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Abstract

Universal Dependencies incur a high cost
in computation for unbiased system de-
velopment. We propose a 100% empiri-
cally chosen small subset of UD languages
for efficient parsing system development.
The technique used is based on measure-
ments of model capacity globally. We
show that the diversity of the resulting rep-
resentative language set is superior to the
requirements-based procedure.

1 Introduction

The development of natural language parsing sys-
tems has historically relied mainly on the central
benchmarking dataset the Penn Treebank, as well
as, to a lesser extent, a restrictive selection of very
well-resourced languages like German and Chi-
nese. This is problematic in that (1) the devel-
opment of the technology risks being highly bi-
ased towards English and other resource-rich lan-
guages and their particular annotations for syntax,
(2) the technology is inadequately benchmarked
against a central group of languages that do not re-
flect the linguistic diversity required to adequately
evaluate parsing systems with respect to language
in general, and (3) the development of linguistic
resources for unrepresented or poorly represented
languages continues to be erroneously regarded as
independent of the development of parsing sys-
tems, rather than integral to it.

The Universal Dependencies (UD) project
(Nivre et al., 2016), has made great strides towards
remedying this situation, by providing a single
unified syntactic framework and related support
for treebank development. The Universal Depen-
dencies 1.4 resource now comprises 64 different
treebanks covering 47 different languages (Nivre
et al.,, 2017), and these numbers continue rising
(v2.0 is set to add three languages and six tree-
banks). Parsing scores are now expected to be re-
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ported over all (modern) languages if not all tree-
banks as macroaverages of scores.

With this added diversity in treebanks and lan-
guages, and with a growing trend towards more
computationally intensive learning algorithms that
promise greater accuracy (such as neural net-
works), feasible parser development should be
a rising concern. The availability of compu-
tational resources to develop—that is, to train
across all interesting parameter/hyper-parameter
settings—neural network models for 64 treebanks
within a reasonable amount of time will counter-
act progress and shut out researchers without ad-
equate computational resources. Moreover, there
are environmental concerns for the inefficient use
of power in the language-exhaustive development
of these resources.

In this paper, we provide an entirely empirically
motivated sub-sample of nine languages that can
can be used to develop monolingual parsing re-
sources. The method uses delexicalised parser per-
formance as a measure of similarity to construct a
language similarity network. The network is natu-
rally partitioned into language groups using a stan-
dard network clustering algorithm, which does not
take the number of clusters as a parameter. The
clusters are assumed to be diverse between them
but coherent within them, with respect to their in-
dividual parser models. Using this technique, the
mean and standard deviation of monolingual un-
labeled accuracy scores for cluster representatives
are found to be close to the true average and stan-
dard deviation. Future monolingual parsing sys-
tems can extrapolate parser performance over the
entire set of languages, using only the set of nine
representative languages listed in Table 1, which
interestingly excludes English, Chinese, German,
and Czech.

Efficient parser development for UD languages.
As an efficient alternative to exhaustive parameter
search across 47 languages (or 64 treebanks), the
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1. Polish 6. Coptic

2. Italian 7. Hebrew

3. Norwegian 8. Indonesian, and
4. Old Church Slavonic 9. Dutch

5. Sanskrit

Table 1: Representative languages for UD parsing
resource development.

method we propose for the development of parsing
resources is the following:

1. Development: develop parsing resources
over only the nine languages in Table 1, opti-
mising for average and standard deviation of
unlabeled attachment across all languages.

Full testing: using the parameters discov-
ered in step (1), report final average parsing
scores and standard deviation over all UD
languages.

In Section 3 we will outline the network analytic
method for determining these nine representative
languages empirically. First we discuss the only
preceding approach to sampling UD languages for
parser development; the approach is essentially
non-empirical.

2 Related work

De Lhoneux and Nivre (2016) presented the first
approach to language sampling from UD. They
hand-picked a set of representative languages
based on the following requirements:

1. Language family: include exactly one lan-
guage from each of 8 coarse-grained lan-
guage families, and no more than one from
each of 15 fine-grained language families,

Morphological diversity: include at least
one isolating, one morphologically rich and
one inflecting language,

. Treebank size and domain: ensure varied
treebank size and domain,

. Non-projectivity: include one language with
a large amount of non-projective trees.

De Lhoneux and Nivre (2016) also considered
the quality of treebanks and selected those lan-
guages that had as few annotation inconsistencies
as possible. To ensure comparability, they also
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only consider treebanks with morphological fea-
tures. They selected eight languages: Czech, Chi-
nese, Finnish, English, Ancient Greek-PROIEL,
Kazakh, Tamil, and Hebrew (cf. Table 2).

Our method differs in that it is entirely empiri-
cal, based on delexicalised parsing model similar-
ity. Note that we also control for treebank size and
exclude all morphological information.

3 Methodology

Delexicalised and projection-based parser ap-
proaches form the state-of-the-art for cross-lingual
dependency parsing systems (Rasooli and Collins,
2015). Moreover, as shown by Agié et al. (2016)
in upper-bound experiments, languages that are
well-known to hold similar syntactic behaviours
to one another, given that they come from the
same language family, often generate better cross-
lingual parsers for one another.

In our approach, we use delexicalised cross-
lingual parsing scores to the indicate parser gen-
eralisation capacity from one language to another.
As such, these parsing scores can be seen as a sort
of similarity score between languages. The more
similar the POS sequences and associated syn-
tactic structures are between languages, the more
similar the optimal parsing model to parse them
and the better the resultant delexicalised parsing
scores between them. We call this similarity score,
(optimal) model similarity.

We need a global account of model similarity
between UD languages in order to select a natu-
rally small representative subset of UD languages
based on maximal coverage of model capacities.

Building the network. We first create a com-
plete weighted directed network G = (V,E,w) to
reflect model similarity. Each node in V represents
a language from the UD dataset. We make arcs be-
tween all ordered pairs of nodes and decorate each
arc with a weight as follows.

For a pair of languages L and L, in our dataset,
the arc (L;,L;) is the unlabeled attachment score
of the delexicalised parser trained on L; and eval-
uated on L. In Section 4, we give the precise pa-
rameters of these experiments. The network thus
created can be seen to roughly model the flow
of model similarity. In order to transform these
edge weights into probabilities, which our cluster-
ing algorithm requires, we put the set of outgoing
weights of a node through soft-max at temperature



language flow rank language flow rank
Cluster 1 Cluster 4
pl Polish 0.134645 2 cu  Old Church Slavonic  0.0242178 10
sl Slovenian 0.120378 3 got Gothic 0.0212005 12
bg  Bulgarian 0.0772124 5 la Latin 0.00163673 28
uk  Ukrainian  0.0324838 8  grc Ancient Greek 0.000146437 40
cs Czech 0.0226545 11
sk Slovak 0.0105861 17 Cluster 5
hr  Croatian  0.00662242 19  $a il vzl L
de  German 000651388 20 I Turkish 000405451 22
ru Russian 000620382 21 @ Lol Lzl
el Greek 0.0039794 23 hi Hindi 0.00175879 27
et Estonian 000267263 24 U8 Uyghur 0.00105993 30
i Finnish 0000232028 38  cU Basque 0.000897161 31
v Latvian  336723e-05 43 KK Lol 0.00054926 T132
hu Hungarian 0.000793513 33
ja Japanese 0.000640374 35
Cluster 2 gl Galician 6.85458e-05 42
it Italian 0.180703 1 zh Chinese 4.28534e-06 46
ca Catalan 0.0894462 4 swl Swedish Sing 5.57449¢-07 47
es Spanish 0.0753139 6
fr  French 0.0598804 7 _ Cluster 6
pt  Portuguese  0.0133104 16  €OP Coptic 0.0260177 9
ro  Romanian  0.00190421 26 Cluster 7
vi  Vietnamese 0.000169612 39 he Hebrew 0.000642038 34
ga Irish 0.000452355 37
Cluster 3 fa Persign 3.26755e-05 44
no Norwegian 0.020558 13 ar Arabic 1.8784e-05 45
sv  Swedish 0.019848 14 Cluster 8
da  Danish 0.00897288 18 = jq Indonesian 0.000609376 36
en English 0.00116163 29

nl

Cluster 9

Dutch 0.000105621 41

Table 2: Language clusters, flow (centrality) and rankings, given temperature T = 0.025. The most
central languages for clusters are highlighted in blue. Red rows are the languages chosen by de Lhoneux
and Nivre (2016). And the one purple language, Hebrew, was chosen by both methods.

T, to be determined with respect to true parsing
score aggregates later.

Our goal is to use the network to determine the
language representatives of the UD dataset. To do
this, we run the Infomap network clustering al-
gorithm and then extract the most important lan-
guages from each cluster.

Clustering the network naturally. We need to
now cluster the nodes of the network, given its
structure, but without supplying the number of
languages as a parameter, in order for the output
modular structure the be completely data-driven.
Infomap' poses the problem of the clustering
of nodes in a weighted directed network as the
dual of the problem of minimising the descrip-
tion length of a random walker’s movements on
a network. Intuitively, the description parts corre-
sponding to various regions of the network may be
compressed if the random walker spends longer of
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periods of time there.
The description of the network (the map equa-
tion) to be minimised is

m
L(M):=q~H(Q)+ ) pinH(P))

i=1
where ¢ is the total given probability that the ran-
dom walker enters some new cluster; H(Q) is en-
tropy of the modular structure of the network; p;r
is the probability that some node in cluster i is vis-
ited together with the probability of exiting cluster
i; and H(P;) the entropy of the internal network
structure in cluster i.

The interested reader is referred to Rosvall et
al. (2009) for more details. Infomap outputs three
pieces of information that we need here: (1) The
number of clusters, (2) the cluster that each node
belongs to, and (3) the flow of each node in the
network as determined by the random walk traver-
sals. The larger the flow, the more central a node
is within the network.



Extracting representative languages. For each
cluster, the most representative (central) language
of the cluster is considered to be the node with the
highest flow. In terms of the random walker in the
network structure, these are the nodes that are tra-
versed the most within their own clusters, meaning
that correspond to languages with highest cluster-
wide model similarity. In this sense, they can act
as cluster representatives.

Calculating parsing score aggregates. In order
to fit the modular structure of the network to the
true parsing score aggregates we carry out an ex-
haustive search for optimal temperature within the
interval T € (0,1] at increments of 0.005. The
value 7 is optimal when

U — |+ |0 — oy (1)
is minimised, where i and o are the true macro-
average of unlabeled parsing accuracy score mean
and standard deviation, and p; and o are found in
the same way except that parsing scores for non-
cluster representatives are replaced by that of their
unique cluster representatives. This corresponds
to a weighted average and standard deviation of

scores of cluster representatives based on cluster
size.

4 Data preparation

We used UD v1.4 in our experiment. Out of the 64
treebanks it offers, we select the 47 canonical ones
for the 47 languages represented in the release.

We filter out all but the following CoNLL-
U features from the dataset:> ID, UPOSTAG,
HEAD, and DEPREL. Note that all our parsers are
delexicalised following McDonald et al. (2013),
that is, we exclude all lexical information and
learn parses over POS sequences. We also filter
out all multi-word tokens.

All training data is sub-sampled up to 10k sen-
tences so as to avoid the bias towards the largest
training sets.> Then, we train our delexicalized
models using the graph-based parser MATE with
default settings (Bohnet, 2010).

All our parsers assign labels, but here we evalu-
ate for UAS only. While LAS and UAS are the two

"http://universaldependencies.org/format.
html

3Czech, the largest training set in our UD subset, is 4.5x
larger than each of the 12 languages that follow it.
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most highly correlated dependency parsing met-
rics as per Plank et al. (2015), we find that the lat-
ter offers a bit more stability in constructing our
similarity network. The aggregates over the 47 UD
languages are: average UAS 74.45, and standard
deviation UAS 9.4. An optimal language sampling
method extrapolates to these aggregates as closely
as possible.

5 Method visualisation and discussion

In Figure 1, on the left y-axis, we see the num-
ber of clusters generated in the network for vary-
ing temperature levels. On the right y-axis, we
see the parsing score estimate over cluster rep-
resentatives for varying temperatures. Equation
(1) is minimised when T = 0.025 and this yields
nine separate clusters for our model similarity net-
work. The error for this temperature is 5.05 (with
|t — ue| =3.5and |6 — 0| = 1.55) as reported in
Table 3.
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Figure 1: Number of clusters over varying tem-
peratures, with respect to soft-max temperature.
Optimal temperature at T = 0.025 (dotted green
line). The number of clusters and error remain un-
changed for 7 > 0.4.

Visualising the model similarity network. A
visualisation of the network for T = 0.025 is given
in Figure 2. We notice that, as expected, many
of the clusters follow language family closely, but
there are a number of outliers. For instance, Dutch
is entirely alone in its cluster and Vietnamese is
grouped together with the Romance languages.

Language centrality. In Table 2, we also see
the rank of languages in terms of their centrality
(flow score) in the network. The centrality score in
our case provides an indication of model similarity
between parsers trained on the language in ques-
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Figure 2: Visualisation of the model similarity net-
work. Node centrality corresponds to node size.

tion and those of all other languages in the net-
work. Surprisingly, English is ranked in 29th po-
sition, which provides simple empirical evidence
that parsing resources developed mainly on and
optimised for English risk suboptimal overall per-
formance. Interestingly, other well-studied lan-
guages like Chinese and Arabic have considerably
low rank both in the entire networks well as in
their respective clusters.

In Table 2 we have also highlighted the rep-
resentative languages chosen by de Lhoneux and
Nivre (2016). We see that according to our empiri-
cal model, the languages they chose reflect neither
the centrality nor the diversity intended.

Comparing extrapolations. The error for de
Lhoneux and Nivre’s (2016) representative set is
given in Table 4. We see that total error is lower
in the parsing model similarity method we de-
scribe here. However, because of the combined
optimisation of mean and standard deviation, our
sample over-estimates general performance, while
de Lhoneux and Nivre (2016)’s sample underes-
timates the reliability of the parser to achieve the
mean performance.

6 Concluding remarks

We have shown the first 100% empirical method
for determining a small representative sample of
UD languages for parser development, and have
proposed an associated methodology. In particu-
lar, for the Universal Dependencies v1.4, we given
a specific subset of nine languages on which pars-
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language | cluster size score
Polish 13 84.91
Italian 7 85.11
Norwegian 4 79.99
Old Church Slav. 4 73.72
Sanskrit 12 66.10
Coptic 1 85.01
Hebrew 4 79.60
Indonesian 1 77.73
Dutch 1 75.05
average 77.96 (error = 3.5)
std 7.85 (error = 1.55)
total error 5.05

Table 3: UAS contributions and aggregates of
our representative UD languages. The contri-
butions (cluster size) * score are collected
over the 9 sampled languages and normalised over
the 47 languages.

language | score
Czech 78.49
Chinese 68.08
Finnish 68.00
English 79.71
Anc. Greek-P. 62.37
Kazakh 69.29
Tamil 71.39
Hebrew 79.60
average 72.12 (error = 2.33)
std 6.45 (error =2.95)
total error 5.28

Table 4: UAS and aggregates of de Lhoneux and
Nivre’s (2016) representative UD languages. The
score aggregates are calculated over the 8 sampled
languages.

ing systems can be developed efficiently.

The language clusters presented here have many
similarities with well-studied language family dis-
tinctions, but also many differences. These
clusters could provide an interesting technology-
motivated study of syntactic similarity between
languages.
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