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Abstract

Human listeners are able to quickly and ro-
bustly adapt to new accents and do so by
using information about speaker’s identi-
ties. This paper will present experimen-
tal evidence that, even considering infor-
mation about speaker’s identities, listen-
ers retain a strong bias towards the acous-
tics of their own dialect after dialect learn-
ing. Participants’ behaviour was accu-
rately mimicked by a classifier which was
trained on more cases from the base dialect
and fewer from the target dialect. This
suggests that imbalanced training data
may result in automatic speech recogni-
tion errors consistent with those of speak-
ers from populations over-represented in
the training data.

1 Introduction

Accent adaptation is an on-going challenge for au-
tomatic speech recognition (ASR) systems. How-
ever, a system does exist which adapts quickly and
robustly to new accents: human speech percep-
tion, and in particular perceptual learning of new
dialects.

This is a process which has been extensively re-
searched in the fields of sociolinguistics and pho-
netics. It is well established that listeners do learn
to perceive new language varieties (Fox, 1974;
Hay et al., 2010; Sumner, 2011), and that they
use world knowledge and their social beliefs about
speakers to do so (Niedzielski, 1999; Johnson et
al., 1999; Hay and Drager, 2010).

While modelling perceptual learning may lead
to more human-like accent adaptation, to be a
good cognitive model, it must capture behaviours
found in experimental work: own-dialect bias, and
the use of world knowledge during adaptation.

2 Experiment

2.1 Mainstream United States and New
Zealand English

This experiment used acoustic data taken from
sociologically-matched speakers of two distinct
dialects: Mainstream US English (MUSE) and
New Zealand English (NZE). The front vowels
of MUSE and NZE vowels very confusable; due
to an on-going vowel shift in NZE, the vowel in
NZE “head” is very similar to the vowel in MUSE
“hid”, and NZE “had” sounds very like MUSE
“head” (Watson, 2014). This overlap can be seen
in Figure 3. Naive MUSE speakers listening to
NZE, then, tend to make systematic errors when
reporting which word they have heard. To eval-
uate this confusion, this experiment used a lexi-
cal identification task, where participants reported
which word they believe a sound to be from.

2.2 Experimental Paradigm

First, listeners took a demographic questionnaire
to ensure that they were from the United States,
that they had not travelled to New Zealand and
that they were unfamiliar with New Zealand En-
glish. Any listener not meeting these criteria was
excluded from the experiment.

Listeners completed three lexical identification
tasks. In each task, they were played a 300ms
audio sample taken from the steady-state of the
vowel from one of the words “heed”, “head” or
“had”. Only the vowel was used in order to avoid
possible confounds of variation in stop-production
across dialects (Lyle, 2008). “Hid” tokens were
excluded due to a very salient duration contrast in
NZE between the vowel in “hid” and other vow-
els (Langstrof, 2009). Audio data was taken from
two speakers of NZE and one speaker of MUSE.
All speakers were white women between the ages
of 20 and 30, with a college-level education or
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higher.
The first lexical identification task was designed

to train listeners to correctly identify the vowels
of NZE. Listeners were played a vowel and asked
to input which word it had come from: “heed”,
“head”, “had” or “hid”. If they picked the right
word, they were told that it was correct and played
a different token. If they picked the wrong one,
they were told that they were incorrect, which
word the token had been taken from and were
given another chance to answer correctly. This
process continued until each listener correctly la-
belled ten tokens in a row. For this task, listeners
heard audio a single speaker of NZE and were told
that the speaker was from New Zealand.

For the next two tasks, listeners did not receive
feedback. In one task they were played audio from
a MUSE speaker, and in the other from a second
NZE speaker. They were explicitly told before
each task the national origin of the speaker they
were about to hear: New Zealand or the United
States. However, while half of the listeners were
given the correct information about each speaker,
the other half were given incorrect information
about each.

Twenty-one listeners participated in this exper-
iment, most of whom (17) were from the West di-
alect region (Labov et al., 2005). The experiment
was administered on-line using PsyToolkit (Stoet,
2010), and participants were recruited using social
media and word of mouth.

3 Experimental Results

All participants were able to learn to successfully
label the vowels of New Zealand English. This can
be seen be seen in Figure 1: when given the cor-
rect social information about the speaker, the clas-
sifications of vowels from both MUSE and NZE
were generally correct, with an average F1 across
classes of 0.96 and 0.75, respectively.

Being given incorrect information about a
speaker’s national origin, e.g. being told that a
speaker from New Zealand was from the United
States affected listeners classifications differently
depending on the actual regional origin of the
speaker. While listeners were still fairly accurate
on their own dialect (F1=0.81), the categorically
changed their judgements for NZE (F1=0.56).
This difference can clearly be seen in Figure 2.
The categorical changes are in line with confu-
sions discussed in Section 2.1. NZE “head” is
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Figure 1: Heatmaps of the confusion matrix for
MUSE (left) and NZE (right) classifications when
participants were told the correct regional origin of
the speaker. Note that, in both cases, most classi-
fications were correct, i.e. on the center diagonal.

mis-classified as “hid”, and NZE “had” is mis-
classified as “head”.

In other words, when listeners from the United
States are listening to a speaker from New Zealand
that they have been told is also from the United
States, they are classifying NZE vowels as if they
were from MUSE. However, the inverse is not
true. Even when told that a MUSE speaker is
from New Zealand, listeners are still classifying
their vowels as if they believed them to be from
the United States. This preference for vowel clas-
sifications in line with those of a listener’s own di-
alect will be referred to as “own-dialect bias” from
this point on.

4 Computational Modelling

Based on the experimental data outlined above,
any classifier of multi-dialect data should have the
following qualities in order to achieve human-like
classifications:

• Classifications should depend on information
about the speaker’s dialect.

• The classifier should should also consider
one dialect the “default” and be biased to-
wards it.

4.1 Data

To maximize parallelism, the same acoustic data
was used to train classifiers as the participants
were given. For each item, four features were
recorded: the speaker’s regional origin (NZ or
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Figure 2: Heatmaps for the confusion matrix for
MUSE (left) and NZE (right) classifications when
participants were told the correct national origin
of the speaker. While this had a slight effect on
the classification of MUSE vowels, it categorically
changed that of NZE vowels–this is what is meant
by “own-dialect bias”.

Figure 3: Plot of training tokens in a first by sec-
ond formant space.

US), and the first, second and third formants as
measured at the central point of the steady state of
the vowel. Formants are frequency bands of high
acoustic energy within the speech signal, and they
are a robust cue to the identity of the vowel for
human listeners (Wright, 2004). The vowels con-
sidered in this study are primarily distinguished by
the first formant, as can be seen in Figure 3.

4.2 Conditional Inference Trees

Throughout this section, modelling is done using
conditional inference trees (Hothorn et al., 2006).
These are decision trees where nodes are split
based on statistical inference rather than informa-
tion gain. As a result, they are not biased towards
factors with more levels, including numeric factors

0.0 0.2 0.4 0.6 0.8 1.0 1.2

0
1

2
3

4
5

Effect of Data Bias on Use of Dialect

Proportion of training data from new dialect

D
en

si
ty

nodes using dialect

2 nodes
1 node
0 nodes

Figure 4: Figure showing how bias in training data
affects the degree to which dialect information is
used during classification. The more data from the
second dialect is added to the original dialect, the
more nodes in conditional inference tree will split
based on dialect.

like formant values.
Another benefit of conditional inference trees is

ease of interpretation. It is clear how each feature
is being used during classification and to what ex-
tent it is affecting classifications, which allows a
clear comparison between different conditional in-
ference trees.

4.3 Bias as Exposure

One way to model own-dialect bias is to compare
models trained on datasets where there is bias to-
wards one dialect. To simulate this, 4500 condi-
tional inference trees were trained. The proportion
of NZE training tokens to MUSE token was varied
between 0.02 (only 1 NZE token) to 1.3 (45 NZE
tokens), with a uniform distribution. As the pro-
portion of training tokens from the second dialect
increased, so did the number of nodes in the con-
ditional inference tree splitting based on speaker
dialect. This can be seen in Figure 4.

A classifier trained on a dataset highly biased
towards MUSE tokens was an excellent model of
participants’ own-dialect bias on mislabelled to-
kens from their own dialect. This can be seen
in Figure 5. The classifications on the left are
from a model trained on data strongly biased to-
wards MUSE: 90% of the training data for this
model came from MUSE. The classifications on
the right are from a model trained on a dataset
balanced between MUSE and NZE (50% each).
The outputs of both models are based on MUSE
data that has been mislabelled as being from NZE.
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Figure 5: Classifications by conditional inference
trees trained on data biased towards MUSE (on
left) or balanced between MUSE and NZE (on
right). These two classifiers are both showing clas-
sifications on MUSE tokens mislabelled as NZE.
In this case, the biased classifier is a better be-
havioural model.

The biased model has classifications much more
in line with human participants than the balanced
one right. The overall accuracy of biased model
(F1=1.00) was also closer to that of human partic-
ipants (F1=0.97) than the accuracy of the unbiased
model (F1=0.85).

The model trained on biased data also proved a
much better behavioural model for NZE data mis-
labelled as being MUSE. This can be seen in Fig-
ure 6. Again, the biased model is the on the left
and the balanced on the right. In particular, the
biased model shows the same confusion pattern
as human participants, with “had” mislabelled as
“head” and “head” mislabelled as “hid”. While
the model trained on balanced data is more accu-
rate (F1=0.74, as opposed to F1=0.48 for the bi-
ased model), it is a much closer approximation of
participant behaviour; participants were very poor
at this task in terms of raw accuracy (F1=0.56).

Conceptually, we can think of the addition of
nodes splitting on dialect as modelling the fact
that the more exposure a listener has to a dialect,
the more likely they are to make distinctions be-
tween that dialect and their own. This is supported
by research which shows that listeners are better
at identifying dialects the more they have been
exposed to them, which has been found in both
English (Clopper and Pisoni, 2004; Baker et al.,
2009) and Spanish (Dı́az-Campos and Navarro-
Galisteo, 2009).
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Figure 6: Classifications of NZE tokens misla-
belled as MUSE by classifiers trained on data bi-
ased towards MUSE (left) or balanced between
MUSE and NZE (right). While the balanced train-
ing data resulted in more accurate classifications,
the biased model is a much more accurate be-
havioural model.

4.4 Response time

While greater exposure to multiple dialects may
improve comprehension accuracy overall, it does
come at a cost. It has been previously found that
lexical selection is slower for listeners who have
been exposed to multiple dialects (Clopper and
Walker, 2016). While all participants in this exper-
iment were exposed to multiple dialects, we can
compare their response times for “heed” (which
was very similar across both dialects) to those for
“had” and “head” tokens (which diverged). A one-
way ANOVA of log-transformed response times
in milliseconds found a significant effect of word
(F(2,4029)=20.63, p <0.01)). Response times for
“heed” (µ = 1168.38, σ = 541.13) were the
fastest, followed by “had” (µ = 1196.62, σ =
510.59) and “head” (µ = 1298.16, σ = 563.39).
So response times for tokens confusable across di-
alects was slower than for those tokens not those
participants were exposed to less variability for.
This can be seen in Figure 7.

This seems even more reasonable given that
most conditional inference trees trained on this
data, such as the one shown in Figure 8, require
travelling through more nodes to classify of “hid”,
“head” or “head” than they do to classify “heed”.
Since making a decision at each node takes time,
moving through fewer nodes would result in a
faster response time.
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Figure 7: Response time, in milliseconds, by token
type. Note that “heed” tokens, which were simi-
lar across dialects and thus didn’t require dialect-
specific learning, were categorized most quickly.

Figure 8: Conditional inference tree trained on
balanced MUSE and NZE data. Note that all
“heed” classifications occur in nodes 3 and 4 and
require travelling through only two other nodes.

5 Discussion

This paper has provided experimental evidence
that human listeners maintain a perceptual bias to-
wards their own dialect even after successful per-
ceptual learning. These findings are not surprising
given previous findings of social bias towards ones
own dialect (Coupland and Bishop, 2007; Floccia
et al., 2006), as well as findings in the speech per-
ception literature.

Early work on the perceptual magnet effect
(Kuhl, 1991), for example, showed that listeners
have a perceptual preference for vowels they are
more familiar with, which was attributed to the lo-
cation of prototypes. Later work on episodic learn-
ing casts this preference in terms of a higher den-
sity of exemplars in this area (Johnson, 1997; Pier-

rehumbert, 2001).

Though the modelling results discussed here do
fit well with the larger claims of exemplar theory,
they are not an explicit extension of it. Note that
the balanced conditional inference tree model is
not explicitly conditioned on the biased models;
each is a separate, independent model. This dif-
fers from the Bayesian belief-updating modelling
often employed in exemplar theory. Learning can
be modelled in this framework in much the same
way, however. Training a new model on a dataset
that is a superset of the previous training set would
allow for “updating” of the model.

The model presented here was weighted to
show own-dialect bias. However, there is nothing
to stop the weighting from going the other way,
which would suggest that it’s possible for a lis-
tener to be biased away from their own dialect.
Given that this has previously been observed in
phonetics research, this is a feature rather than a
bug. With enough exposure to a second dialect,
especially if their attitude towards the second di-
alect is positive, speaker’s production and percep-
tion can both shift towards the new dialect (Evans
and Iverson, 2007; Sumner and Samuel, 2009).

The effect of bias in training data on the classifi-
cation of conditional inference tree models closely
parallels human listener’s biases towards their own
dialect. While this is desirable from a behavioural
modelling perspective, dialectically-biased train-
ing data also resulted in lower accuracy on the
dialect it was biased against. This suggests that
systems trained primarily on one dialect should
make the same types of errors on other dialects
as a speaker of the training dialect would. In this
case, an ASR system trained on MUSE data would
make systematic errors on NZE.

This model also provides an alternate way to
include speaker dialect during automatic speech
recognition. Rather than training separate models
on each dialect (Telaar and Fuhs, 2013; Najafian et
al., 2014), dialect can be included within decision-
tree based acoustic models (Young et al., 1994).
This may be especially helpful for closely related
dialects or varieties that share phones. It may,
however, come with a cost. Given the response
time data discussed in Section 4.4, an accurate be-
havioural model capable of multi-dialect recogni-
tion would respond more slowly to tokens that are
confusable between the dialects it was trained on.
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