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Abstract

This paper presents experiments on Op-
tical character recognition (OCR) as a
combination of Ocropy software and
data-driven spelling correction that uses
Weighted Finite-State Methods. Both
model training and testing were done on
Finnish corpora of historical newspaper
text and the best combination of OCR and
post-processing models give 95.21% char-
acter recognition accuracy.

1 Introduction

In recent years, optical character recognition of
printed text has reached high accuracy rates for
modern fonts. However, historical documents still
pose a challenge for character recognition and
OCR of those documents still does not yield satis-
fying results. This is a problem for all researchers
who would like to use those documents as a part
of their research.

The main reasons why historical documents
still pose a challenge for OCR are: fonts differ
in different materials, lack of orthographic stan-
dard (same words spelled differently), material
quality (some documents can have deformations)
and a lexicon of known historical spelling vari-
ants is not available (although if they were, they
might not give any OCR advantage for morpho-
logically rich languages as noted by Silfverberg
and Rueter (2015), but they can be useful in the
post-processing phase).

The leading software frameworks for OCR are
commercial ABBYY FineReader1 and two open
source frameworks: Ocropy2 (previously known
as OCRopus) and Tesseract3. Springmann et al.
(2014) experiment with these three and compare

1https://www.abbyy.com
2https://github.com/tmbdev/ocropy
3https://github.com/tesseract-ocr

their performance on five pages of historical print-
ings of Latin texts. The mean character accuracy
they achieve is 81.66% for Ocropy, 80.57% for
ABBYY FineReader, and 78.77% for Tesseract.

However, Finnish historical documents are
mainly written in Gothic (Fraktur) font, which
is harder to recognize. The National Library of
Finland has scanned, segmented and performed
OCR on their historical newspaper corpus with
ABBYY FineReader. On a test set that is repre-
sentative of the bulk of the Finnish material, AB-
BYY FineReader’s recognition accuracy is only
90.16%.

In this work we test how Ocropy performs op-
tical character recognition on historical Finnish
documents. We achieve a character accuracy of
93.50% with Ocropy when training with Finnish
historical data. Additionally, we also wanted to
find out whether any further improvement in the
OCR quality could be achieved by performing
OCR post-correction with an unstructured classi-
fier and a lexicon on the Ocropy output.

Our experiments show that already with a rel-
atively small training set (around 10,000 lines)
we can get over 93% accuracy with Ocropy and
with additional post-correction, the accuracy goes
beyond 94%. With two training sets combined
(around 60,000 lines), we get accuracy even over
95%.

1.1 Related work

In Springmann et al. (2014), they apply different
OCR methods to historical printings of Latin text
and get the highest accuracies when using Ocropy.
Some work on Fraktur fonts has been reported
in Breuel et al. (2013) where models were trained
on artificial training data and got high accuracies
when tested on scanned books with Fraktur text.

In Shafait (2009), alongside with the overview
of different OCR methods, they present the archi-
tecture of Ocropy and explain different steps of a
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typical OCR process.
Approaches to OCR post-processing are numer-

ous and commonly rely on an error model for gen-
erating correction candidates. A language model
may be incorporated to model output-level char-
acter dependencies. A lexicon can be used to de-
termine which suggestions are valid words of the
language – historical OCR may pose a challenge
here if lexical resources are scarce. The post-
processing method used in our work is described
by Silfverberg et al. (2016) and can be described
as an unstructured classifier. While the method is
relatively simple from both a theoretical and com-
putational points of view as it lacks a language
model and a segmentation model found in many
recently proposed approaches (see e.g. Eger et al.
(2016), Llobet et al. (2010)) the classifier never-
theless captures the regularities of character-level
errors occurring in OCR output and demonstra-
bly improves the quality of the processed text. A
more detailed comparison with other OCR-post
processing methods can be found in Silfverberg et
al. (2016).

2 Data and resources

2.1 Data

In our experiments, we use two data sets hereafter
referred to as DIGI and NATLIB. Both are part of
a larger corpus of historical newspapers and mag-
azines that has been digitized by the National Li-
brary of Finland and consists of image files of in-
dividual lines of printed text as well the contents
of said lines as plain text.

We created the DIGI data set as follows: first,
a total of approximately 12,000 non-punctuational
tokens were picked at random from the entire cor-
pus. For each token, a random sentence contain-
ing said token was retrieved from the corpus to-
gether with information pertaining to the publi-
cation as well as as the page on which the sen-
tence appears. The ABBYY METS/ALTO file
and the corresponding image file of the scanned
page on which the sentence appeared were re-
trieved from a repository, and the latter was sub-
sequently cropped to only contain the line(s) on
which the sentence occurred (i.e. the line segmen-
tation was done by ABBYY FineReader). The
contents of the lines were then manually written
into a plain text file, which serves as the ground
truth for training and testing our methods. Images
whose contents could not be made out were ex-

cluded from the final data set, which consists of a
total of over 12,000 image files and lines of man-
ually edited ground truth data. This also gave us
an fairly good idea of the overall quality of the cor-
pus: we compared the ABBYY FineReader output
with the manually edited ground truth and calcu-
lated a character error rate of 90.16%.

The NATLIB data set contains 54,087 line im-
ages and corresponding ground truth texts seg-
mented from 225 pages of historical documents.
The data was provided to us by the National Li-
brary of Finland.

2.2 Ocropy

Ocropy (previously known as OCRopus - Breuel
(2008), Breuel (2009), Breuel et al. (2013)) is
a leading open source software toolkit for train-
ing OCR models using long short term memory
networks. In addition to character recognition,
Ocropy offers tools for pre-processing documents
(line segmentation, binzarization/normalization),
tools for creation and correction of ground truth
and evaluation tools.

2.3 Unstructured Classifier and Lexicon

We chose to perform OCR post-correction by us-
ing the unstructured classifier described by Sil-
fverberg et al. (2016), as it was fast and easy to
implement. The system is originally designed for
correcting individual input strings and makes use
of an error model that can be formulated as a se-
ries of weighted context-sensitive parallel replace
rules implemented as a weighted finite-state trans-
ducer. Lexical lookup is used to validate or discard
suggestions generated by the error model.

For validation, we used a modified version of
the lexicon also used by Silfverberg et al. (2016),
which in turn is a modified and extended version
of a finite-state morphology of modern Finnish
that has been specifically tailored to accept forms
and spellings found in 19th century Finnish. We
further modified this lexicon to accept strings with
leading and trailing punctuation, as we found that
punctuation often provides important clues for
finding the correct substitution, which could be
lost if the data was tokenized and the punctuation
removed.

3https://github.com/tmbdev/ocropy

71



3 Method

In this section we describe the OCR process in
its entirety. The method consists of three major
parts: Data preparation, OCR and finally post-
processing.

1. Preparing the data

We divided the DIGI data set into three parts:
9,345 images and lines were allocated to
training, 1,038 served as development data
and the remaining 2,046 lines were reserved
for testing. The motivation for splitting the
data this way comes from practical reasons:
we initially had separate sets of 10,383 and
2,046 lines, so we decided to take 10% from
the bigger set as the development data, 90%
as the training data and to use the smaller set
for testing.

The NATLIB data was on the other hand
completely randomly split into three parts:
43,704 lines was used for training, 100 was
used as development set and 5,308 as test set.
In this case we used a very small develop-
ment set because from our previous experi-
ence with DIGI data, we learned that recog-
nition of large amount of lines can be quite
slow. And since we had to do recognition for
all saved models to find the best one, we de-
cided to save time by reducing the size of the
development set.

2. OCR

(a) Since Ocropy works with black and
white images files, the first step was to
binarize our data. For this, we used
the ocropus-nlib program with de-
fault settings, which alongside with bi-
narization performs vertical normaliza-
tion of the text. Example line images
before and after binarization are shown
in Figure 1.

(b) Once the images were binarized, we
used them together with ground truth
texts to train neural network mod-
els. Training was performed with the
ocropus-rtrain program which saved
a model after every 1,000 iterations. We
tested all those models on the develop-
ment set and when the recognition accu-
racy stopped improving, we stopped the
training. The model that achieved the

tivat tuota poloista, joka on jou-

(a)

osa säätyluokkaamme ruotsalaistunut.

(b)

tuntoasi. Tunne ja tunnusta Juma-

(c)

Figure 1: Example lines from DIGI test set. The
first line shows the original scanned line, the sec-
ond one is the binarized version, and the last one
is the ground truth text.

highest accuracy on the development set
was used for testing on the test sets.

(c) Finally, prediction was done with the
ocropus-rpred function. We tested
the best model from both data sets on all
test sets.

3. Post-processing

(a) In order to train the error models used
in post-correction, we ran the best OCR
models on their respective training data
sets and aligned the output with the cor-
responding ground truth data at the char-
acter level. The alignment was per-
formed iteratively, with each iteration
yielding a better alignment compared
with the previous one.

(b) The aligned data was then used to train
a number of error models of varying
sizes. The different models were ob-
tained by varying the value of the thresh-
old (T) i.e. the number of times a sub-
stitution must occur in a given context
in the aligned training data in order to
be included in the rule set and the final
model. The resulting models were then
tested on the development data set in or-
der to determine the optimal value of T.

(c) Finally, the training data sets and the
development data sets were combined.
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The final error model was trained on this
data with the threshold set at its optimal
value. The resulting model was applied
to the test data processed by Ocropy.
Due to the technical limitations of the
post-correction method using lexical
lookup, the input data was automati-
cally split into strings which were post-
processed individually. The input lines
were split into tokens at blanks, and
the output yielded by the post-correction
system was then joined back into lines
before calculating the character accu-
racy rate (see below).

4. Evaluation

During both the prediction and evaluation
phases, we measured the performance of
the system by using character accuracy rate
(CAR), which is essentially the percentage of
correct characters in the system output and is
a common metric in OCR-related tasks. It is
the number of correct characters divided by
the sum of correct characters and errors in the
system output:

CAR = 100%× correct
correct + errors

(1)

The number of errors is the overall Leven-
shtein distance (Levenshtein, 1966) between
the system output and the ground truth and
includes deletions and insertions.

For languages with relatively long words
such as Finnish, character accuracy rates and
character error rates are arguably better indi-
cators of the overall quality of the text than,
for instance, word error rate, since longer
words are more likely to contain multiple er-
rors and are thus more difficult to correct.
The legibility of a text may actually improve
considerably without any notable change in
its word error rate.

4 Results

For testing purposes we initially used two OCR
models: the DIGI model and the NATLIB model.
Both models were trained on their respective train-
ing sets (the DIGI training set with 451,000 itera-
tions and the NATLIB training set with 177,000
iterations).

Table 1: Character accuracy rates after OCR and
post-correction: the DIGI model (first column)
was trained on DIGI training data with 451 000
iterations while the NATLIB model (second col-
umn) was trained on NATLIB training data with
177 000 iterations. The first two rows (DIGI-
dev and NATLIB-dev) show the model CAR on
the respective development sets. The DIGI-test
row shows CAR for each model on the DIGI
test set, with the following two rows showing re-
sults after post correction. The NATLIB-test row
shows CAR for each model on the NATLIB test
set and the final two rows show CAR after post-
correction.

DIGI
model

NATLIB
model

DIGI-dev 94.16% -
NATLIB-dev - 94.73%
DIGI-test 93.50% 89.05%
Post corr. (DIGI) 93.68% 89.12%
Post corr. (NATLIB) 93.59% 89.13%
NATLIB-test 93.82% 93.59%
Post corr. (DIGI) 94.05% 93.81%
Post corr. (NATLIB) 94.13% 93.94%

Table 1 shows character accuracy rates (CAR)
for different combinations of trained models and
the two test sets (DIGI-test and NATLIB-test) as
well as post-correction results.

Afterwards, we also tested three models trained
on combined data from both training sets: one
trained from scratch on all lines from DIGI and
NATLIB training sets, another trained on NATLIB
train set with the DIGI model as the starting point
and the third one was trained on the DIGI train set
with the NATLIB model as the starting point. We
chose the best models by calculating average CAR
on both development sets.

Table 2 shows CAR for those three models
tested on DIGI and NATLIB test sets as well as
post-correction results.

Since the OCR accuracy on DIGI-test differs
substantially depending on the model, we per-
formed further analysis of the results on this test
set using the ocropus-econf program. This is
one of the Ocropy’s evaluation programs which
performs different kinds of evaluation tasks.

Tables 3 and 4 show the ten most common
recognition mistakes on the DIGI test set. The
first column in the tables gives the frequency of
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Table 2: Character accuracy rates after OCR and
post-correction of models with combined training
data: (1) the model was trained from the beginning
on both training data combined, (2) model was
trained on NATLIB data with the DIGI model as
starting point, (3) model was trained on DIGI data
with the NATLIB model as starting point. The first
row show the average character accuracy rate that
the models scored on the two development sets.
The following two rows show CAR on the DIGI
test set before and after post correction. The last
two rows show CAR on the NATLIB test set be-
fore and after post correction.

(1) (2) (3)
Dev (avg) 94.47% 93.62% 93.62%
DIGI-test 93% 91.88% 92.32%
Post corr. 93.27% 92% 92.57%

NATLIB-test 94.83% 94.25% 93.68%
Post corr. 95.21% 94.56% 94.01%

the mistakes, the second column the recognition
result and the third one the ground truth. Deletions
are marked with ” ” in the OCR column while
insertions with ” ” in the ground truth column.
The most common mistake the DIGI model makes
on the DIGI test set is insertion of spaces, which
happened 122 times. Similarly, the most frequent
mistake the NATLIB model made on the same test
was deleting a hyphen symbol ”-”, which hap-
pened 663 times. One example when the hyphen
was not recognized and simply left out is shown in
Figure 1c. To better understand the severity of the
mistakes, it is good to know that the DIGI test set
has in total 78,116 characters.

Table 5 shows the frequency of Ocropy recog-
nition mistakes per line for each model. The test
set in both cases was DIGI-test. The DIGI-model
does 100% correct OCR on 758 lines (37%) and
the NATLIB-model on 351 lines (17%).

The best post-correction results were, due to the
sparsity of the data, achieved by error models that
were trained with high thresholds. This was es-
pecially the case with the NATLIB dataset, with
threshold values between 60 and 70 yielding the
best results for the development and test data sets.
The resulting models could easily correct the most
obvious cases without corrupting strings that were
correct to begin with.

Table 3: A confusion matrix for the DIGI test
set after recognition with the DIGI model (before
post-correction)

Freq. OCR Ground truth
122
99 i
87
78 u n
60 i
43 -
41 t
41 . ,
36 l i
31 e o

Table 4: A confusion matrix for the DIGI test set
after recognition with the NATLIB model (before
post-correction)

Freq. OCR Ground truth
663 -
324
109 i
76 a
74 s e
67 a n
65 v
63 r v
62 t
61 y

Table 5: Number of mistakes per line after recog-
nition on DIGI test set (before post correction)
with both models. The first column shows the
number of mistakes per line, the second column
the frequency of lines after recognition with the
DIGI-model and the third column the frequency
of lines after recognition with the NATLIB-model

Mistakes
per line

DIGI-model
n.◦ lines

NATLIB-model
n.◦ lines

0 758 (37%) 351 (17%)
1 427 (21%) 509 (25%)
2 273 (13%) 292 (14%)
3 160 (8%) 180 (9%)
4 119 (6%) 162 (8%)

. . . . . . . . .
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GT: musta, nelisolkinen naisen nahkawyö

DIGI: ew.O:
NATLIB: e.”:.:s’

(a)

GT: Ruusua ja kaikellaista särkyä parantaa hie-
DIGI: ,:
NATLIB: ::,:

(b)

GT: GIN LEIPURI- & KONDIITORI
DIGI: .tt 1h110 Ml. t 00khron
NATLIB: u 1.kL10Ml. K0tte4

(c)

Figure 2: Example lines with a large number of
mistakes for both models

5 Discussion

A surprising result was that the NATLIB model
performed poorly on the DIGI test set. Since the
NATLIB model was trained on approximately five
times more data than the DIGI model, we expected
to get better results with this model. The main rea-
son for the lower recognition rate was a large num-
ber of unrecognized hyphens, as shown in Table 4.
Although both training sets were picked up from
the same corpora, the reason for this phenomena
could be that the NATLIB model represents 225
pages of consecutive text, while the DIGI model
has a better distribution over the entire corpus.

After combining the two training data sets, we
got significantly better results for the NATLIB test
set, however the best results for the DIGI test set
were still gained by the model trained on the DIGI
data solely.

Since the models are trained on lines, a ma-
jor problem for OCR is incorrect line segmenta-
tion. For example, Figure 2 shows three example
lines on which both models performed extremely
poorly. The first two images Figure 2a and Fig-
ure 2b have been incorrectly segmented - there
is too much information from the following line
caused by a large starting letter. Our future work
is to put more focus on segmentation and prepara-
tion of representative data. We should use a neural
network model that is trained on both artificial as

well as real data to see if a bigger data set could
incorporate correct artificial data for currently ob-
served problems.

The other big problem are images with rare
fonts (rare in the sense that they are not well rep-
resented in the training data). In the third image
(Figure 2c), part of the text has been cut off by the
incorrect segmentation, but since visible charac-
ters were not recognized, we believe that the main
reason for the poor OCR result is the font. This
kind of font is not very common in Finnish histor-
ical documents that the models have been trained
on, so it is not recognized. This problem could be
solved by adding more fonts to the training data.

The unstructured post-correction method gave
a small improvement, which was interesting and
by no means self-evident: it could have turned out
that the remaining errors were so spurious that no
further regularities could be extracted. This sug-
gests that there is room for improving the neural
network to incorporate the benefits provided by
the post-correction method.

The biggest problem for our current post-
correction is that it cannot influence spaces and
word boundaries and they seem to be a major
source of errors. A task for future work is there-
fore testing a structured post-correction method
using more advanced line-oriented post correction.

6 Conclusions

Our experiments show that already with a rela-
tively small but well-chosen training set (around
10,000 lines), we can get a character accuracy rate
of more than 93% with Ocropy and with addi-
tional unstructured post-correction, the accuracy
goes beyond 94%. With combination of the two
training sets and with additional unstructured post-
correction, the accuracy reaches 95.21%.
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