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Abstract

Speaker adaptation is an important step
in optimization and personalization of the
performance of automatic speech recog-
nition (ASR) for individual users. While
many applications target in rapid adap-
tation by various global transformations,
slower adaptation to obtain a higher level
of personalization would be useful for
many active ASR users, especially for
those whose speech is not recognized well.
This paper studies the outcome of com-
binations of maximum a posterior (MAP)
adaptation and compression of Gaussian
mixture models. An important result that
has not received much previous attention
is how MAP adaptation can be utilized to
radically decrease the size of the models
as they get tuned to a particular speaker.
This is particularly relevant for small per-
sonal devices which should provide accu-
rate recognition in real-time despite a low
memory, computation, and electricity con-
sumption. With our method we are able to
decrease the model complexity with MAP
adaptation while increasing the accuracy.

1 Introduction

Speaker adaptation is one of the most important
techniques to improve automatic speech recog-
nition (ASR) performance. While today many
out-of-the-box ASR systems work fairly well,
in noisy real-world conditions the accuracy and
speed are often insufficient for large-vocabulary
open-domain dictation. This is particularly annoy-
ing for people who have temporary or permanent
mobility limitations and cannot utilize other in-
put modalities. A feasible solution to improve the
recognition performance is to personalize the sys-
tem by recording adaptation data.

Speech recognition systems require high com-
putational capacity and the recognition is typi-
cally run in the cloud instead of locally in the
device. Computation requirements are due to
large speaker independent (SI) acoustic and lan-
guage models which slow the recognition process.
Transferring data between the user end device and
the cloud causes latency, particularly, when fast
network is unavailable, hence it would be better
if models were small enough to run the recogni-
tion locally. Speech recognition is typically used
on devices which have only a single user, hence a
large SI model contains a lot of unnecessary in-
formation. Speaker dependent (SD) models re-
quire only a fraction of the SI model size and are
more accurate (Huang and Lee, 1993), hence they
would be an ideal solution for smaller systems. A
SD model, however, needs several hours of tran-
scribed training data from the user which is often
not possible in practice. Therefore, the large SI
models are more commonly used.

There are many compression methods for the
acoustic models. Popular approaches are vector
quantization (Bocchieri and Mak, 2001) and com-
pression of Hidden Markov model (HMM) pa-
rameters. The HMM parameters can be clustered
by sharing parameters between the states. Typi-
cal clustering methods are subspace compression
(Bocchieri and Mak, 2001), tying (Hwang and
Huang, 1993) and clustering the Gaussian mixture
models (GMMs) (Crouse et al., 2011). The com-
pression methods, however, do not aim to improve
the accuracy, as they have been developed to save
memory and boost the recognition speed.

The accuracy of the SI model can be improved
by speaker adaptation. Adaptation is a common
technique for adjusting parameters of a general
acoustic model for a specific acoustic situation. It
can significantly improve performance for speak-
ers that are not well represented in the training
data. However, the conventional adaptation meth-
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ods do not resolve the issue with the model size.
In this paper we introduce speaker adaptation for
GMM-HMM ASR system which also reduces the
model size.

MAP adaptation (Gauvain and Lee, 1994) is one
of the most common supervised speaker adapta-
tion methods. The MAP adaptation requires at
least several minutes of adaptation data, but as
the amount of data increases, the MAP estima-
tion converges towards the ML estimation of a
SD model. An advantage in MAP adaptation is
that it can be applied along with the compression
methods and even with other adaptation methods
such as the maximum likelihood linear regression
(MLLR) (Leggetter and Woodland, 1995).

In this paper we propose a modification to the
MAP adaptation that also reduces the model com-
plexity. The acoustic model is simplified by merg-
ing Gaussian components that are the least rele-
vant in the adaptation and improved by adapting
the means of the components. Merging preserves
some of the information merged Gaussians had
which would be lost if the least relevant Gaussian
components were simply removed.

Recently, it has been shown that deep neural
network (DNN) acoustic models can clearly out-
perform GMMs in ASR (Hinton et al., 2012). In
theory, a corresponding adaptation procedure as in
this work could also be applied to DNNs to cut
off connections and units that are the least rele-
vant in the adaptation data and re-train the remain-
ing network. However, it is much more compli-
cated to re-train and to analyze the modified DNN
model than a GMM. This is the reason we started
to develop this new version of the MAP adapta-
tion combined with model reduction using first the
simple GMMs. If it is successful, the next step is
to see how much it can benefit the DNNs.

This paper introduces a modified MAP adapta-
tion. In the following section the MAP adapta-
tion and the Gaussian split and merge operations
are described. Initial experimental results are pre-
sented in Section 3 to show effectiveness of the
method in our Finnish large vocabulary continu-
ous speech recognition (LVCSR) system. The re-
sults are discussed in Section 4, and the final con-
clusions are drawn in Section 5.

2 Methods

In the MAP adaptation of Gaussian mixture
HMMs, the mean of a single mixture component

is updated as following (Young et al., 1997)

µ̂µµmap =
γ

γ + τ
µµµml +

τ
γ + τ

µµµ prior, (1)

where µµµml is a maximum likelihood (ML)-
estimate for the mean over the adaptation data and
µµµ prior is the mean of the initial model. The weight
of prior knowledge is adjusted empirically with
the hyperparameter τ . The occupancy of likeli-
hood γ is defined as

γ =
R

∑
r=1

Tr

∑
t=1

Lr(t), (2)

where L defines the likelihood probability in the
sentence r at the time instant t. Other HMM pa-
rameters can be updated with MAP as well, but in
this paper only the mean update was used.

As can be seen from Equation (1), if the occu-
pancy of the components is small, i.e. the triphone
does not frequently occur in the adaptation data,
the MAP estimate will remain close to the mean
of the initial model. On the other hand, if the tri-
phone is well presented in the data, thus the occu-
pancy is large, the MAP estimate is shifted more
towards the ML estimate over the adaptation data.
The shifting can be constrained with a weight pa-
rameter τ . The optimal τ depends on the initial
model and data, and there is no closed form so-
lution of finding the optimal value. Hence τ has
to be determined empirically for each adaptation
instances.

Split and merge operations are a practical
method to control the model complexity during
the Baum-Welch based training procedure which
is commonly used training algorithm in ML train-
ing of acoustic models. In the training, for each
Gaussian mixture component, the occupancy, i.e.
probability mass, is accumulated in each train-
ing iteration. When the occupancy of the mix-
ture component reaches a certain pre-determined
threshold, the Gaussian distribution is split into
two Gaussian distributions, and the mixture gains
another component. On the other hand, if any pair
of Gaussians in the mixture remain below a min-
imum occupancy level, the Gaussians are merged
into a single component. The resulting Gaussian
will be given parameters which are the average of
the two merged Gaussians. The split and merge
operations during the training cause the size of the
training data set to determine the complexity of the
model. As each HMM model accumulate different
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amount of occupancy, the number of components
also varies for each mixture. (Huang et al., 2001)

The conventional MAP adaptation tunes the pa-
rameters of the SI acoustic model to correspond
better to the adaptation data. As only parameters
are changed, the size of the model does not change
during the adaptation. However, if there is no need
to keep a large SI model in the background, e.g.,
available for other users, the complexity control
similar to the split and merge operations in the ML
training can be included to the MAP adaptation as
well. Because the adaptation data is only from a
single target speaker, a much lower complexity is
usually sufficient to model the data.

With our method, the model shrinks during the
MAP adaptation because the initial model has too
many components compared to the size of the
adaptation set, thus enough occupancy is not ac-
cumulated to all components. Components that do
not accumulate occupancy over the minimum oc-
cupancy threshold are merged together with their
nearest neighbor. Because pairs of Gaussians are
always merged, the model can compress by half in
each iteration at maximum. How much the model
is actually compressed depends on how the occu-
pancy is divided between the components. It is ex-
pected that the components are reduced rapidly as
the adaptation set is small compared to the train-
ing data. After merging, the Gaussians are re-
estimated to maximize the fit to the new set of ob-
servations associated to them.

3 Experiments

The modified MAP adatation is evaluated in a
speaker adaptation task. The corpus for the task
included three Finnish audio books each recorded
by a different speaker. In addition to the vari-
able readers also the style of reading varied signif-
icantly between the books. For example, the task
of the first reader ”Speaker1” was to avoid any in-
terpretation of the text, because the book was in-
tended for the blind audience. The two other read-
ers ”Speaker2” and ” Speaker3” described every-
day matters in a very lively reading style.

The same value for the MAP hyperparameter τ
was used for all speakers with no speaker-specific
optimization. The length of the adaptation sets
was 25 minutes for all speakers. The evaluation set
was 90 minutes long for ”Speaker1” and 30 min-
utes for ”Speaker2” and ”Speaker3”. The training
set for an SD reference model for ”Speaker1” had

90 minutes of speech, and the resulting Gaussian
mixture model had 4500 Gaussian components.

The baseline SI model with 40 032 Gaussians
was ML trained with Finnish Speecon corpus
(Iskra et al., 2002) including 90 hours of speech.
This model was also used as the initial model to be
adapted in the experiments. The language model
used for all experiment was trained with Finnish
news texts. Because Finnish is an agglutinative
language, the n-gram language model was based
on statistical morphs instead of words to avoid out-
of-vocabulary words (Hirsimaki et al., 2009).

The experiments were conducted by the morph-
based LVCSR system, AaltoASR (Hirsimaki et
al., 2009) developed at Aalto University. The
source codes of the recognizer were recently pub-
lished as open source1. The acoustic features were
39 dimensional MFCCs normalized by cepstral
mean subtraction. The Gaussians had diagonal
covariances and a global diagonalising transform
was used. The acoustic models were based on
decision-tree-tied triphones with GMMs.

In this paper the recognition accuracy is mea-
sured by using the word error rate (WER). It is
noteworthy that in agglutinative languages, such
as Finnish, words are often quite long. It means
that sometimes one misrecognized phoneme in a
word such as ”kahvinjuojallekin” leads to 100%
WER, whereas the same mistake in English ”also
for a coffee drinker” gives only 20%. Thus, the
WER numbers in Finnish are typically high and
10% WER means already very good ASR.

Because the adaptation set is much smaller than
the training set for the initial SI model, the oc-
cupancy will not accumulate for every Gaussian
component. Whenever a Gaussian does not gain
sufficient occupancy, it is merged into another
Gaussian distribution as explained in the previous
section. In the experiments for ”Speaker1”, for ex-
ample, this extended MAP adaptation reduced the
model size from 40 032 to the 26 224 Gaussian
components after one iteration.

The results in Figure 1 show that the MAP
adaptation improves the SI model for ”Speaker1”,
even if the model size is also reduced. The blue
bars represent WER after the normal MAP adap-
tation when the model size remains unchanged.
The red bars show WER when the model is com-
pressed during the adaptation. The purple hori-
zontal line represents the performance of the base-

1https://github.com/aalto-speech/AaltoASR
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Figure 1: WER comparison of the normally MAP
adapted (40k) and compressed model (20k) for
”Speaker 1”, where the numbers indicate the num-
ber of Gaussian components.

line SI model without any adaptations. The WER
for the baseline was 19.93%. Figure 1 shows that
as the adaptation set increases the accuracy im-
proves with both methods and the difference in
WER between the compressed and the uncom-
pressed model reduces. The results were similar
with the other speakers as well, as can be seen
from the tables 1 and 2.

The improvement of the compressed models
could be explained by the MAP estimates converg-
ing towards the SD model estimates as the adapta-
tion data increases. The WER for ”Speaker1” with
the SD model was 10.02%. The results also imply
that all the SI model components are not necessary
for all users.

It was also experimented with the ”Speaker1” if
similar results could be achieved by using the ML
estimates instead of the MAP estimates in com-
pression. However, as can be seen from Table 3,
the ML estimates do not improve the accuracy of
the SI model, which had WER 19.93%, until the
adaptation data has reached 25 minutes.

Table 1: Uncompressed MAP (WER).

Adaption set

SI 2 min 7 min 15 min 25 min

Speaker1 19.93 19.58 17.00 16.42 15.28

Speaker2 27.40 23.30 22.80 23.30 22.20

Speaker3 29.7 30.20 28.90 28.00 27.30

Table 2: Compressed MAP (WER).

Adaption set

SI 2 min 7 min 15 min 25 min

Speaker1 19.93 19.94 19.30 17.84 15.95

Speaker2 27.40 24.10 21.00 21.00 18.90

Speaker3 29.7 34.70 30.00 27.80 26.30

Table 3: WER for ”Speaker1” after adapting with
ML estimates.

Adaption set

SI SD 2 min 7 min 15 min 25 min

WER 19.93 10.02 25.19 21.40 20.55 19.76

4 Discussion

While the initial experiments were repeated for
three quite different speakers and texts, trying even
more speakers will be the obvious way to verify
the conclusions. Non-standard test speakers, such
as non-natives, elderly, children and those having
speaking disorders will be particularly interesting
to observe.

The initial acoustic model was a relatively large
and robust SI model. With a smaller SI model, the
behavior of the method could be different. Smaller
models should compress more moderately than
larger models, since the occupancy of the adap-
tation set is allocated to fewer model components
and relatively more components achieve the mini-
mum occupancy value.

The models were compressed by half in the ex-
periments after a single iteration. It is however
possible to use multiple iterations to reduce the
size further. However, compressing the model too
much without a sufficient amount of adaptation
data could result a loss of important components
and the accuracy would decrease. At the moment,
the only way to control the amount of compres-
sion is to adjust the minimum occupancy threshold
for merging. Unfortunately, this approach is lim-
ited as after the adaptation many components will
have zero occupancy. The next step is to explore
the optimal amount of compression and if different
merging algorithms could provide better results.

The mean of each Gaussian has so far been the
only parameter adapted in the experiments. The
WER could be improved more rapidly by updating
the other HMM parameters as well (Sharma and
Hasegawa-Johnson, 2010).

The advantage in the MAP adaptation is that it
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can be used in combination with other compres-
sion and adaptation methods, because it directly
modifies the Gaussian parameters. We success-
fully adapted a discriminatively trained SI model
with our method, as well. The results were simi-
lar with the ML SI model we presented in this pa-
per. This implies that compressing MAP adapta-
tion can be combined with a variety of techniques.

The usability of the speech recognition applica-
tion depends on the accuracy and latency of the
ASR system. Hence, the model size is crucial,
since high complexity causes latency to the ASR
system. Currently, large SI models dominate in
the applications as they suit for many acoustic en-
vironments. However, it is easier to accomplish
higher accuracy with an ASR system trained for a
limited acoustic environment. With small personal
devices there is no need for a large SI model, as
they typically have a single user. If the models are
small enough, it is possible to run the ASR system
and store the model locally in the device. Utilizing
the memory of the device would reduce the mem-
ory demand on the server. One possible applica-
tion for our method would be to adapt and com-
press the SI model during the use and to move the
models completely into the user’s device, when
the models are small enough.

5 Conclusions

The MAP adaptation was expanded with split and
merge operations which are used in ML training.
The initial results indicate that the method can
compresses the SI model by a half while still im-
proving the performance with the speaker adapta-
tion. While the results are promising, more ex-
periments are required to confirm that our method
is suitable for the personalization of the acoustic
model.
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