
Proceedings of the 11th Linguistic Annotation Workshop, pages 67–75,
Valencia, Spain, April 3, 2017. c©2017 Association for Computational Linguistics

Representation and Interchange of Linguistic Annotation
An In-Depth, Side-by-Side Comparison of Three Designs

Richard Eckart de Castilho♣, Nancy Ide♠, Emanuele Lapponi♥, Stephan Oepen♥,
Keith Suderman♠, Erik Velldal♥, and Marc Verhagen♦

♣ Technische Universität Darmstadt, Department of Computer Science
♠ Vassar College, Department of Computer Science
♥ University of Oslo, Department of Informatics

♦ Brandeis University, Linguistics and Computational Linguistics

Abstract
For decades, most self-respecting linguistic engi-
neering initiatives have designed and implemented
custom representations for various layers of, for
example, morphological, syntactic, and semantic
analysis. Despite occasional efforts at harmoniza-
tion or even standardization, our field today is
blessed with a multitude of ways of encoding and
exchanging linguistic annotations of these types,
both at the levels of ‘abstract syntax’, naming
choices, and of course file formats. To a large de-
gree, it is possible to work within and across de-
sign plurality by conversion, and often there may
be good reasons for divergent design reflecting dif-
ferences in use. However, it is likely that some ab-
stract commonalities across choices of representa-
tion are obscured by more superficial differences,
and conversely there is no obvious procedure to
tease apart what actually constitute contentful vs.
mere technical divergences. In this study, we seek
to conceptually align three representations for com-
mon types of morpho-syntactic analysis, pinpoint
what in our view constitute contentful differences,
and reflect on the underlying principles and spe-
cific requirements that led to individual choices.
We expect that a more in-depth understanding of
these choices across designs may lead to increased
harmonization, or at least to more informed design
of future representations.

1 Background & Goals

This study is grounded in an informal collaboration
among three frameworks for ‘basic’ natural lan-
guage processing, where workflows can combine
the outputs of processing tools from different devel-
oper communities (i.e. software repositories), for
example a sentence splitter, tokenizer, lemmatizer,
tagger, and parser—for morpho-syntactic analysis
of running text. In large part owing to divergences
in input and output representations for such tools, it
tends to be difficult to connect tools from different
sources: Lacking interface standardization, thus,
severely limits interoperability.

The frameworks surveyed in this work ad-
dress interoperability by means of a common

representation—a uniform framework-internal
convention—with mappings from tool-specific in-
put and output formats. Specifically, we will take
an in-depth look at how the results of morpho-
syntactic analysis are represented in (a) the DKPro
Core component collection1 (Eckart de Castilho
and Gurevych, 2014), (b) the Language Analysis
Portal2 (LAP; Lapponi et al. (2014)), and (c) the
Language Application (LAPPS) Grid3 (Ide et al.,
2014a). These three systems all share the com-
mon goal of facilitating the creation of complex
NLP workflows, allowing users to combine tools
that would otherwise need input and output format
conversion in order to be made compatible. While
the programmatic interface of DKPro Core targets
more technically inclined users, LAP and LAPPS
are realized as web applications with a point-and-
click graphical interface. All three have been un-
der active development for the past several years
and have—in contemporaneous, parallel work—
designed and implemented framework-specific rep-
resentations. These designs are rooted in related
but interestingly different traditions; hence, our
side-by-side discussion of these particular frame-
works provides a good initial sample of observable
commonalities and divergences.4

2 Terminological Definitions

A number of closely interrelated concepts apply
to the discussion of design choices in the repre-

1https://dkpro.github.io/dkpro-core
2https://lap.clarino.uio.no
3https://www.lappsgrid.org
4There are, of course, additional designs and workflow

frameworks that we would ultimately hope to include in this
comparison, as for example the representations used by CON-
CRETE, WebLicht, and FoLiA (Ferraro et al., 2014; Heid
et al., 2010; van Gompel and Reynaert, 2013), to name just
a few. However, some of these frameworks are at least ab-
stractly very similar to representatives in our current sample,
and also for reasons of space we need to restrict this in-depth
comparison to a relatively small selection.

67

DT NNP NNP VBZ RB VB VBG NNP .
The Olympic Committee does n’t regret choosing China .
the Olympic Committee do not regret choose China .

ORGANIZATION COUNTRY

det

nn

nsubj

aux

neg xcomp dobj

root

BV

compound

ARG1

top

neg ARG2ARG2

ARG1

ARG2

Figure 1: Running example, in ‘conventional’ visualization, with five layers of annotation: syntactic
dependencies and parts of speech, above; and lemmata, named entities, and semantic dependencies, below.

sentations for linguistic annotations. Albeit to
some degree intuitive, there is substantial termi-
nological variation and vagueness, which in turn
reflects some of the differences in overall annota-
tion scheme design across projects and systems.
Therefore, with due acknowledgement that no sin-
gle, definitive view exists we provide informal defi-
nitions of relevant terms as used in the sections that
follow in order to ground our discussion.

Annotations For the purposes of the current ex-
ercise we focus on annotations of language data in
textual form, and exclude consideration of other
media such as speech signals, images, and video.
An annotation associates linguistic information
such as morpho-syntactic tags, syntactic roles, and
a wide range of semantic information with one or
more spans in a text. Low-level annotations typi-
cally segment an entire text into contiguous spans
that serve as the base units of analysis; in text, these
units are typically sentences and tokens. The as-
sociation of an annotation to spans may be direct
or indirect, as an annotation can itself be treated as
an object to which other (higher level) annotations
may be applied.

Vocabulary The vocabulary provides an inven-
tory of semantic entities (concepts) that form the
building blocks of the annotations and the rela-
tions (links) that may exist between them (e.g. con-
stituent or dependency relations, coreference, and
others). The CLARIN Data Concept Registry5 (for-
merly ISOcat) is an example of a vocabulary for
linguistic annotations.

5https://openskos.meertens.knaw.nl/
ccr/browser/

Schema A schema provides an abstract specifi-
cation (as opposed to a concrete realization) of the
structure of annotation information, by identifying
the allowable relations among entities from the vo-
cabulary that may be expressed in an annotation.
A schema is often expressed using a diagrammatic
representation such as a UML diagram or entity-
relationship model, in which entities label nodes in
the diagram and relations label the edges between
them. Note that the vocabulary and the schema that
uses it are often defined together, thus blurring the
distinction between them, as for example, in the
LAPPS Web Service Exchange Vocabulary (see
Section 3) or any UIMA CAS type system.

Serialization A serialization of the annotations
is used for storage and exchange. Annotations fol-
lowing a given schema can be serialized in a variety
of formats such as (basic) XML, database (column-
based) formats, compact binary formats, JSON,
ISO LAF/GrAF (Ide and Suderman, 2014; ISO,
2012), etc.

3 A Simple Example

In the following sections, we will walk through
a simple English example with multiple layers of
linguistic annotations. Figure 1 shows a rendering
of our running example in a compact, graphical
visualization commonly used in academic writing.
However, even for this simple sentence, we will
point out some hidden complexity and information
left implicit at this informal level of representation.

For example, there are mutual dependencies
among the various layers of annotation: parts of
speech and lemmatization both encode aspects of

68

Token
(int) begin 12
(int) end 21
String posValue NP

Committee (12:21)

PROPN
(int) begin 12
(int) end 21
String posValue NP
String coarseValue PROPN

pos

Lemma
(int) begin 12
(int) end 21
String value Committee

NN
(int) begin 4
(int) end 11
String dependencyType NN
String flavor basic

Token
(int) begin 4
(int) end 11
String posValue NP

Olympic (4:11)

dependent governor

lemma

Organization
(int) begin 4
(int) end 11
String value ORG
String identifier http://dbpedia.org/page/International_Olympic_Committee

Dependency
(int) begin 12
(int) end 21
String dependencyType compound
String flavor enhanced

governor dependent

Figure 2: DKPro Core Zoom

token-level morphological analysis; syntactic de-
pendencies, in turn, are plausibly interpreted as
building on top of the morphological information;
finally, also the semantic dependencies, will typ-
ically be based on some or maybe all layers of
morpho-syntactic analysis. In practice, on the other
hand, various layers of annotation are often com-
puted by separate tools, which may or may not take
into account information from ‘lower’ analysis lay-
ers. In this respect, the visualization in Figure 1
gives the impression of a single, ‘holistic’ represen-
tation, even though it need not always hold that all
analysis layers have been computed to be mutually
consistent with each other. In Section 4 below, we
will observe that a desire to make explicit the prove-
nance of separate annotation layers can provide an
important design constraint.

DKPro Core Type System The DKPro Core
Type System extends the type system that is built
into the UIMA6 framework (Ferrucci and Lally,
2004). It provides types for many layers of linguis-
tic analysis, such as segmentation, morphology,
syntax, discourse, semantics, etc. Additionally,
there are several types that carry metadata about

6When talking about UIMA, we refer to the Apache UIMA
implementation: http://uima.apache.org.

the document being processed, about tagsets, etc.
UIMA represents data using the Common Anal-

ysis System (CAS) (Götz and Suhre, 2004). The
CAS consists of typed feature structures organized
in a type system that supports single inheritance.
There are various serialization formats for the CAS.
The most prominent is based on the XML Meta-
data Interchange specification (XMI) (OMG, 2002).
However, there are also e.g. various binary serial-
izations of the CAS with specific advantages, e.g.
built-in compression for efficient network transfer.

The built-in types of UIMA are basic ones, such
as TOP (a generic feature structure), Annotation
(a feature structure anchored on text via start/end
offsets), or SofA (short for ‘subject of analysis’, the
signal that annotations are anchored on). A single
CAS can accommodate multiple SofAs which is
useful in many cases: holding multiple translations
of a document; holding a markup and a plaintext
version; holding an audio signal and its transcrip-
tion; etc. Annotation and all types inheriting from it
are always anchored on a single SofA, but they may
refer to annotations anchored on a different SofA,
e.g. to model word alignment between translated
texts. The CAS also allows for feature structures
inheriting from TOP that are not anchored to a
particular SofA.

69

Figure 2 shows a zoom on the sub-string
Olympic Committee from Figure 1. All of the
shown annotations are anchored on the text using
offsets. The Token, PoS (PROPN), and Lemma
annotations are anchored each on a single word.
The named entity (Organization) annotation spans
two words. The Dependency relation annotations
anchored by convention on the span of the depen-
dent Token. Syntactic and semantic dependencies
are distinguished via the flavor feature. All anno-
tations (except Token) have a feature which con-
tains the original output(s) of the annotation tool
(value, posValue, coarseValue, dependencyType).
The possible values for these original outputs are
not specified in the DKPro Core type system. How-
ever, for the convenience of the user, DKPro Core
supports so-called elevated types which are part
of the type system and function as universal tags.
Using mappings, the elevated type is derived from
the original tool output. The Penn Treebank tag
NNP, for example. is mapped to the type PROPN.
For example, for PoS tags DKPro Core uses the
Universal Dependency PoS categories.

Lap eXchange Format (LXF) Closely follow-
ing the ISO LAF guidelines (Ide and Suderman,
2014), LXF represents annotations as a directed
graph that references pieces of text; elements com-
prising the annotation graph and the base segmen-
tation of the text are explicitly represented in LXF
with a set of node, edge, and region elements. Re-
gions describe text segmentation in terms of char-
acter offsets, while nodes contain (sets of) annota-
tions (and optionally direct links to regions). Edges
record relations between nodes and are optionally
annotated with (non-linguistic) structural informa-
tion. Nodes in LXF are typed, ranging for example
over sentence, token, morphology, chunk, or depen-
dency types. There are some technical properties
common to all nodes (e.g. a unique identifier, se-
quential index, as well as its rank and receipt, as
discussed below), and each node further provides a
feature structure with linguistic annotations, where
the particular range of features is determined by
the node type.

Consider the example of Figure 1. Assuming
sentence segmentation prior to word tokenization,
the corresponding LXF graph comprises ten re-
gions, one for the full sentence and one for each
of the tokens. Figure 3 pictures the LXF version
of Figure 2 described in the previous section. For
sentence segmentation, LXF includes one node of

type sentence, which contains links (represented
as dashed edges in Figure 3) to the correspond-
ing regions; similarly, token-typed nodes also di-
rectly link to their respective region, effectively
treating sentence segmentation and word tokeniza-
tion equally. If these two annotation types are ob-
tained sequentially as part of an annotation work-
flow (i.e. the word tokenizer segments one sentence
at a time), the LXF graph includes one directed
edge from each token node to its sentence node,
thus ensuring that the provenance of the annotation
is explicitly modeled in the output representation.

Moving upwards to parts of speech, LXF for
the example sentence includes one node (of type
morphology) per PoS, paired with one edge point-
ing to the token node it annotates. Similarly to
the sentence–token relationship, separate morphol-
ogy nodes report the result of lemmatization, with
direct edges to PoS nodes when lemmatization re-
quires tagged input (or to token nodes otherwise).
In general, running a new tool results in new LXF
(nodes and) edges linking incoming nodes to the
highest (i.e. topologically farthest from segmenta-
tion) annotation consumed. This holds true also
for the nodes of type dependency in Figure 3; here
each dependency arc from Figure 1 is ‘reified’ as
a full LXF node, with an incoming and outgoing
edge each recording the directionality of the head–
dependent relation. The named entity, in turn, is
represented as a node of type chunk, with edges
pointing to nodes for PoS tags, reflecting that the
named entity recognizer operated on tokenized and
tagged input.

LXF graph elements (including the annotated
media and regions) are in principle serialization-
agnostic, and currently implemented in LAP as a
multitude of individual, atomic records in a NoSQL
database. A specific annotation (sub-)graph, i.e. a
collection of interconnected nodes and edges, in
this approach is identified by a so-called receipt,
essentially a mechanism for group formation. Each
step in a LAP workflow consumes one or more re-
ceipts as input and returns a new receipt comprising
additional annotations. Thus, each receipt uniquely
identifies the set of annotations contributed by one
tool, as reflected in the receipt properties on the
nodes of Figure 3. LAP imposes a strict principle
of monotonicity, meaning that existing annotations
are never modified by later processing, but rather
each tool adds its own, new layer of annotations
(which could in principle ‘overlay’ or ‘shadow’

70

(0:52)

sentence

string: The … China.

R2
@0
#0

(4:11)

token

form: Olympic

R3
@1
#0

(12:21)

token

form: Committee

R3
@2
#0

morphology

pos: NNP

R4
@1
#0

chunk

class: ORGANIZATION

R5
@0
#0

morphology

pos: NNP

R4
@2
#0

morphology

lemma: Olympic

R6
@1
#0

dependency

relation: nn

R7
@2
#0

morphology

lemma: Committee

R6
@2
#0

dependency

relation: compound

R8
@1
#0

Figure 3: Excerpt from the LXF graph for the running example in Figure 1, zooming in on Olympic
Committee. Segmentation regions are shown as dashed boxes, with character offsets for the two tokens
and the full sentence, respectively. Nodes display their type (e.g. morphology), part of the feature structure
containing the linguistic annotation (e.g. the part of speech), and their receipt, index, and rank properties
(‘R4’, ‘@1’ and ‘#0’, respectively).

information from other layers). Therefore, for ex-
ample, parallel runs of the same (type of) tool can
output graph elements that co-exist in the same
LXF graph but can be addressed each by their own
receipt (see Section 4 below).

LAPPS Interchange Format (LIF) The
LAPPS Grid exchanges annotations across web
services using LIF (Verhagen et al., 2016), an
instantiation of JSON-LD (JavaScript Object
Notation for Linked Data), a format for trans-
porting Linked Data using JSON, a lightweight,
text-based, language-independent data interchange
format for the portable representation of structured
data. Because it is based on the W3C Resource
Definition Framework (RDF), JSON-LD is trivially
mappable to and from other graph-based formats
such as ISO LAF and UIMA CAS, as well as
a growing number of formats implementing
the same data model. JSON-LD extends JSON
by enabling references to annotation categories
and definitions in semantic-web vocabularies
and ontologies, or any suitably defined concept
identified by a URI. This allows for referencing
linguistic terms in annotations and their definitions
at a readily accessible canonical web location, and
helps ensure consistent term usage across projects

and applications. For this purpose, the LAPPS
Grid project provides a Web Service Exchange
Vocabulary (WSEV; Ide et al. (2014b)), which
defines a schema comprising an inventory of
web-addressable entities and relations.7

Figure 4 shows the LIF equivalent of Figures 2
and 3 in the previous sections. Annotations in LIF
are organized into views, each of which provides
information about the annotations types it contains
and what tool created the annotations. Views are
similar to annotation ‘layers’ or ‘tasks’ as defined
by several mainstream annotation tools and frame-
works. For the full example in Figure 1, a view
could be created for each annotation type in the or-
der it was produced, yielding six consecutive views
containing sentence boundaries, tokens, parts of
speech and lemmas, named entities, syntactic de-
pendencies, and semantic dependencies.8 In Fig-
ure 4, a slightly simplified graph is shown with only
three views and where token and part of speech
information is bundled in one view and where lem-
mas and semantic relations are ignored. A view

7The WSEV links terms in the inventory to equivalent or
similar terms defined elsewhere on the web.

8The last three views could be in a different order, depend-
ing on the sequence in which the corresponding tools were
applied.

71

Dependency view id=v2 NamedEntity view id=v1

Token view id=v0

Token

id tk_1
start 4
end 11
pos NNP

Token

id tk_2
start 12
end 21
pos NNP

NamedEntity

id ne_0
start 4
end 21
label Organization

DependencyStructure

id ne_0
start 0
end 52
dependencies [dep_3]

Dependency

id dep_3
governor v0:tk_2
dependent v0:tk_1
label nn

Olympic (4:11) Committee (12:21)

Figure 4: Excerpt from the LIF graph for the running example in Figure 1, zooming in on Olympic
Committee. Views are shown as dashed boxes and annotations as regular boxes with annotation types in
bold and with other attributes as appropriate for the type. Arrows follow references to other annotations or
to the source data.

is typically created by one processing component
and will often contain all information added by
that component. All annotations are in standoff
form; an annotation may therefore reference a span
(region) in the primary data, using character off-
sets, or it may refer to annotations in another view
by providing the relevant ID or IDs. In the exam-
ple, a named entity annotation in the Named Entity
view refers to character offsets in the primary data
and the dependency annotation in the Dependency
view refers to tokens in the Token view, using To-
ken view ID and the annotation IDs as defined in
the Token view.9

Preliminary Observations Each of the three
representations has been created based on a dif-
ferent background and with a different focus. For
example, LIF is coupled with JSON-LD as its seri-
alization format and uses views to carry along the
full analysis history of a document including per-
view provenance data. LXF uses explicit relations
between annotations to model provenance and has
strong support for multiple concurrent annotations
and for managing annotation data persisted in a
database. The DKPro Core is optimized for ease of
use and processing efficiency within analysis work-
flows and has rather limited support for concurrent
annotations, provenance, and stable IDs.

Some technical differences between the three de-
signs actually remain hidden in the abbreviated,
diagrammatic representations of Figures 2 to 4.
Abstractly, all three are directed graphs, but the
relations between nodes in DKPro Core and LIF

9Note that multiple Token views can co-exist in the anno-
tation set.

are established by having the identifier or reference
of the target node as a feature value on a source
node, whereas LXF (in a faithful rendering of the
ISO LAF standard) actually realizes each edge as
a separate, structured object. In principle, separate
edge objects afford added flexibility in that they
could bear annotations of their own—for example,
it would be possible to represent a binary syntactic
or semantic dependency as just one edge (instead
of reifying the dependency as a separate node, con-
nected to other nodes by two additional edges).
However, Ide and Suderman (2014) recommend to
restrict edge annotations to non-linguistic informa-
tion, and LXF in its current development status at
least heeds that advice. Hence, the DKPro Core
and LIF representations are arguably more compact
(in the number of objects involved).

A broad view of the three approaches shows
that at what we may regard as the ‘micro-level’,
that is, the representation of individual annotations,
differences are irrelevant in terms of the schema
applied, which are trivially mappable based on a
common underlying (graph-based) model. At a
higher level, however, different goals have led to
divergences in the content and organization of the
information that is sent from one tool to another
in a workflow chain. In the following section, we
consider these differences.

4 Pushing a Little Farther

While our above side-by-side discussion of ‘basic’
layers of morpho-syntactic annotations may seem
to highlight more abstract similarity than diver-
gence, in the following we will discuss a few more

72

intricate aspects of specific annotation design. We
expect that further study of such ‘corner cases’ may
shed more light on inherent degrees of flexibility
in a particular design, as well as on its scalability
in annotation complexity.

Media–Tokenization Mismatches Tokenizers
may apply transformations to the original input
text that introduce character offset mismatches with
the normalized output. For example, some Penn
Treebank–compliant tokenizers normalize different
conventions for quotation marks (which may be
rendered as straight ‘typewriter’ quotes or in multi-
character LATEX-style encodings, e.g. " or `̀) into
opening (left) and closing (right) Unicode glyphs
(Dridan and Oepen, 2012). To make such normal-
ization accessible to downstream processing, it is
insufficient to represent tokens as only a region
(sub-string) of the underlying linguistic signal.

In LXF, the string output of tokenizers is
recorded in the annotations encapsulated with each
token node, which is in turn linked to a region
recording its character offsets in the original me-
dia. LIF (which is largely inspired by ISO LAF,
much like LXF) also records the token string and its
character offsets in the original medium. LIF sup-
ports this via the word property on tokens. DKPro
Core has also recently started introducing a To-
kenForm annotation optionally attached to Token
feature structures to support this.

Tokenizers may also return more than one token
for the same region. Consider the Italian word del,
which combines the preposition di and the definite
article il. With both tokens anchored to the same
character offsets, systems require more than rea-
soning over sub-string character spans to represent
the linear order of tokens. LXF and LIF encode
the ordering of annotations in an index property on
nodes, trivializing this kind of annotation. DKPro
Core presently does not support this.

Alternative Annotations and Ambiguity
While relatively uncommon in the manual
construction of annotated corpora, it may be
desirable in a complex workflow to allow multiple
annotation layers of the same type, or to record
in the annotation graph more than the one-best
hypothesis from a particular tool. Annotating
text with different segmenters, for example,
may result in diverging base units, effectively
yielding parallel sets of segments. In our running
example, the contraction don’t is conventionally

tokenized as 〈do,n’t〉, but a linguistically less
informed tokenization regime might also lead to
the three-token sequence 〈don,’,t〉 or just the
full contraction as a single token.

In LXF, diverging segmentations originating
from different annotators co-exist in the same an-
notation graph. The same is true for LIF, where
the output of each tokenizer (if more than one is
applied) exists in its own view with unique IDs on
each token, which can be referenced by annotations
in views added later. Correspondingly, alternative
annotations (i.e. annotations of the same type pro-
duced by different tools) are represented with their
own set of nodes and edges in LXF and their own
views in LIF. The DKPro Core type system does
not link tokens explicitly to the sentence but relies
on span offsets to infer the relation. Hence, it is
not possible to represent multiple segmentations
on a single SofA. However, it is possible to have
multiple SofAs with the same text and different
segmentations within a single CAS.

A set of alternative annotations may also be pro-
duced by a single tool, for instance in the form of an
n-best list of annotations with different confidence
scores. In LXF, this kind of ambiguous analyses
translates to a set of graph elements sharing the
same receipt identifier, with increasing values of
the rank property for each alternative interpretation.
Again, the DKPro Core type system largely relies
on span offsets to relate annotations to tokens (e.g.
named entities). Some layers, such as dependency
relations also point directly to tokens. However,
it is still not possible to maintain multiple sets of
dependency relations in DKPro Core because each
relation exists on its own and there is presently
nothing that ties them together. The views in LIF
are the output produced by any single run of a given
tool over the data; therefore, in this case all the vari-
ants would be contained in a single view, and the
alternatives would appear in a list of values asso-
ciated with the corresponding feature (e.g. a list
of PoS–confidence score pairs). Additionally, LIF
provides a DependencyStructure which can bind
multiple dependency relations together and thus
supports multiple parallel dependency structures
even within a single LIF view.

Parallel Annotation At times it is necessary to
have multiple versions of a text or multiple paral-
lel texts during processing, e.g. when correcting
mistakes, removing markup, or aligning transla-
tions. DKPro Core inherits from the UIMA CAS

73

the ability to maintain multiple SofAs in parallel.
This features of UIMA is for example used in the
DKPro Core normalization framework where So-
faChangeAnnotations can be created on one view,
stating that text should be inserted, removed, or
replaced. These annotations can then be applied to
the text using a dedicated component which creates
a new SofA that contains the modified text. Further
processing can then happen on the modified text
without any need for the DKPro Core type system
or DKPro Core components to be aware of the fact
that they operate on a derived text. The alignment
information between the original text and the de-
rived text is maintained such that the annotations
created on the derived text can be transferred back
to the original text.

The LXF and LIF designs support multiple lay-
ers or views with annotations, but both assume a
single base text. In these frameworks, text-level ed-
its or normalizations would have to be represented
as ‘overlay’ annotations, largely analogous to the
discussion of token-level normalization above.

Provenance Metadata describing the software
used to produce annotations, as well as the rules
and/or annotation scheme—e.g. tokenization rules,
part-of-speech tagset—may be included with the
annotation output. This information can be used to
validate the compatibility of input/output require-
ments for tool sequences in a pipeline or workflow.

LIF provides all of this information in metadata
appearing at the beginning of each view, consisting
of URI pointing to the producing software, tagset,
or scheme used, and accompanying rules for iden-
tifying the annotation objects (where applicable).

The LXF principle of monotonicity in accumu-
lating annotation layers is key to its approach to
provenance. For our running example in Section 3
above, we assume that PoS tagging and lemmatiza-
tion were applied as separate steps; hence, there are
separate nodes for these (all of type morphology)
and two distinct receipts. Conversely, if a com-
bined tagger–lemmatizer had been used, its output
would be recorded as a single layer of morphology
nodes—yielding a different (albeit equivalent in
linguistic content) graph structure.

The provenance support in DKPro Core is
presently rather limited but also distinctly differ-
ent from LXF or LIF. Presently, for a given type
of annotation, e.g. PoS tags, the name of one cre-
ator component can be stored. This assumes that
every type of annotation is produced by at most

by one component. Additionally, whenever possi-
ble, DKPro Core extracts tagsets from the models
provided with taggers, parsers, and similar compo-
nents and stores these along with the model lan-
guage, version, and name in a TagsetDescription.
This even lists tags not output by the component.

5 Conclusions & Outlook

We have surveyed the differences and commonali-
ties among three workflow analysis systems in or-
der to move toward identifying the needs to achieve
greater interoperability among workflow systems
for NLP. This preliminary analysis shows that while
some basic elements have common models and are
therefore easily usable by other systems, the han-
dling of alternative annotations and representation
of provenance are among the primary differences
in approach. This suggests that future work aimed
at interoperability needs to address this level of rep-
resentation, as we attempt to move toward means to
represent linguistically annotated data and achieve
universal interoperability and accessibility.

In ongoing work, we will seek to overcome re-
maining limitations through (a) incremental refine-
ment (working across the developer communities
involved) that seeks to eliminate unnecessary, su-
perficial differences (e.g. in vocabulary naming
choices) and (b) further exploring the relationships
between distinct designs via the implementation
of a bidirectional converter suite. Information-
preserving round-trip conversion, on this view,
would be a strong indicator of abstract design equiv-
alence, whereas conversion errors or information
loss in round-trip conversion might either point to
contentful divergences or room for improvement in
the converter suite.

Acknowledgments

This work was funded in parts from the Euro-
pean Union’s Horizon 2020 research and innova-
tion programme (H2020-EINFRA-2014-2) under
grant agreement No. 654021. It reflects only the
author’s views and the EU is not liable for any
use that may be made of the information contained
therein. It was further supported in parts by the
German Federal Ministry of Education and Re-
search (BMBF) under the promotional reference
01UG1416B (CEDIFOR) and by the U.S. National
Science Foundation grants NSF-ACI 1147944 and
NSF-ACI 1147912. LAP development is sup-
ported by the Norwegian Research Council through

74

the national CLARINO initiative, as well as by
the Norwegian national computing and storage e-
infrastructures, and the Department of Informatics
at the University of Oslo. We are grateful to every-
one involved, in particular all taxpayers.

References
Rebecca Dridan and Stephan Oepen. 2012. Tokeniza-

tion. Returning to a long solved problem. A sur-
vey, contrastive experiment, recommendations, and
toolkit. In Proceedings of the 50th Meeting of the As-
sociation for Computational Linguistics, page 378 –
382, Jeju, Republic of Korea, July.

Richard Eckart de Castilho and Iryna Gurevych. 2014.
A broad-coverage collection of portable NLP com-
ponents for building shareable analysis pipelines. In
Proceedings of the Workshop on Open Infrastruc-
tures and Analysis Frameworks for HLT, page 1 – 11,
Dublin, Ireland.

Francis Ferraro, Max Thomas, Matthew R Gorm-
ley, Travis Wolfe, Craig Harman, and Benjamin
Van Durme. 2014. Concretely annotated corpora.
In Proceedings of the AKBC Workshop at NIPS
2014, Montreal, Canada, December.

David Ferrucci and Adam Lally. 2004. UIMA. An
architectural approach to unstructured information
processing in the corporate research environment.
Natural Language Engineering, 10(3-4):327 – 348,
September.

Maarten van Gompel and Martin Reynaert. 2013. Fo-
LiA. A practical XML format for linguistic annota-
tion. A descriptive and comparative study. Computa-
tional Linguistics in the Netherlands Journal, 3:63 –
81.

Thilo Götz and Oliver Suhre. 2004. Design and imple-
mentation of the UIMA Common Analysis System.
IBM Systems Journal, 43(3):476 – 489.

Ulrich Heid, Helmut Schmid, Kerstin Eckart, and Er-
hard W. Hinrichs. 2010. A corpus representa-
tion format for linguistic web services. The D-SPIN
Text Corpus Format and its relationship with ISO
standards. In Proceedings of the 7th International
Conference on Language Resources and Evaluation,
page 494 – 499, Valletta, Malta.

Nancy Ide and Keith Suderman. 2014. The Linguis-
tic Annotation Framework. A standard for annota-
tion interchange and merging. Language Resources
and Evaluation, 48(3):395 – 418.

Nancy Ide, James Pustejovsky, Christopher Cieri, Eric
Nyberg, Denise DiPersio, Chunqi Shi, Keith Su-
derman, Marc Verhagen, Di Wang, and Jonathan
Wright. 2014a. The Language Application Grid.
In Proceedings of the 9th International Conference
on Language Resources and Evaluation, Reykjavik,
Iceland.

Nancy Ide, James Pustejovsky, Keith Suderman, and
Marc Verhagen. 2014b. The Language Application
Grid Web Service Exchange Vocabulary. In Pro-
ceedings of the Workshop on Open Infrastructures
and Analysis Frameworks for HLT, Dublin, Ireland.

ISO. 2012. Language Resource Management. Linguis-
tic Annotation Framework. ISO 24612.

Emanuele Lapponi, Erik Velldal, Stephan Oepen, and
Rune Lain Knudsen. 2014. Off-road LAF: Encod-
ing and processing annotations in NLP workflows.
In Proceedings of the 9th International Conference
on Language Resources and Evaluation, page 4578 –
4583, Reykjavik, Iceland.

OMG. 2002. OMG XML metadata interchange (XMI)
specification. Technical report, Object Management
Group, Inc., January.

Marc Verhagen, Keith Suderman, Di Wang, Nancy
Ide, Chunqi Shi, Jonathan Wright, and James Puste-
jovsky. 2016. The LAPPS Interchange Format. In
Revised Selected Papers of the Second International
Workshop on Worldwide Language Service Infras-
tructure - Volume 9442, WLSI 2015, pages 33–47,
New York, NY, USA. Springer-Verlag New York,
Inc.

75

