ’Story Cloze Test’ (Mostafazadeh
et al., 2016a), where a human or an AI system
has to read a given four-sentence story and select
the proper ending out of two proposed endings.
While the majority class baseline performance on
the given test set yields an accuracy of 51.3%,
human performance achieves 100%. This makes
the task a good challenge for an AI system. The
Story Cloze Test task is proposed as a Shared Task
for LSDSem 20171. 17 teams registered for the
Shared Task and 10 teams submitted their results2.

1Workshop on Linking Models of Lexical, Sentential and
Discourse-level Semantics 2017

2https://competitions.codalab.org/competitions/15333 -
Story Cloze Test at CodaLab

Our contribution is that we set a new baseline for
the task, showing that a simple linear model based
on distributed representations and semantic simi-
larity features achieves state-of-the-art results. We
also evaluate the ability of different embedding
models to represent common knowledge required
for this task. We present an LSTM-based classifier
with different representation encodings that tries
to model the relation between the story and alter-
native endings and argue about its inability to do
so.

2 Task description and data construction

The Story Cloze Test is a natural language under-
standing task that consists in selecting the right
ending for a given short story. The evaluation data
consists of a Dev set and a Test set, each containing
samples of four sentences of a story, followed by
two alternative sentences, from which the system
has to select the proper story ending. An example
of such a story is presented in Table 1.

The instances in the Dev and Test gold data
sets (1871 instances each) were crowd-sourced
together with the related ROC Stories corpus
(Mostafazadeh et al., 2016a). The ROC stories
consists of around 100,000 crowd-sourced short
five sentence stories ranging over various topics.
These stories do not feature a wrong ending, but
with appropriate extensions they can be deployed
as training data for the Story Cloze task.

Task modeling. We approach the task as a su-
pervised classification problem. For every clas-
sification instance (Story, Ending1, Ending2) we
predict one of the labels in Label={Good,Bad}.

Obtaining a small training set from Dev set.
We construct a (small) training data set from the
Dev set by splitting it randomly into a Dev-Train
and a Dev-Dev set containing 90% and 10% of the
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Story context Good Ending Bad ending
Mary and Emma drove to the beach. They de-
cided to swim in the ocean. Mary turned to talk
to Emma. Emma said to watch out for the waves.

A big wave knocked
Mary down.

The ocean was a calm
as a bathtub.

Table 1: Example of a given story with a bad and a good ending.

original Dev set. From each instance in Dev-Train
we generate 2 instances by swapping Ending1 and
Ending2 and inversing the class label.

Generating training data from ROC stories.
We also make use of the ROC Stories corpus in
order to generate a large training data set. We ex-
periment with three methods:

(i.) Random endings. For each story we em-
ploy the first 4 sentences as the story context. We
use the original ending as Good ending and define
a Bad ending by randomly choosing some ending
from an alternative story in the corpus. From each
story with one Good ending we generate 10 Bad
examples by selecting 10 random endings.

(ii.) Coherent stories and endings with com-
mon participants and noun arguments. Given
that some random story endings are too clearly un-
connected to the story, here we aim to select Bad
candidate endings that are coherent with the story,
yet still distinct from a Good ending. To this end,
for each story in the ROC Stories corpus, we ob-
tain the lemmas of all pronouns (tokens with part
of speech tag starting with ‘PR‘) and lemmas of all
nouns (tokens with part of speech tag starting with
‘NN‘) and select the top 10 endings from other sto-
ries that share most of these features as Bad end-
ings.

(iii.) Random coherent stories and endings.
We also modify (ii.) so that we select the near-
est 500 endings to the story context and select 10
randomly.

3 A Baseline Method

For tackling the problem of right story ending se-
lection we follow a feature-based classification ap-
proach that was previously applied to bi-clausal
classification tasks in (Mihaylov and Frank, 2016;
Mihaylov and Nakov, 2016). It uses features based
on word embeddings to represent the clauses and
semantic similarity measured between these rep-
resentations for the clauses. Here, we adopt this
approach to model parts of the story and the can-
didate endings. For the given Story and the given

candidate Endings we extract features based on
word embeddings. An advantage of this approach
is that it is fast for training and that it only requires
pre-trained word embeddings as an input.

3.1 Features

In our models we only deploy features based
on word embedding vectors. We are using two
types of features: (i) representation features that
model the semantics of parts of the story us-
ing word embedding vectors, and (ii) similarity
scores that capture specific properties of the re-
lation holding between the story and its candi-
date endings. For computing similarity between
the embedding representations of the story com-
ponents, we employ cosine similarity.

The different feature types are described below.

(i) Embedding representations for Story and
Ending. For each Story (sentences 1 to 4) and
story endings Ending1 and Ending2 we construct
a centroid vector from the embedding vectors ~wi

of all words wi in their respective surface yield.

(ii.) Story to Ending Semantic Vector Similari-
ties. We calculate various similarity features on
the basis of the centroid word vectors for all or
selected sentences in the given Story and the End-
ing1 and Ending2 sentences, as well as on parts of
the these sentences:

Story to Ending similarity. We assume that a
given Story and its Good Ending are connected by
a specific semantic relation or some piece of com-
mon sense knowledge. Their representation vec-
tors should thus stand in a specific similarity rela-
tion to each other. We use their cosine similarity as
a feature. Similarity between the story sentences
and a candidate ending has already been proposed
as a baseline by Mostafazadeh et al. (2016b) but it
does not perform well as a single feature.

Maximized similarity. This measure ranks
each word in the Story according to its similarity
with the centroid vector of Ending, and we com-
pute the average similarity for the top-ranked N
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words. We chose the similarity scores of the top
1,2,3 and 5 words as features. Our assumption is
that the average similarity between the Story rep-
resentation and the top N most similar words in
the Ending might characterize the proper ending
as the Good ending. We also extract maximized
aligned similarity. For each word in Story, we
choose the most similar word from the yield of
Ending and take the average of all best word pair
similarities, as suggested in Tran et al. (2015).

Part of speech (POS) based word vector simi-
larities. For each sentence in the given four sen-
tence story and the candidate endings we per-
formed part of speech tagging using the Stan-
ford CoreNLP (Manning et al., 2014) parser, and
computed similarities between centroid vectors of
words with a specific tag from Story and the cen-
troid vector of Ending. Extracted features for
POS similarities include symmetric and asymmet-
ric combinations: for example we calculate the
similarity between Nouns from Story with Nouns
from Ending and similarity between Nouns from
Story with Verbs from Ending and vice versa.

The assumption is that embeddings for some
parts of speech between Story and Ending might
be closer to those of other parts of speech for the
Good ending of a given story.

3.2 Classifier settings

For our feature-based approach we concatenate the
extracted representation and similarity features in
a feature vector, scale their values to the 0 to 1
range, and feed the vectors to a classifier. We train
and evaluate a L2-regularized Logistic Regression
classifier with the LIBLINEAR (Fan et al., 2008)
solver as implemented in scikit-learn (Pedregosa
et al., 2011).

For each separate experiment we tune the regu-
larization parameter C with 5 fold cross-validation
on the Dev set and then train a new model on the
entire Dev set in order to evaluate on the Test set.

4 Neural LSTM Baseline Method

We compare our feature-based linear classifier
baseline to a neural approach. Our goal is to
explore a simple neural method and to investi-
gate how well it performs with the given small
dataset. We implement a Long Short-Term Mem-
ory (LSTM) (Hochreiter and Schmidhuber, 1997)
recurrent neural network model.

4.1 Representations
We are using the raw LSTM output of the encoder.
We also experiment with an encoder with attention
to model the relation between a story and a candi-
date ending, following (Rocktäschel et al., 2015).

(i) Raw LSTM representations. For each given
instance (Story, Ending1, Ending2) we first encode
the Story token word vector representations using
a recurrent neural network (RNN) with long short-
term memory (LSTM) units. We use the last out-
put hs

L and cs
L states of the Story to initialize the

first LSTM cells for the respective encodings e1

and e2 of Ending1 and Ending2, where L is the
token length of the Story sequence.

We build the final representation ose1e2 by con-
catenating the e1 and e2 representations. Finally,
for classification we use a softmax layer over the
output ose1e2 by mapping it into the target space
of the two classes (Good, Bad) using a parameter
matrix Mo and bias bo as given in (Eq.1). We train
using the cross-entropy loss.

labelprob = softmax(W oose1e2 + bo) (1)

(ii) Attention-based representations We also
model the relation h∗ between the Story and each
of the Endings using the attention-weighted rep-
resentation r between the last token output he

N of
the Ending representation and each of the token
representations [hs

1..hs
L] of the Story, strictly fol-

lowing the attention definition by Rocktäschel et
al. (2015). The final representation for each end-
ing is presented by Eq.2, where Wp and Wx are
trained projection matrices.

h∗ = tanh(W pr + W xhe
N ) (2)

We then present the output representation ose1e2

as a concatenation of the encoded Ending1 and
Ending2 representations h∗

e1 and h∗
e2 and use Eq.1

to obtain the output label likelihood.

(iii) Combined raw LSTM output and atten-
tion representation We also perform experi-
ments with combined LSTM outputs and repre-
sentations. In this setting we present the output
ose1e2 as presented in Eq.3:

ose1e2 = concat(e1, h
∗
e1, e2, h

∗
e2) (3)

4.2 Model Parameters and Tuning
We perform experiments with configurations of
the model using grid search on the batch size (50,
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System Accuracy
Human 100.00
msap 75.20
cogcomp 74.39
Our features baseline 72.42
Our neural system 72.10
ukp 71.67
DSSM 58.50
Skip-thoughts sim 55.20
Word2Vec sim 53.90
Majority baseline 51.30

Table 2: Comparison of our models to shared
task participants’ results and other baselines.
Word2Vec sim, Skip-thoughts sim and DSSM are
described in (Mostafazadeh et al., 2016b).

100, 200, 300, 400, 500) and LSTM output size
(128, 256, 384, 512), by training a simple model
with raw LSTM encoding on Dev-Train and eval-
uating on the Dev-Dev. For each configuration we
train 5 models and take the parameters of the best.
The best result on the Dev-Dev set is achieved for
LSTM with output size 384 and batch Size 500
after 7 epochs and achieves accuracy of 72.10 on
the official Test. For learning rate optimization we
use Adam optimizer (Kingma and Ba, 2015) with
initial learning rate 0.001.

Parameter initialization. We initialize the
LSTM weights with Xavier initialization (Glo,
2010) and bias with a constant zero vector.

5 Experiments and Results

Overall results. In Table 2 we compare our best
systems to existing baselines, Shared Task par-
ticipant systems3 and human performance. Our
features baseline system is our best feature-based
system using embeddings and word2vec trained on
Dev and tuned with cross-validation. Our neu-
ral system employs raw LSTM encodings as de-
scribed in Section 4.1(i) and it is trained on the
Dev-Dev dataset which consists of 90% of the Dev
dataset selected randomly and tuned on the rest of
Dev. The best result in the task is achieved by
Schwartz et al. (2017) (msap) who employ stylis-
tic features combined with RNN representations.
We have no information about cogcomp and ukp.

3https://competitions.codalab.org/competitions/15333 -
The Story Cloze Test Shared Task home page

Model variations and experiments. The Story
Cloze Test is a story understanding problem.
However, the given stories are very short and they
require background knowledge about relations be-
tween the given entities, entity types and events
defining the story and their endings, as well as re-
lations between these events. We first train our
feature-based model with alternative embedding
representations in order to select the best source
of knowledge for further experiments.

We experiment with different word embedding
models pre-trained on a large number of tokens in-
cluding word2vec4 (Mikolov et al., 2013), GloVe
(Pennington et al., 2014) and ConceptNet Num-
berbatch (Speer and Chin, 2016). Results on train-
ing the feature-based model with different word
embeddings are shown in Table 3. The results in-
dicate how well the vector representation models
perform in terms of encoding common sense sto-
ries. We present the performance of the embed-
ding models depending on the defined features.
We perform feature ablation experiments to de-
termine the features which contribute most to the
overall score for the different models. Using All
features defined in Section 3.1, the word2vec vec-
tors, trained on Google News 100B corpus per-
form best followed by ConcepNet enriched em-
beddings and Glove trained on Common Crawl
840B. The word2vec model suffers most when
similarity features are excluded. We note that the
ConceptNet embeddings do not decrease perfor-
mance when similarity features are excluded, un-
like all other models. We also see that the POS
similarities are more important than the MaxSim
and the Sim (cosine betwen all words in Story and
Ending) as they yield worse results, for almost all
models, when excluded from All features.

In column WE E1, E2 we report results on fea-
tures based only on Ending1 and Ending 2. We
note that the overall results are still very good.
From this we can derive that the difference of
Good vs. Bad endings is not only defined in the
story context but it is also characterized by the in-
formation present in these sentences in isolation.
This could be due to a reporting bias (Gordon
and Van Durme, 2013) employed by the crowd-
workers in the corpus construction process.

The last column Sims only shows results with
features based only on similarity features. It in-

4https://code.google.com/archive/p/word2vec/ - Pre-
trained embeddings on Google News dataset (100B words).
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Model All All wo POS sim All wo MaxSim All wo Sim WE S, E1, E2+Sim WE E1, E2 Sims only
Word2Vec GN 100B 300d 72.42 71.41 71.94 72.10 71.51 70.71 58.15
Concepnet 300d 72.05 72.05 72.05 72.05 71.83 71.67 61.67
Glove 840B 300d 71.41 71.09 71.89 72.26 70.82 70.71 60.28
Glove 6B 200d 69.43 69.75 68.31 69.64 68.04 68.68 62.37
Glove 6B 300d 68.84 69.32 69.21 69.05 68.79 68.89 61.19
Glove 6B 100d 68.84 68.09 67.93 68.41 67.66 67.56 60.82
Glove 6B 50d 64.89 66.01 64.19 64.67 64.78 64.83 58.57

Table 3: Experiments using linear classifier with features based on word embeddings. Trained on Dev
(tuned with cross-validation) and evaluated on Test.

Model Epoch Dev-Dev Test
LSTM Raw 7 77.12 72.10
LSTM Raw + Att 2 79.25 68.30
Attention 9 72.79 63.22

Table 4: Comparison between LSTM representa-
tion strategies.

cludes all story-to-ending semantic vector similar-
ities described in Section 3.1.

We also perform experiments with the neural
LSTM model. In Table 4 we compare results of
the LSTM representation models that we exam-
ined for the task. We trained the models on the
Dev-Train for 10 epochs and take the best per-
forming model on the Dev-Dev dataset.

Our best LSTM model uses only raw LSTM en-
codings of the Story and the candidate Endings,
without using attention. Here the Attention repre-
sentation is intended to capture semantic relations
between the Story context and the candidate End-
ings, similar to the Similarities only setup exam-
ined with the feature-based approach. Considering
the low performance of Attention, the poor results
of the semantic similarity features and the high
performance of the feature-based model with End-
ing only features we hypothesize that the reason
for this unexpected result is that the background
knowledge presented in the training data is not
enough to learn strong relations between the story
context and the endings.

Experiments with generated data. We also try
to employ the data from the ROC Stories cor-
pus by generating labeled datasets following all
approaches described in Section 2. Training
our best neural model using all of the generated
datasets separately without any further data selec-
tion yields results close to the random baseline of
the ending selection task. We also try to filter the
generated data by training several feature-based

and neural models with our best configurations
and evaluating the generated data. We take only
instances that have been classified correctly by all
models. The idea here was to generate much more
data (with richer vocabulary) that performs at least
as good as the Dev data as training. However
the results of the models trained on these datasets
were not better than the one trained on Dev and
Dev-Dev (for the neural models).

6 Conclusion and Future work

In this work we built two strong supervised base-
line systems for the Story Cloze task: one based on
semantic features based on word embedding rep-
resentations and bi-clausal similarity features ob-
tained from them, and one on based on a neural
network LSTM-based encoder model. The neural
network approach trained on a small dataset per-
forms worse than the feature-based classifier by a
small margin only, and our best model ranks 3rd
according to the shared task web page.

In terms of data, it seems that the most im-
portant features are coming from word represen-
tations trained on large text corpora rather than
relations between the data. Also we can train a
model that performs well only on the given end-
ings, without a given context which could mean
that there is a bias in the annotation process. How-
ever, this requires more insights and analysis.

In future work we plan improve the current re-
sults on this (or a revised) dataset by collecting
more external knowledge and obtaining more or
different training data from the original ROC Sto-
ries corpus.
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