
Proceedings of the NoDaLiDa 2017 Workshop on Universal Dependencies (UDW 2017), pages 96–101,
Gothenburg, Sweden, 22 May 2017.

Udapi: Universal API for Universal Dependencies

Martin Popel, Zdeněk Žabokrtský, Martin Vojtek
Charles University, Faculty of Mathematics and Physics

Malostranské náměstí 25, Prague
{popel,zabokrtsky}@ufal.mff.cuni.cz, martin.vojtek@hotmail.com

Abstract

Udapi is an open-source framework pro-
viding an application programming inter-
face (API) for processing Universal De-
pendencies data. Udapi is available in
Python, Perl and Java. It is suitable
both for full-fledged applications and fast
prototyping: visualization of dependency
trees, format conversions, querying, edit-
ing and transformations, validity tests, de-
pendency parsing, evaluation etc.

1 Introduction

Universal Dependencies (UD)1 is a project that
seeks to develop cross-linguistically consistent
treebank annotation, by both providing annota-
tion guidelines and releasing freely available tree-
banks. Two years after the first release, UD ver-
sion 2 (UDv2) of the guidelines was published,
accompanied by the UDv2.0 release of the data:
70 treebanks for 50 languages, with 12M words in
total, contributed by 145 treebank developers.2

The steady growth of the UD popularity results
in an increased need for tools compatible with UD
and its native data format CoNLL-U. Such tools
are needed by both the treebank developers and
users of the treebanks. Thanks to the simplicity
of CoNLL-U, simple tasks can be performed with
ad-hoc scripts or even standard Unix tools (sed,
cut, grep etc.). However, there are several dis-
advantages of these ad-hoc solutions:

• They tend to be suboptimal regarding speed
and memory, thus discouraging more fre-
quent large-scale experiments.

• The code is less readable because the main
logic is mixed with boilerplate.

1 http://universaldependencies.org
2 http://hdl.handle.net/11234/1-1983

• It is easy to forget handling edge cases.3

• Ad-hoc solutions are difficult to maintain
once they outgrow the original simple task.

We present Udapi – a framework providing an
API for processing UD, which should solve the
above-mentioned problems. Udapi implementa-
tion is available in Python, Perl and Java. In this
paper, we focus on the Python implementation be-
cause it currently has the best support and largest
user community. The Perl and Java implemen-
tations are kept harmonized with the Python im-
plementation as much as the differences between
these programming languages allow.

The API is object-oriented and covers both pro-
cessing units (§3.1) and data representation (§3.2).
The development of Udapi is hosted at GitHub.4

Anyone is welcome to contribute.

2 Example use cases

Udapi can be used both as Python library and via
the command-line interface udapy. This section
gives examples of the latter.

2.1 Parsing
echo "John loves Mary." | udapy \

read.Sentences tokenize.Simple \
udpipe.En tokenize=0 write.Conllu

In this example, udapy executes a pipeline
(called scenario in Udapi) with four processing
units (called blocks): read.Sentences reads
plain text from the standard input, one sentence
per line; tokenize.Simple does a naïve tok-
enization; udpipe.En applies a UDPipe (Straka
et al., 2016) model for English tagging (filling

3 For example, when deleting a node in a middle of a sen-
tence, we must reindex the ID, HEAD and DEPS columns,
delete enhanced dependencies referring to the node, re-attach
or delete possible dependents of the node and if it was part of
a multi-word token, make sure the token is still valid.

4 See http://udapi.github.io for further info,
documentation and a hands-on tutorial.

96



attributes upos, lemma and feats) and parsing
(deprel and head). The parameter tokenize=0
instructs UDPipe to skip tokenization. Finally,
write.Conllu writes the parsed sentences to
the standard output in the CoNLL-U format.

In practice, we recommend to use UDPipe’s in-
ternal tokenization and udapy -s as a shortcut
for appending write.Conllu to the scenario:
echo "John loves Mary." | udapy -s \
read.Sentences udpipe.En

2.2 Visualization
cat latin-sample.conllu | udapy \
write.TextModeTrees attributes=form,upos

If no reader block is provided, read.Conllu
is used by default. Block write.TextMode
Trees is very useful for fast visualization of de-
pendency trees in terminal and tracking changes
in vimdiff. As the example above shows, it
can render non-projectivities, it has a parameter
for specifying the node attributes to be printed and
it uses color highlighting in the terminal.

For longer documents, it is handy to use a
pager (less -R)5 so one can search attributes
of all nodes with regular expressions. The short-
cut udapy -T stands for write.TextMode
Trees color=1 and printing the default set of
attributes form, upos and deprel:
udapy -T < latin-sample.conllu | less -R

Similarly, udapy -H is a shortcut for a (static)
HTML version of this writer (see Figure 1) and -A
is a shortcut for printing all attributes. Run udapy
--help to learn more shortcuts.

Block write.Html also generates a HTML
file, but it uses JavaScript for traditional-style tree
rendering, tooltips, SVG export button, highlight-
ing alignments between the sentence and nodes
and possibly also between nodes of word-aligned
parallel sentences, see Figure 2.

Block write.Tikz generates a LATEX code,
suitable for inclusion in papers, see Figure 3.

5 The -R flag ensures the ANSI colors are displayed.

Figure 1: write.TextModeTreesHtml ex-
ample output with a sample of annotation errors
(and overall statistics) found by ud.MarkBugs.

Figure 2: write.Html example output with a
sample of Czech-English parallel treebank CzEng
(Bojar et al., 2016) converted to the UD style.

John loves Mary .
PROPN VERB PROPN PUNCT

nsubj

root

dobj

punct

Figure 3: write.Tikz example output.

97



2.3 Format conversions
Udapi can be used for converting between various
data formats. In addition to the native CoNLL-U
format and to the visualization layouts mentioned
in Section 2, Udapi currently supports SDParse
(popularized by Stanford dependencies and Brat)6

and VISL-cg7 formats as illustrated below:
udapy write.Vislcg < x.conllu > x.vislcg
udapy read.Vislcg write.Sdparse \

< x.vislcg > x.sdparse

2.4 Querying and simple edits
There are two online services for querying the re-
leased UD treebanks: SETS by the University of
Turku8 and PML-TQ by the Charles University.9

The SETS querying language is easier to learn, but
less expressive than the PML-TQ language.

Udapi offers an alternative where queries are
specified in Python and may use all the methods
defined in the API, thus being suitable even for
complex queries. For example, using the method
is_nonprojective(), we can find all non-
projective trees in a CoNLL-U file, and mark the
non-projective edges with a label “nonproj” stored
in the MISC column (so the dependent node will
be highlighted by udapy -T):

cat in.conllu | udapy -T \
util.Filter mark=nonproj \
keep_tree_if_node='node.is_nonprojective()'

The same can be achieved using util.Mark
and the -M shortcut, which instructs the writer to
print only trees that are “marked”:
cat in.conllu | udapy -TM util.Mark \
node='node.is_nonprojective()'

Block util.Eval can execute arbitrary
Python code, so it can be used not only for query-
ing, but also for simple (ad-hoc) editing. For ex-
ample, we can delete the subtypes of dependency
relations and keep only the universal part:10

cat in.conllu | udapy -s util.Eval \
node='node.deprel = node.udeprel' \
> out.conllu

For better reusability and maintainability, we
recommend to store more complex edits in sep-
arate Python modules. For instance, module
udapi.block.my.edit with class Edit will
be available via udapy as my.Edit.

6http://brat.nlplab.org/
7http://visl.sdu.dk/visl/vislcg-doc.html
8http://bionlp-www.utu.fi/dep_search/
9http://lindat.cz

10 So e.g. acl:relcl is changed to acl.

2.5 Validation

UD treebanks are distributed with an offi-
cial validate.py script, which checks the
CoNLL-U validity and also treebank-specific re-
strictions (e.g. a set of allowed deprel sub-
types). Udapi currently does not attempt to du-
plicate this format validation because it tries to
keep CoNLL-U loading as fast as possible, check-
ing only the most critical properties, such as ab-
sence of cycles in dependencies. Udapi can also
be used for non-UD treebanks,11 which use a dif-
ferent set of values for UPOS, DEPREL etc., so a
strict non-optional validation is not desired.

UD website features also content validation
available as an online service.12 It is basi-
cally a special case of querying, with a set
of tests formalized as queries. For example,
the multi-obj test searches for nodes with
two or more (direct) objects or clausal com-
plements. This can be implemented in Udapi
as follows: len([n for n in node.children

if n.deprel in {'obj', 'ccomp'}]) > 1.
Although some tests may occasionally bring

false alarms (finding a construction which is not
forbidden by the UD guidelines), it is worth check-
ing the results of tests with most hits for a given
treebank as these often signal real errors or in-
consistencies. For example, the two multi-obj
hits highlighted in Figure 1 are both annotation
(or conversion) errors: In the first sentence, friend
should have deprel vocative and Linda should de-
pend on it as appos. In the second sentence, it
should be a subject (nsubj) instead of object. The
tree visualization also sets off the erroneous non-
projectivity, where On the one hand should de-
pend on pressure.

Block ud.MarkBugs is an improved version
of the online content validation with higher preci-
sion and coverage. Treebank developers can ap-
ply ud.MarkBugs on their data offline (before
pushing a new version on GitHub, or on secret test
data), so it complements the online validation. It is
possible to apply only some tests using parameters
tests and skip:
udapy -HAM ud.MarkBugs skip='no-NumType' \

< in.conllu > bugs.html

11 The reader block read.Conllu can load even
CoNLL-X and CoNLL-2007 formats, using the optional pa-
rameter attributes listing the column names.

12 http://universaldependencies.org/
svalidation.html

98



2.6 UDv2 conversion
When the UDv2 guidelines were released, there
were many treebanks annotated in the UDv1 style.
Luckily, most of the changes could be at least par-
tially automatized. Some of the changes were sim-
ple renaming of labels, e.g. CONJ → CCONJ,
which is easy to implement in any tool. Some
of the changes were more difficult to implement
correctly, e.g. conversion of ellipsis from the old
remnant style to the new orphan style.

Block ud.Convert1to2 has been success-
fully used for converting five UDv2 treebanks:
Bulgarian, Romanian, Galician, Russian and Irish.
Block ud.Google2ud converts data for 15 lan-
guages from a pre-UDv1 style used by Google.

2.7 Other use cases
Block ud.SetSpaceAfter uses heuristic
rules to add the attribute SpaceAfter=No, while
ud.SetSpaceAfterFromText does the
same based on the raw text. Even more advanced
is ud.ComplyWithText, which can also adapt
the annotation so it matches the raw text, e.g. by
reverting the normalization of word forms.13

Block ud.AddMwt splits multi-word tokens
into words based on language-specific rules –
there are subclasses for several languages, e.g.
ud.cs.AddMwt for Czech.

Overall statistics (number of words, empty
words, multi-word tokens, sentences) can be
printed with util.Wc. Advanced statistics about
nodes matching a given condition (relative to other
nodes) can be printed with util.See.

For evaluation, eval.Parsing computes the
standard UAS and LAS, while eval.F1 com-
putes Precision/Recall/F1 of various attributes
based on the longest common subsequence.

Tree projectivization and deprojectiviza-
tion (Nivre and Nilsson, 2005) can be
performed using transform.Proj and
transform.Deproj.

3 Design and Implementation

The primary focus of Udapi is simplicity of use
and speed. The amount of effort spent on design-
ing specialized data structures, micro-optimizing
the speed and memory critical parts (e.g. loading

13 There are several treebanks which use ‘‘TeX-like
quotes’’ instead of the “quotes” used in the raw text or
which normalize numbers by deleting the thousand separa-
tors. However, the UDv2 quidelines require word forms to
match exactly the raw text.

system memory load save bench
(MiB) (s) (s) (s)

Treex 18,024 2,501 201 287
PyTreex 3,809 158 8 74
Udapi-Python 879 24 6 16
Udapi-Perl 748 7 3 11
Udapi-Java 1,323 9 1 5

Table 1: Memory and speed comparison. We
measured performance of individual implementa-
tions on loading and saving from/to CoNLL-U,
and on a benchmark composed of iterating over
all nodes, reading and writing node attributes,
changing the dependency structure, adding and
removing nodes, and changing word order. We
used cs-ud-train-l.conllu from UDv1.2
(68 MiB, 41k sentences, 800k words).

CoNLL-U, iterating over all nodes sorted by word
order while allowing changes of the word order
too) and other technical issues was much bigger
than the effort spent on the use cases described in
Section 2.

For example, to provide access to struc-
tured attributes FEATS and MISC (e.g. node
.feats['Case'] = 'Nom') while allowing
access to the serialized data (e.g. node.feats
= 'Case=Nom|Person=1'), Udapi maintains
both representations (string and dict) and synchro-
nizes them transparently, but lazily.

Table 1 shows a benchmark of 5 frameworks:
Treex (Perl), PyTreex (Python 2) and three imple-
mentations of Udapi (Python 3, Perl, Java 8).14

The full description of the API is available on-
line.15 The following two sections summarize
only the most important classes and methods.

3.1 Classes for data processing

Block. A block is the smallest processing unit
that can be applied on UD data. Block classes
implement usually some reasonably limited and
well-defined tasks, often corresponding to the
classical NLP components (tokenization, tagging,
parsing. . . ), but there can be blocks for purely
technical tasks (such as for feature extraction).

14 https://github.com/ufal/treex
https://github.com/ufal/pytreex
https://github.com/udapi/udapi-python
https://github.com/udapi/udapi-perl
https://github.com/udapi/udapi-java

15 http://udapi.readthedocs.io

99



Run. The Run class instance corresponds to
a sequence of blocks (also called scenario) that
are to be applied on data one after another.
Such scenarios can compose very complex NLP
pipelines. This class offers also the support for the
command-line interface udapy.

3.2 Classes for data representation

Document. A document consists of a sequence
of bundles, mirroring a sequence of sentences in
a typical natural language text. A document in-
stance can be composed programatically or can be
loaded from (or stored to) a CoNLL-U file.

Bundle. A bundle corresponds to a sentence,
possibly in more forms or with different represen-
tations, such as sentence-tuples from parallel cor-
pora, or paraphrases in the same language or alter-
native analyses (e.g. parses produced by different
parsers). If there are more trees in a bundle, they
must be distinguished by a so called zone (a label
which contains the language code).

Root. A root is a special (artificial) node that is
added to the top of a CoNLL-U tree in the Udapi
model. The root serves as a representant of the
whole tree (e.g. it bears the sentence’s identi-
fier). The root’s functionality partially overlaps
with functionality of nodes (e.g., it has methods
children and descendants), but differs in
other aspects (its lemma cannot be set, its lin-
ear position is always 0, it has methods for cre-
ating and accessing multiword tokens, computing
the sentence text (detokenized), accessing the tree-
level CoNLL-U comments, etc.).

Node. The Node class corresponds to a node
of a dependency tree. It provides access to
all the CoNLL-U-defined attributes. There are
methods for tree traversal (parent, root,
children, descendants); word-order
traversal (next_node, prev_node); tree
manipulation (parent setter) including word-
order changes (shift_after_node(x),
shift_before_subtree(x), etc.); and
utility methods: is_descendant_of(x),
is_nonprojective(), precedes(x),
is_leaf(), is_root(), get_attrs([]),
compute_text(), print_subtree().

Some methods have optional arguments, e.g.,
child = node.create_child(form=
"was", lemma="be") for creating a new
node with given attributes or node.remove(

children="rehang") for removing a node
but keeping its children by re-attaching them to
the parent of the removed node.16

4 Related work

Treex (Popel and Žabokrtský, 2010) is a Perl NLP
framework focusing on MT and multi-layer anno-
tation in the PDT (Bejček et al., 2013) style. It
is the only framework we are aware of with at
least partial support for UD and CoNLL-U. NLTK
(Bird et al., 2009) is a popular framework focus-
ing on teaching NLP and Python, with no UD sup-
port yet.17 GATE (Cunningham et al., 2011)18 is
a family of Java tools for NLP and IR. There is a
converter from CoNLL-U to GATE documents.19

Brat (Stenetorp et al., 2012) is an online
editor (without full CoNLL-U support) and
conllu.js20 is a related JavaScript library used
in the embedded CoNLL-U visualizations on the
UD website.

5 Conclusion

Most of the current Udapi applications are focused
on treebank developers. In future, we would like
to focus also on other users, including NLP stu-
dents, linguists and other researchers to make UD
data more useful for them.

We hope Udapi will also serve as a common
repository of interoperable NLP tools.

Acknowledgments

This work has been supported by projects
GA15-10472S (Manyla), GAUK 1572314, and
SVV 260 451. We thank the two anonymous re-
viewers for helpful feedback.

References
[Bejček et al.2013] Eduard Bejček, Eva Hajičová, Jan

Hajič, Pavlína Jínová, Václava Kettnerová, Veronika
Kolářová, Marie Mikulová, Jiří Mírovský, Anna
Nedoluzhko, Jarmila Panevová, Lucie Poláková,
Magda Ševčíková, Jan Štěpánek, and Šárka
Zikánová. 2013. Prague Dependency Treebank 3.0.
LINDAT/CLARIN digital library at the Institute of
Formal and Applied Linguistics, Charles University
in Prague.

16 See footnote 3.
17 github.com/nltk/nltk/issues/875
18 https://gate.ac.uk
19https://github.com/GateNLP/

corpusconversion-universal-dependencies
20 http://spyysalo.github.io/conllu.js/

100



[Bird et al.2009] Steven Bird, Ewan Klein, and Edward
Loper. 2009. Natural Language Processing with
Python. O’Reilly Media, Inc., 1st edition.

[Bojar et al.2016] Ondřej Bojar, Ondřej Dušek, Tom
Kocmi, Jindřich Libovický, Michal Novák, Martin
Popel, Roman Sudarikov, and Dušan Variš. 2016.
CzEng 1.6: Enlarged Czech-English Parallel Cor-
pus with Processing Tools Dockered. In Petr Sojka,
Aleš Horák, Ivan Kopeček, and Karel Pala, editors,
Text, Speech, and Dialogue: 19th International Con-
ference, TSD 2016, number 9924 in Lecture Notes
in Computer Science, pages 231–238, Cham / Hei-
delberg / New York / Dordrecht / London. Masaryk
University, Springer International Publishing.

[Cunningham et al.2011] Hamish Cunningham, Diana
Maynard, Kalina Bontcheva, Valentin Tablan, Ni-
raj Aswani, Ian Roberts, Genevieve Gorrell, Adam
Funk, Angus Roberts, Danica Damljanovic, Thomas
Heitz, Mark A. Greenwood, Horacio Saggion, Jo-
hann Petrak, Yaoyong Li, and Wim Peters. 2011.
Text Processing with GATE (Version 6).

[Nivre and Nilsson2005] Joakim Nivre and Jens Nils-
son. 2005. Pseudo-projective dependency parsing.
In Proceedings of the 43rd Annual Meeting on As-
sociation for Computational Linguistics, ACL ’05,
pages 99–106, Stroudsburg, PA, USA. Association
for Computational Linguistics.

[Popel and Žabokrtský2010] Martin Popel and Zdeněk
Žabokrtský. 2010. TectoMT: modular NLP frame-
work. Advances in Natural Language Processing,
pages 293–304.

[Stenetorp et al.2012] Pontus Stenetorp, Sampo
Pyysalo, Goran Topić, Tomoko Ohta, Sophia Anani-
adou, and Jun’ichi Tsujii. 2012. brat: a web-based
tool for nlp-assisted text annotation. In Proceedings
of the Demonstrations at the 13th Conference of the
European Chapter of the Association for Computa-
tional Linguistics, pages 102–107. Association for
Computational Linguistics.

[Straka et al.2016] Milan Straka, Jan Hajič, and Jana
Straková. 2016. UDPipe: trainable pipeline for
processing CoNLL-U files performing tokenization,
morphological analysis, pos tagging and parsing. In
Proceedings of the Tenth International Conference
on Language Resources and Evaluation (LREC’16),
Paris, France, May. European Language Resources
Association (ELRA).

101


