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Abstract

An important predictor of historical sound
change, functional load, fails to capture in-
sights from speech perception. Building
on ideal observer models of word recogni-
tion, we devise a new definition of func-
tional load that incorporates both a priori
expectedness and perceptual information.
We explore this new measure with a sim-
ple model and find that it outperforms tra-
ditional measures.

1 Introduction

Whether a phonemic contrast (e.g., /t/ vs /d/)
merges over historical time has been taken to de-
pend on its functional load—essentially its util-
ity in distinguishing different meanings (Gilliéron,
1918; Jakobson, 1931; Malthesius, 1931). Tradi-
tionally, functional load is operationalized as the
number of minimal pair words distinguished only
by the contrast (e.g., for the /t/-/d/ contrast, the
words ten and den). Studies based on this mea-
sure have found higher functional load to be asso-
ciated with lowered likelihood of merging (Wedel
et al., 2013). However, traditional measures of
functional load fail to capture important proper-
ties from speech perception that are critical if one
seeks to understand how a phonological contrast
adds to word identification in actual language use.
Specifically, research on speech perception has
found that the functional contribution of phonemic
contrasts to word identification depends on:

i. the degree to which the contrast is perceptu-
ally distinguishable,

ii. the degree to which the contrast gradiently
adds to the distinction between any pair of
words, not only minimal pairs,

iii. the interaction of (i) and (ii): how the per-
ceptual distinguishability affects word recog-

nition depends on the word’s specific phono-
logical neighbors.

Building on ideal observer models of spoken
word recognition such as Norris and McQueen
(2008) and similarly, Luce and Pisoni (1998), we
integrate (i)-(iii) into a revised definition of func-
tional load. We then evaluate this novel definition
empirically.

2 Theoretical model

In order to understand the amount of “work” a
contrast does, we first seek to understand the im-
plications of losing the contrast. Traditionally
functional load is thought of as the number of
meaning distinctions lost when a contrast disap-
pears. Our revised definition measures functional
load as the overall decrease in probability of cor-
rectly recognizing meaning. We measure func-
tional load by first calculating the confusion in the
system with the contrast in place, then, merging
the contrast in question, re-calculate the confusion
of the system without the contrast and measure the
difference. For the present purpose, we follow pre-
vious work and operationalize meanings as lexical
entries (or short, words). Thus:

FLc =E[p(CorrectWordRecognitionwith c)]−
E[p(CorrectWordRecognitionwithout c)]

(1)
Equation (1) defines functional load as the ex-
pected value (i.e. the mean) of the probability of
correct word recognition when the system has the
contrast c minus the expected value for the same
language without the contrast. In this paper we
entertain two conceptualizations for the expected
value: one for which each word/meaning type is
equally important (which we shall refer to as type-
based functional load) and one in which words
are weighted by their relative frequencies (token-
based functional load).
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Taking context into account, the type-based ex-
pected value of the probability of recognizing
a word (i.e.: E[p(CorrectWordRecognition)])
would be equivalent to taking the average of the
probabilities of recognizing all words in the lexi-
con, i.e.: ∑L

ws
f(p(wh|ws, ctxt))

|L| (2)

where L is the set of word types in the lexicon,
ws is the word spoken by the talker, wh is the
word heard by the interlocutor, and ctxt is the
context the word was spoken in. f is a func-
tion of the choice rule that determines p(wh =
ws|ws, ctxt) from the distribution of all poten-
tially heard words, p(wh|ws, ctxt). For example,
f could be the criterion rule (Green and Swets,
1966) whereby the probability of the listener cor-
rectly recognizing the word is calculated as the
probability that the intended word has the highest
chance of being heard out of all other candidates.

Token-based functional load can be formulated
similarly, but instead of merely averaging the
probabilities of recognizing each word, one takes
the weighted average, where each probability is
weighted by the word’s frequency:

∑L
ws

p(ws|ctxt) · p(ctxt) · f(p(wh|ws, ctxt))∑L
ws

p(ws|ctxt) · p(ctxt)
(3)

These two approaches make different claims
about the pressures on language change—token-
based accounts imply that the average number
of misrecognitions exerts the pressure, whereas
type-based accounts would suggest the number
of meanings confused is most important. Sim-
ilar distinctions have been made previously, for
example, Martinet (1952) and Hockett (1955) ar-
gue that lexical frequency should affect functional
load, similar to how we weigh probabilities of
recognition in our token-based account. Conceiv-
ably, either approach might better capture how
languages change, or perhaps some higher-level
utility function weighs words’ relative importance
(e.g., words that have greater utility in recogniz-
ing contribute more). One of the benefits of our
modeling approach is that we can quantitatively
compare the two accounts.

Our proposal shares with entropic accounts
(Hockett, 1967; Surendran and Niyogi, 2003;
Surendran and Niyogi, 2006) that it incorporates

the probability of recognizing words (via contex-
tual predictability). However, the present pro-
posal also incorporates perceptual confusability.
On the other hand, ideal observer models predict
that word recognition depends on both percep-
tual distinguishability and contextual predictabil-
ity (capturing both bottom-up and top-down in-
fluences on word recognition). We therefore es-
timate f(p(wh = wi|wi, ctxt)), the probability of
correctly recognizing word wi, by comparing the
perceptual confusability of wi with all other words
in the lexicon, weighted by frequency, following
Luce and Pisoni (1998).

3 Approach

3.1 Estimating word recognition rates

Although contextual predictability could be in-
cluded in future versions of our model, we ignore
it for simplicity’s sake, essentially approximating
rates of isolated word recognition. We calculate
the predicted probability of recognizing an iso-
lated word wi as:

PerceptualConfusability(wi,wi)·log Freqi∑
j∈L PerceptualConfusability(wj ,wi)·log Freqj

(4)

where the L is the set of all word forms in the lex-
icon (i.e. pairwise calculations with wi and every
other word form, wj , including itself). The gen-
eral formulation of Equation (4) follows Luce and
Pisoni (1998), using Luce’s choice rule—i.e. hear-
ing each word out of all the alternatives at a prob-
ability equal to the probability that particular word
(Luce, 1959). In essence, the numerator is a mea-
sure of how likely the listener is to hear the phones
in wi correctly, weighted by frequency of wi. The
denominator is the frequency-weighted sum of the
probabilities of mishearing the phones in wi as all
other possible words.

We estimate the perceptual con-
fusability of two strings of phones,
PerceptualConfusability(xj , xi), as the prod-
uct of the probabilities of confusing phones in the
first string (xi) with phones at the same locations
in the second string (xj), using probabilities from
a phoneme-to-phoneme confusion matrix we built
with perceptual data collected from Cutler et al.
(2004).
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PerceptualConfusability(xj , xi) =
n∏

a=1

P(paj |pai)

(5)

where n is the number of phones in xi and
P(paj |pai) represents the conditional probability
of hearing the ath phone in xi (pai) as the ath
phone in xj (paj). The formulation of Equation
(5) currently entails that we are only consider-
ing words of equal length to the target when cal-
culating perceptual confusion. Future work can
consider deletion and insertion confusions (Levy,
2008).

With the phonological data from the CMU Pro-
nouncing Dictionary (Weide, 1998) and lexical
frequencies collected from the SUBTLEX-US fre-
quency database (Brysbaert and New, 2009), we
can estimate the probability of correctly recog-
nizing over 42,000 word forms of American En-
glish. The recognition rates predicted by this
method have been shown to mirror properties
of spoken word recognition (Luce and Pisoni,
1998). Combining these data, we can calculate
E[p(CorrectWordRecognitionwith c)] from (1).

3.2 Simulating contrast loss

The perceptual confusion matrix our model uses
can be considered an estimate of the perceptual
distinguishability of all phonemes in English as it
exists currently. To simulate a hypothetical ver-
sion of English that does not contain a certain con-
trast, we can artificially manipulate the confusion
matrix our model uses to make the phonemes in
the contrast perceptually indistinguishable.

For example, to simulate a variety in English
in which there is no longer a distinction be-
tween /t/ and /d/, we can redistribute the prob-
ability mass of the confusion matrix so that
p(/t/heard|/d/spoken) = p(/t/heard|/t/spoken) and vice
versa (Figure 1). The probability that a listener
would recognize a /t/ as a /t/ would then be equal
to the probability they recognize the phoneme
as a /d/. Combining this altered confusion ma-
trix with (4), we can rerun our model, calcu-
lating the average probability of correctly recog-
nizing words without the contrast, and estimate
E[p(CorrectWordRecognitionwithout c)].

Figure 1: Manipulating the probability
mass in the phoneme-to-phoneme con-
fusion matrix to simulate losing the /t/-
/d/ contrast.

4 Verifying our model’s properties

Earlier, we stated that a definition of functional
load that captures what is known about spoken
word recognition should depend on (i)-(iii). In
the follow sections, we verify that our model cap-
tures these properties (though under simplifying
assumptions).

4.1 Revised functional load depends on
contrasts’ a priori perceptual
distinguishability

Phonemes differ in their ease of recognition
and differentiation acoustically and perceptually
(Miller and Nicely, 1955; Wang and Bilger, 1973;
Cutler et al., 2004). Some phonemes are harder
to correctly recognize than others, and some con-
trasts are more readily confused. The loss of a
phonemic contrast with high a priori perceptual
confusability will affect word recognition less than
losing a contrast between two very perceptually
distinct phonemes, all other things being equal.
For example, the /A/-/O/ contrast in American En-
glish has low perceptual distinguishability, even in
non-merging dialects (Cutler et al., 2004). Los-
ing this contrast increased predicted misrecogni-
tion rates by 6.6%. In comparison, removal of
the same contrast in a simulated version of En-
glish where /A/-/O/ are highly distinct (i.e., the orig-
inal confusability reduced by 80%) increased mis-
recognition rates by 10.1%.

4.2 Contrast loss affects more than just
minimal pairs

Traditional functional load—including recent ex-
tensions (Surendran and Niyogi, 2006; Wedel et
al., 2013)—fail to capture the fact that real-world
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Figure 2: Twenty randomly chosen mergers demonstrating the complex relationship
of perception, phonotactics, and the lexicon (with Arpabet labels). Size and color of
dots indicate the a priori perceptual confusability of the contrast, as estimated by the
original confusion matrix. Axes are scaled independently. The red lines show the
increase in the contrast’s functional load had the contrast originally been perfectly
perceptually distinct—in essence, the sensitivity of the contrast’s functional load to
its a priori confusability.

spoken word recognition is influenced by word-
to-word confusability beyond the confusability of
minimal pairs. For example, the perceptual con-
fusability of pairs like /gAt/ and /cOt/ will never be
taken into account, yet these two words are likely
to be relatively confusable, even in American di-
alects that preserve the /A/-/O/ distinction. Follow-
ing a /g/-/k/ merger, /gAt/ and /cOt/ would not be
completely indistinguishable, but the two words
would be highly confusable.

Our approach compares the perceptual distin-
guishability of each word and all other words in
the lexicon (the present implementation: all words
with the same number of phonemes), avoiding this
problem. To illustrate how this changes the op-
erationalization of functional load, we compared
token-based functional load of the /g/-/k/ contrast
under two different assumptions: one in which
only minimal pairs were considered neighbors and
one in which all the words in the lexicon were con-
sidered. When our model only used minimal pairs
as neighbors (i.e. for each wi in (4), L was re-
stricted to wi and its /g/-/k/ minimal pairs), words
containing /g/ or /k/ had a mean probability of
misrecognition of 0.023; when the model used all
non-minimal pair neighbors of the same length (as
we do in the rest of this paper), misrecognition in-
creased to a probability of 0.064, corresponding to
a three-fold increase in odds.

4.3 Functional load depends on a complex
interaction of elements

Our definition of functional load does predicts in-
teractions between a contrast’s perceptual distin-
guishability and its distribution across words and
neighbors in the lexicon. In this section, we first
highlight the differences in predictions between
our type- and token-based accounts. We then
demonstrate how perceptual confusability, distri-
bution of the phones in the lexicon, and the in-
teractions between the two are predicted to affect
functional load. Figure (2) demonstrates the out-
comes of these complex relationships for 20 ran-
domly chosen phonemic contrasts. Both type- and
token-based functional load are plotted against the
number of minimal pairs formed by each contrast.
The red lines represent how sensitive that con-
trast’s functional load is to a priori perceptual con-
fusability. The red dots represent a contrast’s func-
tional load, had its phones been completely per-
ceptually distinguishable to begin with. In general,
we would expect that contrasts with low a priori
perceptual confusability would be less sensitive to
eliminating this confusability, as they are already
closer to perfect distinguishability.

We see first that type- and token-based accounts
of functional load differ noticeably in their es-
timates of functional load. Figure (2) shows a
fairly linear relationship between type-based func-
tional load and the traditional measure, and al-
though this relationship becomes less clear with
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Figure 3: The functional loads of six attested mergers in North American English
each compared to 20 randomly generated mergers in the same environments, mea-
sured by models implementing our new definition of functional load vs. the tradi-
tional measure of number of minimal pairs. The probability that a sample drawn
from the distribution of random mergers has less than or equal functional load than
the attested merger is indicated. Axes are scaled independently for each plot.

more contrasts (not pictured), the token-based ac-
count is noticeably less correlated with the num-
ber of minimal pairs. This difference makes
sense: type-based functional load and the num-
ber of minimal pairs a contrast separates both em-
phasize word types. However, it also serves as a
demonstration that lexical-phonological environ-
ments are not generally uniform across words of
different frequencies–further evidence that choos-
ing between type- vs. token- approaches should be
a matter of careful consideration (Hockett, 1955;
Martinet, 1952; Wedel et al., 2013).

Secondly, there are contrasts whose functional
loads seem to be determined more by their ini-
tial perceptual distinguishability, or possibly by
how they are distributed across non-minimal pair
neighbors. Although the /t/-/m/ contrast does not
separate many minimal pairs, the type-based ac-
count predicts that a merger would be unlikely,
possibly due to the low a priori perceptual con-
fusability of the phones. A benefit of our model is
that it allows the researcher to ask questions about
how the lexicon and phonological system interact;
exactly how these contribute to a contrast’s func-
tional load can be teased apart.

Third, although the functional loads of natu-
rally confusable contrasts are generally more sen-
sitive to perceptual changes, there are exceptions
to this pattern. For example, the functional load
for the most perceptually confusable contrast, /u/-
/U/ (“UW-UH” in Figure 2), hardly increases at
all when the original contrast is made less con-
fusable. Even if this phonemic contrast were con-
veyed with perfect clarity, it would not drastically
change how accurately words are recognized. This
suggests that the functional load of the /u/-/U/ con-
trast is more a product of its distribution in the lex-
icon than its perceptual confusability.

Finally, type- and token-based accounts also
vary in how sensitive the functional load of their
contrasts are to their a priori perceptual confus-
ability. For example, the /æ/-/E/ contrast (“AE-
EH” in Figure 2), has high a priori perceptual con-
fusability. The token-based functional load of this
contrast increases only slightly when the contrast
is made perfectly perceptually distinct, demon-
strating a relative robustness to initial perceptual
confusability. However, the type-based functional
load of the same contrast shows the most sensitiv-
ity to initial perceptual confusability. The fact that
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the weighting of lexical frequency can modulate
how perceptual contributions affect our model’s
functional load suggests that in addition to cap-
turing the impact of perceptual and lexical factors
impact individually, our model also captures their
interactions.

5 Evaluating our new definition

Although our definition of functional load has
been built on a model of spoken word recogni-
tion that is known to work well in predicting hu-
man data (Luce and Pisoni, 1998), the question has
been left open of whether this operationalization is
actually a good predictor of sound change. If the
previously observed effects of functional load on
sound change are indeed relevant to a contrast’s
functional contribution to spoken word recogni-
tion, then we expect that models such as ours
should be successful in predicting mergers.

In order to evaluate performance, we compare
the functional load of actual attested mergers with
randomly chosen phonological mergers in simi-
lar environments. The logic here is that the if
high functional load prevents mergers1, we would
expect to see that attested mergers have signifi-
cantly less functional load than random hypothet-
ical mergers.

5.1 Methods

To get the most accurate sense of a merger’s func-
tional load, we need to calculate it in the en-
vironment of the language in which it is taking
place. Because our model is based on Ameri-
can English, we limit ourselves to mergers that
are currently taking place in varieties of American
English. The attested vowel mergers here repre-
sent the four most attested vowel mergers in North
America (Labov et al., 2006)2: the caught-cot
merger (also known as the “low back merger”) is
a environment-independent (in this model) merger
of /A/ and /O/. The fool-full merger merges /u/ and
/U/ before /l/, the pin-pen merger merges /I/-/E/ be-
fore nasals, and the still-steel merger merges /I/-/i/
before /l/. Consonant mergers in English are much

1Low functional load driving mergers and high functional
load preventing mergers are two separate hypotheses. In prac-
tice, they are hard to distinguish, and doing so is not the pur-
pose of the current paper. Rather, we seek to assess whether
our functional load measure is a good predictor of mergers
compared to the standard notion.

2Labov et al. (2006) also mention that there is preliminary
evidence for five more possible mergers in North American
English before /l/, but note that these require further study.

more rare, and the consonant mergers here repre-
sent the two most straightforward attested merg-
ers in varieties of American English we could
find. The “think-fink” merger (th-fronting) merges
dental fricatives and labiodental fricatives, and
the “thin-tin” merger (th-stopping) merges dental
fricatives and dental plosives.

To compare the functional load of attested
mergers with random mergers, we compare each
attested merger with 20 randomly chosen phono-
logical mergers that take place in the same pho-
netic environments as the attested mergers. For
example, the pin-pen merger merges /I/-/E/ before
nasals; to compare, we chose 20 random vowel
contrasts and merged them before nasals as well.
The contrasts in the hypothetical mergers were
chosen by randomly sampling all possible pairings
of phonemes, the only constraint being that only
vowels were considered for comparison to attested
vowel mergers and only consononants for the at-
tested consonant mergers3.

Using a kernel density estimate calculated from
the distribution of random mergers, we calculate
the probability that a sample drawn from the dis-
tribution of theoretically possible similar mergers
would have a functional load less than or equal
to that of the attested merger. Attested mergers
should have lower functional load than theoretical
mergers, as they have actually happened in various
dialects of American English. Figure (3) compares
our models to a traditional measure, the number of
minimal pairs erased by a contrast.

5.2 Results

As shown in Figure (3), both of our models out-
perform the traditional measure for at least four of
the six mergers. The type-based model predicts
each attested merger relatively well: with the ex-
ception of the still-steel merger (which no mea-
sure was able to predict), the type-based model
predicts each attested merger with at least p<0.3.
Although the token-based model performs rela-
tively well for the rest of the six, TH-stopping
and TH-fronting have higher-than-average token-
based functional loads compared to the random
mergers. The only merger the number of mini-
mal pairs predicts better than both of our mod-

3Limiting the comparison to, say, only mergers that are
attested in other languages, would have introduced elements
of cirularity into the logic of our test. It is possible that con-
trasts have merged because they have low functional load to
begin with.
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els is for TH-fronting, and its performance over
the type-based model is relatively small (p<0.06
vs. p<0.11). Both of our models predict the at-
tested mergers better numerically than the tradi-
tional measure for all four of the vowel mergers,
though for the still-steel merger the type-based
model and the traditional measure are practically
identical (p<0.76 vs. p<0.78).

The difference is less clear when comparing
the type- and token-based models. Numerically,
the token-based model outperforms the type-based
model on the caught-cot, pin-pen, and still-steel
mergers, but for these mergers, the type-based
model still does relatively well (p<0.15 for the
caught-cot merger and p<0.24 for the pin-pen
merger) or both models do poorly (for the still-
steel merger, token: p<0.46 vs type: p<0.78).
For the two mergers where the type-based model
predicts the attested mergers better than the token-
based model, it makes relatively accurate predic-
tions while the token-based model does not predict
the merger (for TH-fronting: p<0.11 vs. p<0.70,
and for TH-stopping: p<0.00 vs. p<0.50). This
could suggest that the type-based account of func-
tional load better captures the pressures of sound
change, but further testing is be required to make
a more definitive comparison.

6 Discussion

As more studies highlight the relationships be-
tween the lexicon, perceptual information, and
language change (Ohala, 1993b; Ohala, 1993a;
Hall, 2009; Hall et al., submitted; Kang and Co-
hen, 2016), some have found that incorporating
perceptual data into accounts of functional load
can succeed where traditional measures cannot
(Tsui, 2012). In this paper, we have incorporated
key insights from speech perception with ideal ob-
server models of word recognition to form a re-
vised definition of functional load. Implementing
this definition with a simple model, we find that it
outperforms the traditional measure of functional
load, and gives us new insight into the process of
language change.

For example, the type-based model’s better con-
fidence in predicting attested mergers compared
to the token-based model tentatively suggests that
misrecognizing meaning types exerts more pres-
sure on sound change than the average number of
times one misrecognizes words (i.e. according to
the frequency with which one encounters them).

These results are in line with Wedel et al. (2013),
insofar both argue against the claim from Martinet
(1952) that functional load should be determined
by weighing words’ functional contribution with
their frequencies.

6.1 Future directions

We close by briefly discussing the simplifying as-
sumptions of the present model, and how they can
be addressed in future work. In the current study,
perceptual confusability between two phonemes
is calculated from a phoneme-to-phoneme confu-
sion matrix, which simplifies phoneme recogni-
tion considerably. Unlike the smaller data set in
(Luce and Pisoni, 1998), the data from (Cutler et
al., 2004) was collected through a forced-choice
task, with participants hearing only VC and CV
syllables, and being only able to respond in kind.
Although less constrained studies could offer more
sophisticated behavioral data (e.g. including con-
sonant clusters, etc.), experimentally collecting so
much data can quickly become onerous.

The benefits of using acoustic/perceptual infor-
mation also go beyond what has been covered in
the current paper. For instance, it is worth noting
that in all previous conceptions of functional load,
phonological mergers have always been viewed as
detrimental to recognition or to separating mean-
ings, etc. However, when considering how sound
change could affect actual spoken message trans-
mission, we realize that mergers could in the-
ory benefit communication. Imagine for exam-
ple, a phone that is important to communication–
but easily confused with another important phone–
merges with a relatively unimportant phone. If the
process of merging moves the phone in question
acoustically (and perceptually) away from its con-
fusable competitor, then the gain in recognition
could in theory outweigh the loss from merging.
In short, not all mergers of a phonemic contrast
are equal: the direction in which a contrast merges
should impact the system differently. Our model
can thus in principle be used to make predictions
of about the specific acoustic outcome of merges,
and these predictions can be tested against data.
For example, in the pin-pen merger, the result of
the merger is generally closer to /I/ than /E/. Does
this direction have a lower functional load than a
merger in the opposite direction?

Additionally, ideal observer models pre-
dict word recognition based on contextual
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predictability—although we ignore contextual
predictability in this paper, it would be relatively
straight forward to incorporate it in future ver-
sions of the model, for example, via measures of
average predictability. Additionally, the model in
the current paper analyzes isolated spoken word
recognition. In the future, we could estimate word
recognition in the context of sentences by incor-
porating n-gram frequencies from conversational
corpora into the model.
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