
Proceedings of the NoDaLiDa 2017 Workshop on Universal Dependencies (UDW 2017), pages 58–66,
Gothenburg, Sweden, 22 May 2017.

Dependency Schema Transformation with Tree Transducers

Felix Hennig and Arne Köhn
Department of Informatics

Universität Hamburg
{3hennig, koehn}@informatik.uni-hamburg.de

Abstract

The problem of (semi-)automatic treebank
conversion arises when converting between
different schemas, such as from a language
specific schema to Universal Dependencies,
or when converting from one Universal De-
pendencies version to the next. We propose
a formalism based on top-down tree trans-
ducers to convert dependency trees. Build-
ing on a well-defined mechanism yields a
robust transformation system with clear se-
mantics for rules and which guarantees that
every transformation step results in a well
formed tree, in contrast to previously pro-
posed solutions. The rules only depend on
the local context of the node to convert and
rely on the dependency labels as well as the
PoS tags. To exemplify the efficiency of
our approach, we created a rule set based
on only 45 manually transformed sentences
from the Hamburg Dependency Treebank.
These rules can already transform annota-
tions with both coverage and precision of
more than 90%.

1 Introduction

Since the inception of the Universal Dependen-
cies project (McDonald et al., 2013), a number
of treebanks were converted from language spe-
cific schemas to UD, in an effort to create a large
multi-lingual corpus. More recently, the whole
UD corpus was converted to a revised annotation
schema. As treebanks and their syntax annotation
guidelines are not static but are evolving constantly,
converting between different schemas or modifying
some parts of an existing one is a recurring problem
and as such needs a reliable and systematic solu-
tion. Annotating a whole treebank again manually
for a different schema is neither viable due to the
sheer amount of work needed, nor necessary, since

the new annotation can mostly be deduced from
the syntactic information in the existing schema.
Therefore, usually semi-automatic conversion is
used. However, most of the time only the resulting
treebank is of interest and small throwaway scripts
are created just for this one conversion at hand
which can not be easily used for other conversions.

We introduce a conversion system which makes
it easy to specify conversion rules based on the
local context of a node (i. e. word) in a dependency
tree. It is based on tree transducers, a well-defined
formalism already used with phrase structure trees.

Because the syntactic information is only trans-
formed into a different representation, a rule-based
approach based on local information works partic-
ularly well, as reappearing structures in the source
schema correspond to reappearing structures in the
generated schema. By using tree transducers, it is
easy to extract rules from a small initial set of man-
ually transformed annotations which can then be
applied to the whole corpus. The rule applications
can be manually observed and verified, and the
ruleset can be refined based on these observations.

2 Related Work

While tree transducers have been around for a
while, they have not been used with dependency
trees so far. Treebank conversion itself is a topic
which has gained attention only recently in associ-
ation with the Universal Dependencies project.

2.1 Treebank Conversion
The UD project included six languages initially
(McDonald et al., 2013) and since its inception,
a number of treebanks with native annotation
schemas have been converted to Universal Depen-
dencies (e.g. Danish (Johannsen et al., 2015), Nor-
wegian (Øvrelid and Hohle, 2016), Swedish (Nivre,
2014; Ahrenberg, 2015) and Hindi (Tandon et al.,
2016)). By establishing a new annotation scheme
which is also still evolving, (semi-)automatic con-

58

version is gaining importance, yet no common sys-
tem or supporting framework was established.

However, a common pattern can be observed
across conversion techniques: Usually, conversion
starts with the treatment of language specific oddi-
ties such as splitting tokens into multiple syntactic
words followed by conversion of PoS tags which
can mostly be done on a simple word for word ba-
sis, and conversion of dependency labels combined
with restructuring of the tree.

For tree restructuring and dependency label con-
version, rules matching and converting parts of the
tree have been proposed in different approaches.
The Finnish Turku Dependency Treebank was con-
verted with dep2dep1, a tool based on constraint
rules which are converted to Prolog (Pyysalo et al.,
2015). Tyers and Sheyanova (2017) convert North
Sámi to UD with a rule pipeline implemented as
XSLT rules. Both approaches match edges based
on node features and local tree context, matching is
done anywhere in the tree, in contrast to top-down
conversion in a tree transducer approach.

Ribeyre et al. (2012) outline a two step process
where the rules to be applied are determined in
the first step and are then iteratively applied in
the second with meta-rules handling conflicting
rule applications. Neither of these approaches can
inherently guarantee well-formed tree output.

For the transition from UD version 1 to version
2 a script has been published based on the udapi
framework, which simplifies working with CoNLL-
U data.2 All transformations in the transition script
are encoded directly into the source code, making
adaptations difficult and error-prone.

2.2 Applications of Tree Transducers
Thatcher (1970) extended the concept of sequen-
tial transducers to trees and already mentioned
its potential usefulness for the analysis of natu-
ral language. Transducers in general can often be
found in natural language processing tasks, such
as grapheme to phoneme conversion, automatic
speech recognition (Mohri et al., 2002) or machine
translation (Maletti, 2010), however a finite state
transducer is limited to reading its input left-to-
right, in a sequential manner.

In machine translation tree transducers can be
used, where they operate on constituency trees. The
tree is traversed top to bottom and thus subtrees in

1https://github.com/TurkuNLP/dep2dep
2https://github.com/udapi/; the Java implementa-

tion is also used in our tree transducer implementation.

the sentence can be reordered to accommodate for
differences in the grammatical structure of source
and target language. In a similar manner, tree trans-
ducers can be used for semantic parsing (Jones
et al., 2011), converting a syntax input tree to a
tree structure representing the semantic informa-
tion contained in the input.

A constituency tree consists of internal nodes
which represent the syntactical structure of the sen-
tence, and leaf nodes, which are the actual words
of the sentence. For dependency trees however, the
internal nodes as well as the leaves are already the
words of the sentence and syntactical structure is
represented using the edges in the tree, which carry
labels. To our knowledge, tree transducers were
not used with dependency trees so far. The model
has to be adapted in some ways to accommodate
for the differences between dependency trees and
constituency trees (see Section 3.2).

3 Tree Transducers for Dependency
Conversion

Tree transducers, or more specifically top-down
tree transducers, are automata which convert tree
structures from the root to the leaves using rules.
A rule matches parts of the tree and is therefore
ideal in applications where the conversion of the
whole tree can be decomposed into smaller conver-
sion steps that rely only on local context. In con-
stituency trees as well as dependency trees, parts
of a sentence are grouped together to form a single
syntactic unit, such as the subject of a sentence con-
sisting of a noun with a determiner and an adjective
or even a relative clause. When converting the tree,
the size and structure of the subtree attached as
subject is irrelevant, just like the rest of the tree
becomes irrelevant when looking at the subtree.

3.1 Formal Definition of a Tree Transducer

A tree transducer is a five-tuple M =
(Q,Σ,∆, I,R).3 Tree transducers operate on
trees. A tree consists of elements from the input
alphabet Σ, which is a set of symbols. The rank of
a symbol is the number of child elements it needs
to have in the tree. A ranked alphabet is a tuple
(Σ,rk) where rk is a mapping of symbols to their
rank. For simplicity, the ranked alphabet is called
Σ, like the set of symbols it contains. The set of

3Our notation follows (Maletti, 2010), which also offers an
expanded discussion on the formal aspects of top-down tree
transducers.

59

possible trees that can be created from the alphabet
is denoted by TΣ.

In addition to the input alphabet, a transducer
also has an output alphabet ∆ with Σ∩∆ = /0. The
translation frontier is marked using state nodes,
which are part of the set of state nodes Q, Q is dis-
joint with both Σ and ∆. The state nodes are also
ranked symbols. Initially, the tree to be converted
consists only of input symbols. A state node from
the set of initial states I ⊆ Q is added at the root,
to mark the position in the tree that needs to be
converted next. With each step the frontier of state
nodes is pushed further down the tree. The state
nodes separate the output symbols from the input
symbols which still need to be converted (see Fig-
ure 1 for an example of a tree being converted top
down with multiple local conversions).

The local conversion steps are performed using
rules. Each top-down tree transducer has a rule-
set R ⊆ Q(TΣ(X))×T∆(Q(X)), i. e. a rule is a tu-
ple containing two tree structures: one to match
parts of the tree to be converted, one to replace the
matched parts. On the left-hand side, the root of
each tree is a state node. The other nodes are from
the input alphabet Σ. Leaf nodes may also be from
the set of variables X . The state node is used as
the anchor point to determine if a rule matches the
current tree structure. The subtree of input nodes
below the state node given on the left side of the
rule needs to be identical to the subtree of input
nodes in the tree to be converted. While the subtree
of an extended tree transducer can be of arbitrary
depth, a basic tree transducer can only contain sub-
trees of depth one. The variables on the left-hand
side of the rule can match any node in the tree if
they are in the correct relation to the rest of the tree.
Subtrees below the one to be converted in this rule
are matched to these variables, marking the end of
the local context the rule seeks to convert.

If the left hand-side of the rule matches, the rule
can be applied to the tree and the right-hand side of
the rule is used to replace the matched subtree in
the tree to be converted. The right-hand side of the
rule consists of a tree of output symbols T∆. Again,
leaves may be variables. Each variable needs to
have a state node from the set Q as parent. Here,
the same variables which were used on the left-
hand side of the rule can be used again, to attach
the unconverted subtrees below the new converted
subtree. The newly introduced state nodes mark
the subtrees described by the variables for further

conversion. In this way, the frontier of state nodes
is pushed down the tree.

A rule is linear and nondeleting if the variables
xi ∈ X used on the left-hand side of the rule are
neither duplicated nor deleted on the right-hand
side of the rule and each variable is used only once
on the left-hand side. If all the rules in R are lin-
ear and nondeleting, the transducer is linear and
nondeleting.4 For machine translations tasks, these
properties ensure that no part of the sentence is
deleted or duplicated.

3.2 Adaptations for Dependency Conversion

When defining an extended top-down tree trans-
ducer for dependency trees, we treat the labels of
the edges as properties of the dependent, as tree
transducers have no notion of labeled edges. We
then use the set of input and output dependency
labels for Σ and ∆, respectively. In contrast to
the previously discussed formalism, the vertices
in the dependency tree are not simply dependency
labels, but also contain the word and its index in
the sentence, among other information that needs
to remain unchanged. We therefore define the input
alphabet Σ not just as the set of input labels Lin but
rather as Σ⊆ Lin×N, which means that each node
is a tuple of the dependency relation and a natural
number serving as a node identifier (i. e. the index
of the word in the current sentence). We will write
nσ as a shorthand for (σ ,n) ∈ Σ.

The need for this becomes apparent when look-
ing at the example in Figure 2. In the second con-
version step, the tree is converted with a rule like
this: q(PP(PN(x1)))→ obl(case(),q(x1)) which
we will use as a running example throughout this
section. The new structure of the dependency rela-
tions is clearly defined, but which node should re-
ceive which label cannot be inferred. The node pre-
viously attached with the PP relation could either
receive the label obl and not change its position in
the tree, or it could be attached below the node with
the obl label with a case relation. This is why the
nodes need to be identified, which is done via their
respective index. The rules do not contain explicit
indices, only the correspondence between the left
and right-hand side of the rule is relevant. The con-
crete indices are substituted during the rule match-
ing. In the following rule, n1 and n2 stand for ab-
stract indices that are to be replaced with a concrete

4A more elaborate definition of these properties can be
found in (Maletti, 2010)

60

hundred

-ty

sixtwen-

six
(0)⇒

q

hundred

-ty

sixtwen-

six

(1)⇒R

100

q

-ty

sixtwen-

q

six

(2)⇒R

100

q

-ty

sixtwen-

10

60

∗⇒R

100

10

62

10

60

Figure 1: An example of a tree transformation of the numeric expression “six hundred twenty six” to its
digit form 626, using a top-down tree transducer. The yellow nodes are nodes from the input alphabet,
the green nodes are from the output alphabet and the orange nodes are state nodes. Example based on
Maletti (2010), the last step includes multiple transformation steps.

index: q(nPP
1 (nPN

2 (x1))) → nobl
2 (ncase

1 (),q(x1)) It
can be seen that n1 and n2 switch their position
in the tree, so the node previously attached as PP
got moved below the obl node and received the
case relation.

After defining Σ⊆ Lin×N and ∆⊆ Lout ×N as
described above, we can define a new property of
transducers. A rule r = (Tl,Tr) is word-preserving
if it meets the following conditions: First, r is lin-
ear and nondeleting. Second, the left-hand side
of r cannot contain the same node index twice:
n 6= m ∀(·,n),(·,m) ∈ Tl,(·,n),(·,m) ∈ Σ. Third,
r neither deletes nor duplicates a matched word.
This means that for Nin := {n ∈ N|(·,n) ∈ Tl} each
n ∈ Nin appears exactly once in Tr. A ruleset is
word-preserving if all its rules are word-preserving.
This property ensures that word attachments and
dependency relations of the sentence can change
but no word is removed or duplicated.

The input symbols of a tree transducer are
ranked. A node in a dependency tree can have
any number of children, therefore the alphabet in
the tree can be assumed to contain each symbol
with multiple different ranks to adhere to the for-
malism. To accommodate for the varying number
of dependents in the rules, without requiring a rule
for each possible number of dependents, the vari-
able mechanism to match subtrees is extended to
match multiple subtrees into one catch-all vari-
able. As an example, the dependency tree in Fig-
ure 2 could have additional dependents below the
“Transducer” node, such as adjectives or a relative
clause. Our running example rule used in step two
of the conversion process does not account for ad-
ditional dependents. To account for them, the rule
can be adapted as follows: q(nPP

1 (nPN
2 (xs1)))→

nobl
2 (ncase

1 (),q(xs1)). Here, xs1 can match a vari-
able amount of nodes, hence formally it could be
represented by x1,x2, ...,xn ∈ X . In this way, one
rule represents multiple rules with symbols of dif-

n0(q(nNEB
1 (nKONJ

2 ()),nOBJA
3))→

n0(nadvcl
1 (q(n2())),q(n3())) (1)

n0(q(nNEB
1 (nKONJ

2 ())))→
n0(n

ccomp
1 (q(n2()))) (2)

q(nKONJ
1 ())→ nmark

1 () (3)

Figure 3: Formal representation of tree transducer
rules for transforming subordinate clauses.

ferent rank, which means that the transducer can
still be seen as ranked, just with a compact rep-
resentation. Also in contrast to the conventional
formalism, the child elements in the tree structures
of the rules are not ordered and can therefore be
matched to the annotation nodes in any order.

We only use one type of state node. Information
about the already converted part of the tree can
be accessed by matching nodes above the frontier.
This way, different rules can be executed based
on, for example, the dependency relation of the
parent node, without the requirement to pass this
information down encoded in a state node. Only
direct ancestors can be matched, as these are guar-
anteed to have been translated already. Matching
dependents of parents would introduce ordering ef-
fects based on the order in which the children of a
node are converted. Because the information in the
parent nodes could be encoded in a state node, ac-
cessing it by matching the parent is not a violation
of the transducer formalism.

3.3 Look-ahead Extension

Similarly to this look-back mechanism, a look-
ahead mechanism is required to inspect context

61

S

Ich transformiere mit dem Transducer

SU
BJ PP

DE
T

PN

root

Ich transformiere mit dem Transducer

SU
BJ PP

DE
T

PN

root

Ich transformiere mit dem Transducer

SU
BJ

caseDE
T

obl

root

Ich transformiere mit dem Transducer

nsu
bj

casede
t

obl

Figure 2: Conversion of “Ich transformiere mit dem Transducer” (i transform with the transducer); yellow
lines indicate the state nodes, HDT labels are uppercase, UD are lowercase.

below the current node without converting it imme-
diately. Figure 3 contains an example for this. A
NEB dependent, a subordinate clause, is converted
differently based on its context. The subordinate
clause can either be a core dependent as a ccomp
(rule 2), or it can have an adverbial function and
would be attached as advcl (rule 1). In this case a
simple heuristic based on the presence of an object
is used to distinguish core and non-core subordinate
clauses. KONJ and OBJA in the first two rules are
matched to constrain rule application by requiring a
certain context, but the conversion of these nodes is
left to be treated in additional rules. The KONJ de-
pendent, a subordinate conjunction, is transformed
in an additional rule (rule 3) to clearly separate the
conversion of different labels into different rules
and to avoid duplicating conversion logic.

The OBJA dependent is attached with different
labels based on its context, just like the NEB de-
pendent in this case. Converting NEB and OBJA
together in the same rule would result in a com-
binatorial explosion of rules, as not only would
multiple rules be required to convert the NEB to
different output symbols, but also multiple vari-
ants of the NEB rules for the different conversions
of the OBJA dependent. While this separation of
concerns into different rules results in a more struc-
tured and systematic ruleset, it requires rules to be
tested in a specific order, as the NEB conversion
now relies on the OBJA to be converted afterwards.

3.4 Cross-frontier Modifications

When converting a function-head treebank to a
content-head scheme like Univeral Dependencies,
edges are inverted a lot and in some cases the func-
tion and content word appear in the same pattern
all the time, like the case nmod combination, but
sometimes the structure varies more. Verb modality
and tense is often expressed with auxiliary verbs or
modality verbs in addition to the content bearing
verb. In a function-head treebank this means there
can be long chains of auxiliary verbs with the actual
main verb at the bottom of the chain. The varying
depths would require multiple rules for different
depths of the chain, as all the function words and
the content word at the end need to be converted
at once, to allow for the inversion of the head. For
these cases it is practical to make modifications to
already converted parts of the tree.

An example of such a use case is shown in Fig-
ure 4. The S and SUBJ node are converted just
like they would be if there were no auxiliary verbs.
When the first auxiliary relation is converted, the
already transformed root node is matched above
the frontier and repositioned below the node previ-
ously attached as AUX , thereby inverting the rela-
tion between head and auxiliary verb. For the next
auxiliary relation, the same rule is used. On the
left-hand side of the rule the dependency relation of
the parent is assigned to a variable $x, to reassign
this relation to the previous auxiliary verb. Using a

62

S

Ich hätte transformieren können

SU
BJ

AU
X

AUX

root

Ich hätte transformieren können

ns
ub
j

AU
X

AUX

root

Ich hätte transformieren können

nsubjaux AU
X

root

Ich hätte transformieren können

nsub
j
aux

aux

Figure 4: Conversion of a dependency tree from a function-head to a content-head scheme. The AUX
edges are inverted when they are converted. The rule used in step 2 and 3 is p$x(q(nAUX(xsn),xsq),xsp)→
n$x(paux(),q(xsn,xsq),xsp)

variable eliminates the need to have an additional
rule for each possible parent relation.

The rule also contains catch-all variables below
each individual node in the tree to cover all possible
dependent attachments. Specifying a transforma-
tion strategy for each possible dependent makes
this rule adaptable to different structures. While
the first application of the rule matches “ich” in
the xsp variable and “transformieren” in the xsn

variable, the second application matches both “ich”
and “hätte” in xsp.

4 Implementation

The implementation of the transducer incorporates
all properties discussed in Section 3. A transducer
is specified through a single file containing the
rules. The input and output alphabet are specified
implicitly, by the labels used in these rules.

Figure 5 demonstrates the syntax, which is simi-
lar to the rule notation introduced in Section 3. A
node is specified by an identifier and optionally
its dependency relation, connected with a colon.
Catch-all variables consist of an identifier prefixed
by a question mark. A state node is denoted by
curly braces, it does not have an identifier as there
is only a single type of state node. A basic label
translation is shown in (a), (b) shows the rule exam-
ple discussed throughout Section 3.2 and (c) shows
the rule mentioned in Figure 4.

Not all left-hand sides of the rules contain state
nodes, and the right-hand sides never contain them.
If a rule does not contain a state node on the left-

(a) n:SUBJ() -> n:nsubj();

(b) n1:PP(n2:PN(?r2), ?r1)
-> n2:nmod(n1:case(), ?r1, ?r2);

(c) parent:$x({n:AUX(?auxr), ?fr}, ?r)
-> n:$x(parent:aux(), ?auxr, ?r, ?fr);

(d) p({n:SUBJ(?r), ?fr}, ?pr)
-> p(n:nsubj({?r}), {?fr}, ?pr)

(e) p({n1:OBJA(), n2:OBJD()})
-> p(n1:obj(), n2:iobj());
n:OBJA() -> n:obj();
n:OBJD() -> n:obj();

(f) p.NE({n.NN:APP()}) -> p(n:appos());
p.NN({n.NN:APP()}) -> p(n:compound());

(g) p({n:APP()}) -> p(n:compound()) :-
{n.getOrd() < p.getOrd()};

Figure 5: Rule (a) to (c) show rule syntax examples
and (d) is a verbose version of (a). Rule (e) and (f)
show rule combinations and (g) shows the use of
groovy code to further constrain rule applicability.

hand side, it is assumed to be above the root node.
As state nodes on the right-hand side of rules are al-
ways above non-converted nodes, these state nodes
are inferred as well.

The n node in (a) does not have a variable node
as a dependent like the n1 and n2 node in (b).
Whenever a node does not have a catch-all depen-
dent, it is assumed that potential dependents should
remain attached the way they are, not that the node
should not have dependents at all. Therefore, it

63

is only necessary to use catch-all variables if the
words matched by the variable should be reattached
somewhere else. For example, the ?r1 catch-all
variable in (b) is necessary, whereas ?r2 could be
omitted – it is only stated explicitly to avoid confu-
sion about the location of the n2 dependents. Rule
(a) as used in the transducer after inference of all
additional parts mentioned is shown in (d): Above
the n node, a frontier and a parent node are inferred.
In addition, the n node as well as the frontier and
parent node each receive a catch-all variable.

The rules are tested in the order in which they
are written in the file. Each rule is tested at each
frontier node, and if it cannot be applied anywhere,
the next rule is tested. Rules which only apply
within a narrow context and describe exceptions to
a general rule appear above these generic fall-back
rules. This is exemplified in (e), where the first
rule covers the specific case of ditransitive verbs,
attaching one object as obj and the other as iobj,
based on their grammatical case. The other two
rules cover the common case of simple transitive
verbs with a single object only.

The Part-of-Speech tags are important to dis-
tinguish structures with otherwise identical depen-
dency relations. They can be accessed directly via
a period after the node identifier, as illustrated in
(f). The PoS tags are only used to constrain rule
applicability and cannot be set on the right-hand
side of a rule.

Lastly, arbitrary groovy5 code can added to the
rules to further constrain matching or even to mod-
ify the resulting tree. Rule (g) shows an example
where linear order in the sentence is checked us-
ing groovy. In the groovy code the tree before and
after the transformation can be accessed and modi-
fied, allowing to formulate additional constraints or
modify the resulting tree, to for example add feats
to the nodes.

5 Experiments and Results

To evaluate the feasibility of the tree transducer
approach to treebank conversion, a ruleset for the
conversion of the Hamburg Dependency Treebank
(Foth et al., 2014) to Universal Dependencies was
created and applied to the treebank. Due to its size
of more than 200k manually annotated sentences,
a conversion needs to be streamlined as much as
possible.

5Groovy Language: http://groovy-lang.org/

5.1 Ruleset

To get familiar with both the HDT and UD tagset,
a sample subset of 45 sentences was chosen based
on the requirement that each dependency relation
from the HDT tagset appears at least three times
in the selected dependency trees. Each sentence
was converted manually to UD and notes of reap-
pearing patterns or difficult and unusual relation
structures were taken. The notes and knowledge
of both schemas was then used to create an initial
ruleset, which was tested on the previously anno-
tated trees. In an iterative manner the ruleset was
refined by comparing the generated results against
the previously manually converted trees.

It took about a week of work to annotate the trees,
take notes and create the ruleset. This was largely
due to being unfamiliar with the HDT as well as
the UD tagset and not knowing which features the
software should even have. The software was also
adapted in this time to incorporate new features
which were deemed necessary while the rules were
created. The resulting ruleset contains 58 rules,
each with a complexity similar to the ones shown in
Figure 5. Having the conversion software already,
as well as previous knowledge about the source
and target annotation schema, a ruleset with similar
effectiveness can be created in one or two days.

As the HDT annotation guidelines do not include
punctuation, it is always attached to the root and no
information about the potential attachment in the
tree using the UD schema can be inferred from the
local context. Therefore, punctuation was ignored
in the experiment.

5.2 Evaluation

We used the ruleset to convert part B of the tree-
bank, containing about 100k sentences. 91.5% of
the words were converted successfully.

To evaluate the correctness of the conversions,
we used 50 sentences manually converted to UD.
These sentences were chosen randomly from the
treebank, excluding the sentences used to create the
ruleset. The sentence annotations were converted
with the ruleset and compared to the manually an-
notated ones. Out of 698 words in total, 36 words
were not converted and 51 words were converted
incorrectly, yielding a precision of 92% and a recall
of 94%.

The transducer also uncovered a few annotation
errors in the manually annotated trees. For exam-
ple, nmod relations on words which should have

64

been attached as obl. These errors in the target
data were corrected before calculating the values
mentioned above, as they would distort the actual
evaluation results of the transducer.

6 Analysis

Converting a node requires that the node and its
context can be matched by a rule in the ruleset.
This means that adding rules with a narrow context
– and therefore wide applicability – as fall-back
rules to more specific transformations will increase
the coverage of the ruleset, an effect that is ampli-
fied by the fact that the descendants of an uncon-
vertible node cannot be converted as well, as the
frontier cannot move beyond a node for which no
conversion rule exists. About half of the uncon-
verted nodes were descendants of an unconvertible
node and not necessarily unconvertible themselves.
The ruleset contains rules which make strict as-
sumptions about the PoS tags of the nodes, specif-
ically in the rules concerning the conversion of
appositions, as well as assuming that certain depen-
dency relations always appear together, such as a
conjunct and a coordinating conjunction. In both
cases, adding fall-back rules with less context will
increase coverage.

On the other hand, to increase precision, some
rules need to be more constrained by including
more context. This is especially the case where
distinctions need to be made in the target schema
which are not encoded in the source schema. For ex-
ample, the UD schema makes a distinction between
appos, compound, and flat. These syntactic re-
lations are all grouped under the APP label in the
HDT annotation schema. Also, the distinction be-
tween obl and nmod as well as between advcl and
ccomp has no correspondence in the HDT schema.
While these distinctions are difficult to make, it is
most of the time possible to distinguish between the
cases by looking at the PoS tags of the nodes and
their parents or inspecting the dependents through
look-ahead.

Some conversions are exceptions to the rule and
cannot be converted automatically. This is the case
with multiword expressions, a concept not used in
the HDT. Different multiword expressions consist
of different types of words, each German multi-
word expression would require a specific rule based
on the word forms. Also, reflexive pronouns at-
tached to inherently reflexive verbs should not be
attached as objects in UD, but as expl. This is not

the case in the HDT, and as it cannot be inferred
from the structural context if a verb is inherently
reflexive or not, it is impossible to convert these
relations correctly in an automated transformation
process. These cases can be decided by a human
annotator, prompting to the implementation of an
interactive conversion system (see Section 7).

Large parts of the conversion worked very well,
such as the conversion of different types of objects
to obj and iobj, distinguishing nmod and obl,
and amod and nummod. Distinguishing advcl and
ccomp worked in most cases, but some cases are
also hard to decide for a human. The inversion of
function and content head worked well, such as
switching case and nmod nodes or inverting aux

relations. A relevant portion of the HDT labels had
a correct correspondence to a UD label and could
therefore be converted easily.

7 Conclusion and Outlook

We introduced a framework which makes it pos-
sible to write a useful tree transducer for depen-
dency schema transformation based on a very small
amount of manually transformed annotations in lit-
tle time. An approach relying on converting groups
of words in a local context fits the structure of nat-
ural language, where functional units in a sentence
often consist of multiple sub groups of words. By
relying on the tree transducer framework, the rule
writer can focus on the conversion itself and does
not need to worry about termination or preserving
the tree structure. In addition, no programming
skills are needed for writing transformation rules.

The experiments performed indicate the need of
an interactive transformation mode: While detect-
ing ambiguous structures is possible, deciding them
automatically is hard. As such, semi-interactive
conversion is the next step, showing the interme-
diate conversion results of rules that are not fully
reliable to a human annotator and allowing her to
chose whether to perform this step or even to re-
structure the tree manually before continuing with
automatic conversion.

For the conversion of the HDT into UD, more
time needs to be invested to refine the rules, and
the final conversion should be done interactively.

Code and data is available under:
http://nats.gitlab.io/truducer

Acknowledgements We would like to thank the
anonymous reviewers for helpful comments.

65

References
Lars Ahrenberg. 2015. Converting an english-swedish

parallel treebank to universal dependencies. In Pro-
ceedings of the Third International Conference on
Dependency Linguistics (Depling 2015), pages 10–
19, Uppsala, Sweden, August. Uppsala University,
Uppsala, Sweden.

Kilian A. Foth, Arne Köhn, Niels Beuck, and Wolf-
gang Menzel. 2014. Because size does matter: The
Hamburg Dependency Treebank. In Proceedings of
the Language Resources and Evaluation Conference
2014. LREC, European Language Resources Associ-
ation (ELRA).

Anders Johannsen, Héctor Martı́nez Alonso, and Bar-
bara Plank. 2015. Universal dependencies for dan-
ish. In Markus Dickinson, Erhard Hinrichs, Ag-
nieszka Patejuk, and Adam Przepiórkowski, editors,
Proceedings of the Fourteenth International Work-
shop on Treebanks and Linguistic Theories (TLT14),
pages 157–167, Warsaw, Poland.

Bevan Jones, Mark Johnson, and Sharon Goldwa-
ter. 2011. Formalizing semantic parsing with tree
transducers. In Proceedings of the Australasian
Language Technology Association Workshop 2011,
pages 19–28, Canberra, Australia, December.

Andreas Maletti. 2010. Survey: Tree transduc-
ers in machine translation. In Henning Bordihn,
Rudolf Freund, Thomas Hinze, Markus Holzer,
Martin Kutrib, and Friedrich Otto, editors, Proc.
2nd Int. Workshop Non-Classical Models of Au-
tomata and Applications, volume 263 of books@
ocg. at , pages 11–32. Österreichische Computer
Gesellschaft.

Ryan McDonald, Joakim Nivre, Yvonne Quirmbach-
Brundage, Yoav Goldberg, Dipanjan Das, Kuz-
man Ganchev, Keith Hall, Slav Petrov, Hao
Zhang, Oscar Täckström, Claudia Bedini, Núria
Bertomeu Castelló, and Jungmee Lee. 2013. Uni-
versal dependency annotation for multilingual pars-
ing. In Proceedings of the 51st Annual Meeting of
the Association for Computational Linguistics (Vol-
ume 2: Short Papers), pages 92–97, Sofia, Bulgaria,
August. Association for Computational Linguistics.

Mehryar Mohri, Fernando Pereira, and Michael Ri-
ley. 2002. Weighted finite-state transducers in
speech recognition. Computer Speech & Language,
16(1):69 – 88.

Joakim Nivre. 2014. Universal dependencies for
swedish. In Proceedings of the Swedish Language
Technology Conference (SLTC), Uppsala, Sweden,
November. Uppsala University, Uppsala, Sweden.

Lilja Øvrelid and Petter Hohle. 2016. Universal
dependencies for norwegian. In Nicoletta Calzo-
lari, Khalid Choukri, Thierry Declerck, Sara Goggi,
Marko Grobelnik, Bente Maegaard, Joseph Mariani,

Hélène Mazo, Asunción Moreno, Jan Odijk, and Ste-
lios Piperidis, editors, Proceedings of the Tenth In-
ternational Conference on Language Resources and
Evaluation LREC 2016, Portorož, Slovenia, May 23-
28, 2016. European Language Resources Associa-
tion (ELRA).

Sampo Pyysalo, Jenna Kanerva, Anna Missilä,
Veronika Laippala, and Filip Ginter. 2015. Uni-
versal dependencies for finnish. In Proceedings of
the 20th Nordic Conference of Computational Lin-
guistics (NODALIDA 2015), pages 163–172, Vil-
nius, Lithuania, May. Linköping University Elec-
tronic Press, Sweden.

Corentin Ribeyre, Djamé Seddah, and Éric Villemonte
de la Clergerie. 2012. A linguistically-motivated 2-
stage tree to graph transformation. In Proceedings
of the 11th International Workshop on Tree Adjoin-
ing Grammars and Related Formalisms (TAG+11),
pages 214–222, Paris, France, September.

Juhi Tandon, Himani Chaudhry, Riyaz Ahmad Bhat,
and Dipti Misra Sharma. 2016. Conversion from
paninian karakas to universal dependencies for hindi
dependency treebank. In Katrin Tomanek and An-
nemarie Friedrich, editors, Proceedings of the 10th
Linguistic Annotation Workshop held in conjunc-
tion with ACL 2016, LAW@ACL 2016, August 11,
2016, Berlin, Germany. The Association for Com-
puter Linguistics.

James W. Thatcher. 1970. Generalized sequential ma-
chine maps. Journal of Computer and System Sci-
ences, 4(4):339–367.

Francis M. Tyers and Mariya Sheyanova. 2017. An-
notation schemes in north sámi dependency parsing.
In Proceedings of the Third Workshop on Computa-
tional Linguistics for Uralic Languages, pages 66–
75, St. Petersburg, Russia, January. Association for
Computational Linguistics.

66

