
Proceedings of the 2nd Workshop on Linking Models of Lexical, Sentential and Discourse-level Semantics, pages 41–45,
Valencia, Spain, April 3, 2017. c©2017 Association for Computational Linguistics

Behind the Scenes of an Evolving Event Cloze Test

Nathanael Chambers
Department of Computer Science

United States Naval Academy
nchamber@usna.edu

Abstract

This paper analyzes the narrative event
cloze test and its recent evolution. The
test removes one event from a docu-
ment’s chain of events, and systems pre-
dict the missing event. Originally pro-
posed to evaluate learned knowledge of
event scenarios (e.g., scripts and frames),
most recent work now builds ngram-
like language models (LM) to beat the
test. This paper argues that the test has
slowly/unknowingly been altered to ac-
commodate LMs. Most notably, tests are
auto-generated rather than by hand, and
no effort is taken to include core script
events. Recent work is not clear on evalu-
ation goals and contains contradictory re-
sults. We implement several models, and
show that the test’s bias to high-frequency
events explains the inconsistencies. We
conclude with recommendations on how
to return to the test’s original intent, and
offer brief suggestions on a path forward.

1 Introduction

A small but growing body of work is looking at
learning real-world event knowledge. One partic-
ular area is how to induce event structures called
schemas, scripts, or frames. This is a wide field,
but variations on the narrative cloze test are of-
ten used to evaluate learned models. However,
their current form has evolved beyond the cloze’s
original purpose. It has evolved into a language
modeling (LM) task rather than an evaluation of
knowledge. One proposal suggested avoiding the
cloze test absent other options (Rudinger et al.,
2015), but we argue that it can be useful if care-

fully formulated. This is the first paper to evalu-
ate why LMs can seemingly succeed on the event
cloze. This is also the first paper to reconcile con-
tradictory results across recent papers. We repro-
duce several models for cloze prediction, include
a new instance-based learning model, and show
how high-frequency events pollute the test. We
conclude by discussing the future of the cloze in
regards to new corpus developments.

2 Previous Work

2.1 The Original Narrative Event Cloze

The narrative event cloze task was first proposed
in Chambers and Jurafsky (2008). These papers
introduced the first models that automatically in-
duced event structures like Schankian scripts from
unlabeled text. They learned chains of events that
form common-sense structures. An event was de-
fined as a verb/dependency tuple where the main
entity in a story (the protagonist) filled the typed
dependency of the verb. The following is an ex-
ample with its corresponding event chain:

Text
The police arrested Jon but he escaped.

Jon fled the country.
Chain

(arrested, object), (escaped, subj), (fled, subj)

This is one instance of a chain. Research fo-
cuses on generalizing this knowledge to a stereo-
typical script of when a suspect escapes. In order
to evaluate this generalized knowledge, the narra-
tive cloze was proposed as one possible test. Given
a set of known events, the test removes one, and a
system must predict which was removed. Using
the same short example:

(arrested, object), (escaped, subject), (,)

41

A model of scripts can produce a ranked list
of likely events to fill the hole. The test eval-
uates where in the ranking the correct event is
found. Critically, these event tests were manually
extracted from hand-selected documents.

2.2 Language Modeling Event Cloze

Jans et al. (2012) focused solely on the narrative
cloze test as an end goal. They cited the cloze
evaluation from Chambers and Jurafsky (2008),
but made several cloze modifications that we ar-
gue make it more amenable to language modeling.
Since then, subsequent work has adopted the Jans
evoluation of the cloze test. There are three main
changes to the original Narrative cloze that turned
it into an LM cloze.

Automatic Tests: First, the LM cloze tests are
automatically generated with all the mistakes of
parsers and coreference. The original narrative
cloze was manually created by human annotators
who interpreted documents and extracted sets of
events by hand. Accuracy was “true accuracy”,
and it tested only one central chain in each docu-
ment. It is not clear why everyone switched to LM
cloze, but Jans et al. (2012) is revealing, “Rather
than manually constructing a set of scripts on
which to run the cloze test, we ... use the event
chains from that section as the scripts for which
the system must predict events.” Their version is
not the narrative cloze from Chambers and Juraf-
sky. This change created what is often desired: a
quick automated test with instant results.

Text Order: The LM cloze is an evaluation where
events are ordered to know the text position of the
missing event. The original narrative cloze did not
require ordering information because document
order does not imply real-world order, and scripts
focused on real-world structure. This change nat-
urally benefits text language models.

All Chains: Instead of selecting the central entity
in a document and testing that scenario’s chain,
they included all entity chains. Different papers
vary on this detail, but all appear to auto-extract
multiple chains per document. Some include min-
imum chain length requirements.

All Events: Fourth, the LM cloze includes all re-
peated events in a chain. If an event chain contains
5 ’said’ events, 5 cloze tests with the same answer
‘said’ are in the evaluation. Critically, variants of

‘said’ make up 20% of the data. The original cloze
only included unique events without repetition. It
also intentionally omitted all ‘be’ events, avoiding
another frequent/uninformative event in the tests
(Chambers and Jurafsky, 2008). To clearly illus-
trate the problem, below is one such LM cloze test:

X criticized, X said, X distributed, X asking, X said, X

said, X said, X said, X admitted, X asked

The narrative cloze would only test one X said
instead of five. This seemingly small evaluation
detail drops a unigram model’s ‘said’ prediction
from 50% (5 of 10) to 17% (1 of 6) accuracy.

Subsequent work adopted these changes. Pi-
chotta and Mooney (2014) proposed a multi-
argument language model. They showed that bi-
grams which take into account all entity arguments
can outperform bigrams that only use a single ar-
gument. Rudinger et al. (2015) showed that a log-
bilinear language model outperforms bigram mod-
els on the same LM cloze. Several have proposed
neural network LMs (Pichotta and Mooney, 2016;
Modi, 2016). Granroth-Wilding and Clark (2016)
made the cloze a multiple choice prediction rather
than a ranking. Curiously, they auto-generated one
chain per document instead of all chains, and re-
quired that chain to be at least 9 events in length.
Ahrendt and Demberg (2016) build on the n-gram
models with argument typing and use the cloze test
on a non-news corpus.

Notably with these variations, results across pa-
pers contradict. A frequency baseline is the best
in some, but not in others. A PMI-based counting
approach is poor in some, but close to state-of-the-
art in others. Rudinger et al.’s best LM leads them
to conclude that either (1) script induction should
use LMs, or (2) the cloze should be abandoned.
We argue instead for a third option: the LM cloze
should find its way back to the original intent.

3 Data Processing

To be consistent with recent work, we use the En-
glish Gigaword Corpus for training and test. We
parse into typed dependencies with the CoreNLP
toolkit, run coreference, and extract event chains
connected by a single entity’s mentions. Each
coreference entity then extracts its event chain,
made up of the predicates in which it is a subject,
object, or preposition argument. An event is a tu-
ple similar to Pichotta and Mooney (2014): (s, o,
p, event) where s/o/p are the subject, object, and
preposition unique entity IDs. Entity singletons

42

are ignored, and all chains of length 2 or above
are extracted as in these recent works.

4 Models

In order to ground our argument in the correct
context, we implemented the main models from
Chambers and Jurafsky (Chambers and Jurafsky,
2008), Jans et al. (2012), and Pichotta and Mooney
(2014). Others have been proposed, but these
core models are sufficient to illustrate the idiosyn-
crasies shared by LMs on event cloze prediction.

4.1 Unigrams
The unigram model is based on frequency counts
from training. We define a similarity score for an
event e in a chain of events c at insertion index k:

simu(e, c, k) = C(e)/N (1)

where C(e) is the count of event e and N is the
number of events seen in training.

4.2 Bigrams
The bigram model is formulated as an ordered text
equation as in Jans et al. (2012):

simb(e, c, k) =
k∏

i=0

P (e|ci) ∗
n∏

i=k+1

P (ci|e) (2)

where the conditional probability is defined:

P (x|y) =
C(x, y) + λ

C(y) + |E| ∗ λ (3)

where C(x, y) is the text ordered bigram count, E
is the set of events, and λ a smoothing parameter.

4.3 PMI
Pointwise mutual information was the central
component of Chambers and Jurafsky (2008).
They learned a variety of script/event knowledge
including argument type information that is not
necessarily evaluated in the LM cloze. However,
for consistency, previous work tends to duplicate
their prediction model as follows:

simp(e, c, k) =
n∑

i=0

log
P (ci, e)
P (ci)P (e)

(4)

where the joint probability is defined:

P (x, y) =
C(x, y) + C(y, x)∑

i

∑
j C(ei, ej)

(5)

Jans et al. (2012) propose an ordered PMI that
we omit for simplicity. They found that ordering
doesn’t affect PMI (but is required for bigrams).

4.4 Multi-Argument N-Gram Models

The above models use a single entity in a chain (ar-
rested X, X escaped, X fled). Pichotta and Mooney
(2014) explored richer models that consider all ar-
guments with the events. The single chain now
becomes (Y arrested X, X escaped, X fled Z). If
other entities are repeated across events, it uses the
same variable/ID so that coreference can be mod-
eled beyond the main entity. The n-gram models
are slightly more complicated now that arguments
need to be normalized, particularly in how events
are counted and how the conditional probability is
computed. We refer the reader to their paper for a
complete formulation.

This richer formulation has not been adopted by
later work, possibly due to its complexity, but we
duplicated their models for completeness.

4.5 Instance-Based N-Grams

We also propose a novel extension to previous
work in an attempt to not just duplicate perfor-
mance, but maximize its results. Instead of train-
ing on all documents, we train on-the-fly with an
instance-based learning approach. Given a chain
of events, the algorithm retrieves documents in Gi-
gaword that contain all the events, and computes
counts C(x) and C(x, y) only from that subset
of documents. A parameter can be tuned to re-
quire X% of the chain events to match in a docu-
ment. We duplicated both unigrams and bigrams
(as above) with this on-the-fly training method.

5 Experiment Setup

There are two ways to evaluate event prediction
with scripts. The first is to follow a single actor
through a chain of events, and predict the miss-
ing link in the chain. This prediction ignores other
event arguments and only evaluates whether the
system predicts the predicate and the correct syn-
tactic position of the entity. This was part of the
original narrative cloze from Chambers and Juraf-
sky (2008). The example in Section 2 illustrates
such a chain. Pichotta and Mooney (Pichotta and
Mooney, 2014) proposed a richer test that requires
all arguments of the missing event. A single ac-
tor is still tracked through a chain of events, but
correct prediction requires the complete event.

We trained on 12.5 million AP documents from
Gigaword with duplicates removed. The test set is
1000 random event chains not in training. Parame-
ters were tuned on a smaller set of dev documents.

43

Single Argument Chains
Model Recall@50
Unigrams 0.338
Uni Exact 100% 0.347
Uni Exact 50% 0.386
Bigrams (k=2) 0.465
Bi Exact 100% (k=2) 0.460
PMI 0.038
PMI w/cutoff 0.391

Table 1: Single entity event chain results.

Multiple Argument Chains
Model Recall@50
Unigrams 0.322
Uni Exact 100% 0.332
Uni Exact 50% 0.368
Bigrams (k=5) 0.408
Bi Exact 100% (k=5) 0.396
PMI 0.068
PMI w/cutoff 0.364

Table 2: Multiple argument event chain results.

6 Results

Table 1 shows model performance. The best un-
igram model used our new instance-based learn-
ing, but bigrams gain by 8% absolute. Notably,
PMI performs poorly as in Jans et al. (2012) and
Rudinger et al. (2015). However, by adding a fre-
quency cutoff, the poor result is reversed. Figure
1 shows the cutoff recall curve. Both papers con-
cluded that PMI was the problem, but we found it
is simply the over-evaluation of frequent events.

PMI is known to prefer infrequent events, and
this is evident by looking at the information con-
tent (IC) of model predictions. The information
content of an event is its log probability in the Gi-
gaword Corpus. What types of events do language
models predict? Table 3 shows that the average
LM prediction contains far less information. Per-
haps more clear, Table 4 shows an actual list of
predictions for one cloze test. The n-gram mod-
els predict frequent events, but PMI predicts seem-
ingly more meaningful events. We are not arguing
in favor of PMI as a model, but simply illustrating
how frequency explains almost all of the contra-
dictions in previous work.

Finally, Table 2 mirrors the relative results of
single arguments in the multi-argument setting.
Once again, a simple cutoff parameter in the PMI

PMI Recall@50 with Frequency Cutoffs

Figure 1: Frequency cutoffs. Events seen less than
the cutoff are not included in the PMI ranking.

Unigrams Bigrams PMI
5.8 6.7 9.4

Table 3: Avg. information content of predictions.

setting drastically changes the results. It is difficult
to always know what settings were used in each at-
tempt at this task, but the normalized experiments
in this paper illustrate that the new cloze exper-
iments have a heavy bias to the high-frequency
events, regardless of how the events themselves
are formalized (e.g., single argument or multi ar-
gument).

7 Conclusion and Recommendations

Automatically generating event chains for evalua-
tion does not test relevant script knowledge. The
information content scores illustrate the huge ex-
tent to which common events (said, tell, went)
dominate. More concerning, we can simply adjust
the frequency cutoff in PMI learning, and it elim-
inates “poor results” from multiple previous pa-
pers. Language modeling approaches tend to cap-
ture frequent event patterns, not script knowledge.

Cloze Test Unigram Bigram PMI
X scored X said X made X scored
X set up X have X said X beat
X headed X had X scored X played
X challenged told X X accused X missed

?? X told X had X hit
X is told X X led
X was X told X joined
said X X is X went
X has X was X finished
killed X said X X opened

Table 4: Example Cloze test and the top predic-
tions from ngrams and PMI

44

This is revealed in our frequency-based results, as
well as in subjective error analysis like Table 4.

The core problem is that auto-generation does
not evaluate script knowledge. We can’t include
all coreference chains from all documents and
hope that this somehow measures script knowl-
edge. The contradictory results from frequent
events is just a symptom of the larger problem.
We believe a human annotator should be in the
loop for a meaningful evaluation. The test should
include meaningful core events, and avoid oth-
ers that are not script-relevant, such as discourse-
related events (e.g., reporting verbs). Further, the
test must not include events brought in through
parser and coreference errors. By evaluating on
parser output as gold data, we evaluate how well
our models match our flawed text pre-processing
tools. We acknowledge that human involvement is
expensive, but the current trend to automate eval-
uations does not appear to be evaluating common-
sense knowledge.

Finally, although this paper focuses on the
narrative event cloze, we recognize that differ-
ent evaluations are also possible. However, the
traits of human-annotation and core-events seem
to be required. One interesting task this year is
Mostafazadeh et al. (2016) and the Story Cloze
(manually created). Different from event chains,
it still meets the requirements and provides a very
large common corpus with 100k short stories. An-
other recent proposal is the InScript Corpus from
Modi et al. (2016). They used Amazon Turk to
create 1000 stories covering 10 predefined scenar-
ios. While not as large and diverse as the Story
Cloze, the entire corpus was annotated for gold
events, coreference, and entities. This is an in-
teresting new resource that avoids many of the
problems discussed above, although issues of an
event’s coreness to a narrative may still need to be
addressed.

We ultimately hope this short paper helps clar-
ify recent results, inspires future evaluation, and
most of all encourages discussion.

Acknowledgments

This work was supported by a grant from the Of-
fice of Naval Research.

References
Simon Ahrendt and Vera Demberg. 2016. Improving

event prediction by representing script participants.
In Proceedings of North American Chapter of the
Association for Computational Linguistics.

Nathanael Chambers and Dan Jurafsky. 2008. Unsu-
pervised learning of narrative event chains. In Pro-
ceedings of the Association for Computational Lin-
guistics (ACL), Hawaii, USA.

Mark Granroth-Wilding and Stephen Clark. 2016.
What happens next? event prediction using a com-
positional neural network model. In Proceedings of
the 13th AAAI Conference on Artificial Intelligence.

Bram Jans, Steven Bethard, Ivan Vulić, and
Marie Francine Moens. 2012. Skip n-grams
and ranking functions for predicting script events.
In Proceedings of the 13th Conference of the
European Chapter of the Association for Computa-
tional Linguistics, pages 336–344. Association for
Computational Linguistics.

Ashutosh Modi, Tatjana Anikina, Simon Ostermann,
and Manfred Pinkal. 2016. Inscript: Narrative texts
annotated with script information. In Proceedings of
the 10th International Conference on Language Re-
sources and Evaluation (LREC 16), Portoroz, Slove-
nia, pages 3485–3493.

Ashutosh Modi. 2016. Event embeddings for semantic
script modeling. In Proceedings of the the SIGNLL
Conference on Computational Natural Language
Learning (CoNLL).

Nasrin Mostafazadeh, Nathanael Chambers, Xiaodong
He, Devi Parikh, Dhruv Batra, Lucy Vanderwende,
Pushmeet Kohli, and James Allen. 2016. A cor-
pus and cloze evaluation for deeper understanding
of commonsense stories. In Proceedings of North
American Chapter of the Association for Computa-
tional Linguistics.

Karl Pichotta and Raymond J. Mooney. 2014. Statis-
tical script learning with multi-argument events. In
Proceedings of the 14th Conference of the European
Chapter of the Association for Computational Lin-
guistics (EACL 2014), Gothenburg, Sweden, April.

Karl Pichotta and Raymond J. Mooney. 2016. Learn-
ing statistical scripts with LSTM recurrent neural
networks. In Proceedings of the 30th AAAI Confer-
ence on Artificial Intelligence (AAAI-16), Phoenix,
Arizona.

Rachel Rudinger, Pushpendre Rastogi, Francis Ferraro,
and Benjamin Van Durme. 2015. Script induction
as language modeling. In Proceedings of the 2015
Conference on Empirical Methods in Natural Lan-
guage Processing (EMNLP-15).

45

